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The formal modi6cation, by long-range potentials, of the scattering equations describing three particles
interacting through short-range potentials is discussed in terms of the exact Coulomb Green s function,
whose mathematical properties are known. This Green's function can be explicitly written down in several
special cases; approximate forms of the modi6ed theory are described for these instances. The application
of the Coulomb-modihed three-particle scattering theory to the O.-cluster model of C" and to deuteron-
induced nuclear reactions is described in some detail. For the three-n model, an heuristic generalization of
the local plane-wave approximation is used to obtain a simple approximate form for the Coulomb Green s
function. This new theory may have some relevance to the problem of helium burning in stars. Finally, in
the Appendix a discussion is given of why the methods of multiparticle collision theory fail in the problem
of calculating the general three-body Coulomb Green s function at positive, real energies. A possibly useful,
mathematically well-de6ned method for constructing this Green s function at negative real energies is
also given in the Appendix.

I. INTRODUCTION

HE Coulomb force plays an ambivalent role in
nuclear physics. On one hand, it is regarded as a

nuisance when it obscures the eRect of the strong inter-
actions in experiments performed with charged par-
ticles. On the other hand, because the Coulomb force
is well understood, it can elucidate subtle features of
nuclear structure. Clearly Coulomb eRects are not al-

ways negligible: In certain circumstances incorrect
results have been obtained through ignoring the physical
consequences of their long range for particles with long
wavelengths. '

It is the aim of this paper to show that the treatment
of the Coulomb force is formally no harder in the three-

body problem than in the two-body problem (although
from the computational standpoint it is rrtttch harder).
One merely constructs the Coulomb Green's function
(which has well-defined mathematical properties, s

although we only know how to explicitly construct it in

special cases) and substitutes it everywhere for the free-

particle Green's function. In situations where there
might be uncertainty as to how to continue oG the
energy shell or where the use of a complex energy
variable might lead to ambiguities, ' we adopt the

following physical convention. We treat the Coulomb

potentials as though they were cut oR at a distance

much larger than the other distances in the problem.

We then perform all necessary manipulations, express

all physical quantities in terms of matrix elements

involving the cutoR "Coulomb" wave functions, and

employ the completeness relation for these functions

wherever possible. Finally, all physically relevant ex-

pressions are analytically continued to real energy, and

thee the cutoff radius is allowed to become arbitrarily

large. Performing the limiting processes in this order

* Supported in part by the National Science Foundation.
' J. V. Noble, Phys. Rev. 148, 1528 (1966).' W. Hunziker, Helv. Phys. Acta 39, 451 (1966).
P W. Ford, J. Math. Phys. 7, 626 (1966).

resolves all ambiguities and is clearly the way to arrive
at the physical answer.

The organization of the paper is as follows: In Sec.
II we shall see how to modify the Faddeev equations,
and how to construct the generalized 3 —+ 3 amplitude.
The derivation follows the physically rigorous procedure
outlined above, which is in many ways reminiscent of
the treatment of Goldberger and Watson, 4 except for
the fact that it deals with three-particle scattering.
The third section discusses the construction of the
exact Coulomb Green's function in some important
special cases. Section IV concludes by indicating how
the general formalism may be applied to specific
problems in nuclear physics, and discusses some possibly
useful approximations. The Appendix shows how the
Coulomb Green's function for an arbitrary three-particle
system can be calculated for negative energies; this
might be of some use in discussing the bound-state
problem.

G(W)=(W —H) ',
g(W) = (W—H,—V)- .

In terms of g(W), we may write

G(W) = g(W)+ g(W) VG(W)

(2)

(3)

M. L. Goldberg er and K. M. Watson, Collision Theory
(John Wiley tk Sons, Inc., New York, 1964), p. 259 ff.
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II. MODIFICATION OF THE
FADDEEV EQUATIONS

The three-body system is assumed to be described

by the Hamiltonian

H=Hp+V+U,

where Ho is the kinetic-energy operator, V is the sum
of short-range interactions, and U is the sum of the
Coulomb interactions, which are taken to be screened
with a range (R which is much larger than any of the
other ranges in the problem. Let us de6ne the Green's
functions
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using the usual identity. Following Faddeev, ' we sup-
pose that the solution of (4) may be written in the form

G(W) =g(W)+g(W)X(W) g(W),

ing S is finite or infinite. Thus, the matrix elements

limp p.-I t.(E+ iq) I y,+&,

lim(pp. It (E+irt)g(E+irt)tp(E+irt) Itt p ),
X(W)= Q X (W),

a=1

X (W)= t (W)+t (W)g(W) Q Xp(W),

(6)
as R —+, are no more pathological than those from
the non-Coulomb problem:

and, as usual,

t.(W) = V.+V.g(W)t.(W) . (8)

lim(Xp
I
t (E+irt) I Xp&,

q~p

lim(Xp It (E+irt)Gp(E+irt)tp(E+irt)
I Xp&,

Equations (6)—(8) follow the by-now standard cyclic
labeling convention, with Vr—= V(rss), and so on; only
pairwise interactions are assumed. By keeping the
range of the Coulomb forces large but 6nite, all formal
difhculties in Eqs. (5)—(8) are circumvented, and all
of the operators are in principle well defined. '

I et us now consider the expression for the transition
operator describing collisions in which both the initial
and 6na1 states contain three free particles. Defining

I Xp) to be the product of plane waves, i.e.,

(H,—E)
I
x,)=0,

the amplitude for 3 —+ 3 may be written

lim(Xp 1[U+V+(U+ V)G(E+irt)(U+ V)) I
Xp). (10)

If we define the Coulomb-distorted plane waves by

Imp'& =
I xp&+g(E~i~) U

I xo&, (II)
we see that expression (10) may be rewritten.

&p p+(E) = &Xp I U14p+&+Qp I X(E+irt) I @p+& (12)

The 6rst term on the right-hand side of (12) may be
immediately identi6ed with the amplitude for pure
(screened) Coulomb scattering. All the interesting
physics therefore resides in the second term. We now
note that there will be only a 6nite number of terms,
in the formal expansion of X(E+irt), which are robot

spatially bounded. These are the "disconnected terms, "
t (E+irt), and the "rescattering" terms, such as
t gtp. Obviously, the spatially bounded terms restrict
the integrations in evaluating Qp I Xb,„„p,e(E+irt)
)& I pbp+& to volumes small compared to 5l', so the screen-
ing radius now may be allowed to become in6nite in this
part of (cits I X(E+irt)1&p+&. What of the disconnected
terms and the terms with rescattering singularities' If
the Coulomb potential U is positive, the mathematical
properties of

I
ttp+& will be exactly the same as those of

I Xp). That is, (r,R I
@p+& is a bounded, continuous func-

tion of six variables, independent of whether the screen-

~ L. D. Faddeev, Mathemati ca/ Aspects of the Three-Body
Problem in the Qnantnm Scattering Theory (Israel Program for
Scienti6c Translations, Jerusalem, 1966).' M. Rubin, R. Sugar, and G. Tikopoulos, Phys. Rev. 146, 1130
(1966).

where Gp(W)=(W —Hp) ' is the free-particle Green's
function, and the t satisfy Eq. (8) with g(W) replaced
by Gp(W). In general, /the disconnected terms will
still have 5-function singularities, and the rescattering
terms will have rescattering singularities. It must be
emphasized that this is true whether U is long- or short-
ranged, as long as limv-p I pe+&=

I Xp). In fact, the pres-
ence or absence of screening in U is irrelevant to a dis-
cussion of the dBFiculties involved in evaluating matrix
elements of the disconnected and rescattering terms. The
major problem is that there is not yet known an explicit
representation for Ipp+& or equivalently, g(W). Thus,
to proceed further, one must employ either approxi-
mate forms of g(W), or else use the explicit form in the
special cases where it is known. These matters will be
explored further in the next section.

Let us conclude this section by pointing out that for
rearrangement collisions one has the option of using
either expression (5) for the Green's function, or of
solving the particular Lippmann-Schwinger equation
for the appropriate scattering operator by methods akin
to those introduced above. ' In either case, the limit
(R —+ causes no difhculty.

III. THE COULOMB GREEN'S FUNCTION

Hunziker' has recently proved several properties of
the Hamiltonian Hp+U, which hold even if U is the
sum of two-body Coulomb interactions. First, Hp+U
is bounded below and is essentially self-adjoint (in
the sense of von Neumann) on the domain of Hp
Therefore, its eigenfunction spectrum is "as complete
as" that of Hp. Secondly, the continuous part of the
eigenvalue spectrum of Hp+U is bounded below and
includes that of Hp. Finally, the discrete eigenvalues of
Hp+ U can accumulate only at the lower end of its
continuous spectrum. (Obviously, if U is repulsive, there
is no discrete spectrum. ) Thus, g(W) is, for positive
energies, certainly a well-def'Lned bounded operator (on
the Banach space of bounded functions satisfying a
Holder condition'), even on the boundaries of the
"kinematic" branch cuts given by the spectrum of Hp.

J. V. Noble, Ph.D. thesis, Princeton Universityp 1966
(unpublished) .
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Keeping this in mind, we see that Faddeev's method'
may be taken over without alteration, to show that the
kernel of Eq. (7) is completely continuous.

At present there does not seem to be any rigorous and
useful general method for constructing g(W). Even if
U is positive, so that G(W) has no poles, and only one
cut, the difhculties are formidable. If the screening
distance is kept large but 6nite, any of the approaches
given by Faddeev, ' %einberg, ' or Blankenbecler and
Sugar' will be formally suitable. The problems arise
from the fact that a large number of partial waves will
add coherently in the forward direction to produce a
nearly-divergent sum, just as in ordinary two-body
screened-Coulomb scattering. I'urthermore, the iterated
kernels such as U1Gp(W) UsG p(W) (in the usual notation)
are not bounded on the previously mentioned Banach
space when the screening is turned off after the energy
is made real. It should be noted, however, that for nega-
tive, real W the kernels U Gp(W)UlsGp(W) represent
completely continuous operators on the Banach space
of bounded, continuous functions of six variables, as is
shown in the Appendix. Thus, for example, the bound
states of the three-alpha particle model of C" ' may be
investigated in a formally straightforward way.

There are two important special cases for which the
Green's function g(W) may be explicitly constructed.
Because of the awesome diKculties introduced by
attractive long-range forces, the remainder of the discus-
sions will be restricted to purely repulsive potentials.
Suppose one of the particles, say 3, is neutral. Then
de6ning

qs= (ttsspl —tll'ps)/(tssl+ttss)

tss ttsltls/(ttsl+tÃs),

~3 ttss(tlsl+ tm2)/(ttsl+ ttss+ tsss)

we have, in the center-of-mass system

(»)
(14)

(15)

(ps'qs'I g(W) lpsqs&= &(ps' —ps) X dk"(qs'I 4.-'&

lim(r
I ys. '& = (2tr)

—"' exp(ik. r) .
em~0

The other special case is that in which particle No. 3
is inhnitely massive, and is strongly charged. If the
Coulomb interaction, U~2, between 1 and 2 is small
compared to U~3 and U~~ and therefore is neglected, we

S. steinberg, Phys. Rev. 133, 8232 (1964).
9 R. Sugar and R. Blankenbecler, Phys. Rev. 136, 8472 (1964).
'3 D. R. Harrington, Phys. Rev. 147, 685 (1966).

XI W—(2%3) 'ps' —(2tss)k"'j —'(pg-'lqs&. (16)

In (16) above, (qsl $3') is the Fourier transform of the
Coulomb-distorted plane wave satisfying

)Vs+ ass 2Z1Zsests—sr 'j(r I $3'& (17)

and such that

may write g(W) as (note that pl, ps is a useful coordinate
system with tls infinite)

&pl'ps'Ig(W) lplps)= dx e(pl'I&*'(1 3)&

X(ps Ifs'(2, 3)&l W—(2ttsl) 'xs —(2ttss) 'ysj '

x (4,'(2,3)lps)(4*'(1,3)lpl). (18)

Let us now examine what happens when we evaluate
the t using the Green's function gs(W) defined in (16).
First consider ts(W): since both Vs and gs conserve ps,
there will be an over-all factor of 8(ps' —ps) to factor
out. Then, LZ=W —(2M3) 'Pssj

(qs'lt (Z) lqs&=«3'I Vslqs&+ &qs'IVsl&' '&

x(z—(2tss) 'k"') '(y3"'lts(z) Iqs&dk", (19)

where

«3'
I vsl e")=— ~qs&qs' I vsl qs&(qs I e"&,

and so forth. Defining (k'I Vs'lk)—= (y3"I Vslfk ), we

have

(qs'lts(Z) lqs)= dk' dk(q3 II[I/ )

X(k'lt3 (Z) Ik&(QJg lq3& (20)

where (k'I ts'(Z) I k) is the solution of the ordinary two-

body Lippmann-Schwinger equation, using (k'I Vs'I k&

as the potential. Since the screened functions Ips*&,
are used only in such matrix elements as (k'I Vs'Ik&,
they may obviously be replaced by the Coulomb wave
functions without altering any of our results.

Next, consider, say, tl(W): it represents the scattering
matrix of two particles (2 and 3), one of which is

charged, interacting via a short-range force in the
presence of a third, charged, particle (1). We have
Lthe coordinates are defined by cyclic permutation of
the indices in Eqs. (13)—(15))

&»'ql'I tl(W) lplql) = t'(pl' —pl) «1'I Vll ql&

+ dqt" dpi'" dql"'&ql'I Vllql"&

x &p 'q "Ig (w) I p "'q "'&&p "'q "'
I
t (w) I p q & ('»

In the notation of Ref. 6, letting n=ttss/(ttss+ttss),
p= tll/(ttsl+ttss), and y= trss(tN1+tts +tss2s)/I (ttsl+tns)
X(tns+ttss)j, we have ps= —ql —npl, q3 pql+Vpl,
and nP+y=1. Then

(pl ql lgs(W) Iplql)
= &(ql'+npl' —q.—npl)& —Pql'+~pl'I

Xg(W—(2Ms) '(q+ p)')I —pq+vp &. (22)
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Without-some sort of approximation, it is diKcult to
proceed beyond Eq. (21). Schulman" has studied the
local plane-wave approximation which is based on the
idea that in momentum space, the Coulomb-modified
plane wave is nearly a 8 function. That is,

(23)

where
I Cs(k) I

'—=2m gLexp(2s. rl) —1$ ' is the usual
Coulomb penetration factor. " This approximation
seems to be reasonable for functions f(p) which are
square-integrable, such as (p'+tt') '. It is clearly not
correct for functions which are not Z2, for example,

f(p) = exp(ip. r). Thus one must be somewhat cautious
about applying (23) in order to avoid incorrect results.
A more physically motivated approximation comes
from noting that in (21), particles 2 and 3 can interact

only at short spatial separations, in which case they
look like one charged particle as far as particle No. 1 is
concerned. Since it is the long range of the Coulomb
force which causes the difficulties, we need not worry
particularly about what happens when all three par-
ticles are close, since the nuclear interaction between
2 and 3 then dominates the dynamics, relative to the
Coulomb interaction 1 and 2. Let us define U~ to be the
Coulomb potential which depends on the distance
between particle 1 and the center of mass of 2 and 3.
Then we may write

gs(W)=(W Hp —Us) —'
PW —Hs —Ug ——(Us—Uy) P'. (24)

De6ning gr(W)=(W —Hs —Ut) ' we have

gs(W) =gr(W)+gr(W) (Us—Ug) gs(W), (25)
and so

&p~'e'lt~(W) lp q &=~(p~' —p~)&e'IV~lqr&+ &e'IV~lq~"&&p~'lg~(W —(2t ~) '~~"')lp~")

Z]Z28
X&p "e"It (W) I p q &dp "dq "+

27r2
{&q'Iv lq "&&p'Ig(w —(2t ) 'v"')lp "&(p"—p"') '

XL6(ql"+ap&"—qt"' —dp&"') —8(q&"—q&'") j}dp&"dq&" &p&'"qt,
"'

I gs(W)t&(W) I
prq~)dp&"'dqq'". (26)

Let us now consider

&qr'
I Vr I

e"&&p~'I g~(W —(2l ~) '~'")
I
p~"&(p~"—p~) 'Lh(q~"+~p~" —q~ —~p~) —~(qs"—e)id%"dp~"

d»"&&~ 'I»"&(p~"—p~) '{&q~'I v~
I
q~+~(»"—») &

XLW (2M&) k~ (2tt&) '(qr+tr(pt —pr))'j ' —(qt'I V~I q~&LW —(2~~) 'kt' —(2tt~) 'V~'] '} (27)

I
Note that the Coulomb wave functions which appear

in (27) are slightly different from those of Eq. (17).$
The integrand of the pr" integral in (27) is precisely
the type for which approximation (23) works well,
and so

r=l C.(p, '; U&) I'(p&' —p&) 'I &qr'I V&l q&+a(p&' —p~) &

X{W—(2~i) 'Pi"—(2t r) '(e+~(Pi' —P~))'} '
—&q~'I V~l qr){W—(2Mt)-'p, "—(2ttr) 'qi'} '$. (28)

Because (28) is not a singular or strongly peaked
function of lpr —pr'I, the correlations it contains are
relatively negligible. It is thus reasonable to treat the
order e' terms in (26) as a small perturbation if the
potentials V have a strength parameter much greater

«L. Schulman, Phys. Rev. 156, 1129 (1967).This paper includes
the more important references to the literature on Coulomb
wave functions.

"A. Messiah, Qguatgm 3Iechamtcs Uohn Wiley R Sons, Inc. ,
New. York, 1961), Vol. I, p. 486.

than Z~Z~e'; this is almost always the case in nuclear
physics. In other words, deining t& by

&pi'e'I&i(w) lpiq &=~(p '—p )&q 'I v Iq &+ dp "dq"

x&q 'I v~ le"&&P~'lg~(w —(2t ) 'q~"') IP~"&

X &p "q "I f (W) I p q &, (29)

we have tt(W)=1~(W)+O(e'). We note that (29) is
exactly solvable in terms of the eigenfunctions @t,'
of Hp+Uy. .

&p~'qr'If (W) lp~qr&= dk~&p~'I@"'&

X&qi'I4(W —(2~i) 'ki')
I e&&e~ 'I») (3o)

where &q,
'

I tt (Z) I qt & is the ordinary two-body scattering
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matrix generated by V~ in the usual Lippmann-Schwin-
ger equation. A similar approximation for t2 also is easily
constructed. Equation (29) has the advantage of pos-
sessing the correct high-energy limit Lobtained from
(21) by asymptotic approximation for large ~pi~ and
~pi'~1 as well as the physical low-energy behavior.
(From its structure, we see (26) is the adiabatic
approximation. j

It is not yet possible to explore the problem of three
charged particles in detail, since a general expression
for g(W) is not available. This is not a handicap in the
bound-state problem, since for lV real and negative,
g(W) may be constructed by standard techniques (see
the Appendix); in fact, for this case it may not even be
advantageous to split up the two-body potentials into
their short- and long-range parts. In the spirit of the
local plane-wave approximation Eq. (23), an approxi-
mation for the special case of three identical charged
particles may be developed. Since its applicability is at
present restricted to one specific physical situation, this
approximation will be introduced in the next section.

(q;p; i ys.x.') C(k, ,K;)6(q,—k~) h(y; —K;) . (31)

IV. APPLICATIQNS TO NUCLEAR
THREE-BODY PROBLEMS

A. Three-Alpha Model C"

Harrington" has numerically solved the bound-state
Faddeev equations for three identical uncharged spin-
less particles, interacting via 1-S separable potentials
and has applied the results to the alpha-cluster model of
C", with fair success. Because of its astrophysical
significance, the three-alpha problem needs to be studied
at positive energies as well as at negative energies. The
constructive technique for g(W) outlined in the Ap-
pendix fails for 8 &0, so to proceed further, drastic
approximations are necessary.

We consider the Coulomb wave function for three
identical charged bosons, and conjecture that since each
two-body scattering is essentially forward, it will be
reasonable to write

which can be derived from a full three-particle wave
equation (with some approximations which are clearly
correct in the low-energy limit). We consider the coor-
dinate system suggested by Bayman" in which the
three particles are assumed to de6ne the x—y plane.
Then the radius coordinate is

p'= s Z ((*--*e)'+(r-—Xe)'j (34)

and the Schrodinger equation becomes (only the com-
ponents with lowest angular momentum and with
greatest symmetry survive in (r,R~Q&, x') at r=R=O)

d( ~»(p)
p
—'—

I
p' +1k'—2rfkp 'jgs(p) =0, (35)

dpk dp

where t7=3Me'k ' k'=2(k'+sE') and we have
assumed that in this most symmetric state the particles
are at the vertices of an equilateral triangle of side p
Lnote that p defined by (34) is the average interparticle
distance). Making the usual transformation to elimi-
nate the first derivative term, i.e., »(p) = p s~'tt(p), we

get
d' -'(-,'+1) 2rik-

+k' — — e(p) =0.
-dp p—

(36)

C(lk') =—C(n) = exp( —-'~n) I 1'(i+in)
I
/1'(-')

= e exp( ——,'z rf)L(ri'+-,')(ri'+9j4) jcosh(zri) j—"'. (37)

With approximation (31), the Green's function becomes

(11''q''I g(W) I
P'a')=~(P'' —ll') ~(»'' —tf') C'(q"+eP")

X(W 3I 'q' sM 'P—')--' i—=-1, 2-3. (38)

The solution of (36) which is regular at the origin is

proportional to exp(ikp)p'~' iFt(-', +iti~5
~

—2ikp). Nor-
malizing to the asymptotic behavior e(p) cosLkp+ o s(k)

rl ln(2kp) ——erz.$, we find the appropriate penetration
factor to be" Lnote C(e'=0) = 1]

We now require the three-body analog of the barrier
penetration factor. We have no exact representation of
the three-body Coulomb wave function, so we first write

C= (2~)'(r;,R;~ ys, , K,') ~ „n,=s. (32)

C(k;,K;)—=C(k;s+eE;s), (33)

The total symmetry of Eq. (32) with regard to inter-
change of the particles implies that C can depend only
on the energy k,s+esK;s, or must consist of symmetric
products like c(kt)c(ks)c(ks). For low (total) energies,
rather than depend on an approximation of doubtful
validity such as the product form just mentioned, we
prefer to assume that

Using (38), we obtain the following equations defining
the bound-state wave function (J=O), in the case of
separable two-body interactions":

k(q, p) = 2C'(q'+-" p') e(q) r—(~,p)
&& Ã—&(q,p) J 'f(p), (39)

"B.Bayman, in Proceedings of the Eastern Theoretica/ Physics
Coeferelee 1%6Z (Gordon and Brea—ch Science Publishers, New
York, 1963).

'4 Handbook of Mathematical FNnctions, edited by M. Abramo-
witz and L. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, Washington, D. C., 1964), Appl. Math.
Ser. 55, p. 256.

'e These equations generahze Harrington's Eq (11) (Ref. 10.)
for the case when the Coulomb Green's function is given by Eq.
(37).
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where

, e*(y'+sy)e(y+ky')r(E, P')C'(P'+P"+y p')f(P')

E—E(l y+sy'I, p')

I e(q ) I
sCs(q '2+ sps)--r

r(E,p)= X '+ dq"
E E(q"—,p)

E(p,q) =M '(q'+4p'),

(40)

(41)

(42)

and the two-body scattering matrix in the presence of the over-all Coulomb field I using approximation (31)g is

(q'P(E —'M 'p', p) I q) = —e(q') (E,P)e'(q) . (43)

LNote that the function e(q) in (43) is not the same as that in (36).)
For the 3o. scattering problem the analog of Eq. (40) is simply

h(p, p'; W)=e(y+-,'y')e*(p'+-', p)C'(p'+p"+y y)LW E(ly+ pl P)j

,,e*(p"+~sp)s(p+sp")C'(p'+p"'+P P")r(W,P")h(y",O'; W)

w-E(l p"+-;pl, p)

where we may de6ne the 3 ~ 3 scattering matrix by
T(W) = T&'&(W)+ T&"(W)+T&"(W) &" and where

(yrqt I
T'"(W)

I
yt'qr') = —e(qr) r(E,pt) e*(qt')

&& L~(pt —Pt') —2&(pr, pt' W) r(W Pt')1 (45)

It is clear that for three identical particles, the functions
T&" and T "& are obtained simply by substituting ps s

and qs, s everywhere in place of p&, qz in Eq. (45)
It should be most interesting to see whether calcu-

lations using the approximate theory outlined above
will give a reasonable value for the Coulomb energy.
At any rate, this theory should enable the present crude
estimates of the reaction rates for" 3 He4 —& C"+2y
to be considerably improved, with consequent impli-
cations for the theory of stellar structure and element
formation.

B. Deuteron Reactions with Heavy Targets

We now use what we have learned in Sec. III to
write down the equations for Coulomb-modi6ed deu-
teron scattering in approximate form suitable for
calculations. The theory of Ref. 2 will be taken as the
starting point, rather than the Faddeev equations. We
assume the Hamiltonian is given by

H=Hp+V +V~+V „+U„, (46)

where V and V„are the neutron-target and proton-
target nuclear interactions, respectively, V„„ is the
neutron-proton interaction, and U„is the proton-target
Coulomb potential, which will be assumed to be that
for point charges. The Coulomb Green's function is
defined by

gn(W)-(W &p Un) '. — —(42)
"D. Frank-Kamenetskii, Physical Processes in Stellar Irjteriors

(translated from Russian) (Israel Program for Scienti6c Trans-
lations, Jerusalem, 1962), p. 200. The estimated reaction rate is
probably uncertain by a factor of 10.

It will also be convenient to de6ne the Coulomb po-
tential acting on the deuteron center-of-mass, system
which in coordinate space is given by

Us ——Ze'L-', (r„+r„)j t(1+2m/M, )
—'.

The momentum-space coordinates are

(4S)

and
K= k„+k,

q= —,'(k„—k,).

(49a)

(49b)

Iu~+)= Ixd)+ (E+s~ &p V-.)-'-—
X(V„+V„+U,)IA+) (51)

is the appropriate solution of the Schrodinger equation
asymptotic to the direct product IXs) of a deuteron
internal wave function and a plane wave for the deuteron
motion; and where the Coulomb-distorted deuteron
wave is formally given by

)= I x„)+(E+s„-a,—V„,)- U. l @.+). (52)

Analogously to Eq. (12), the scattering amplitude (50)
is the sum of a nuclear part, plus the amplitude for
scattering by the effective Coulomb potential acting
on the deuteron, plus a sma11, short-ranged correction,
U„—Us, for the fact that the lps~) are eigenfunctions
of Hp+V„~+Up.

We shall also need the reduced mass appropriate to E:
M =2', /(2m+M, ), where M, is the target mass and
m the nucleon mass. In terms of M and m, the kinetic
energy is (2M) 'E'+m 'q'. The elastic deuteron scat-
tering amplitude is defined, for example, by

T.+(E)= (4' ILV-+ V.+(U-. U.)3I4+)—
(y, ,-lU„lx„), (50)

where
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The next problem is to construct Ifq+&; we have

!|4+&-14+&+(E+in H—. v—- —U )-'
x(v.+v„)IA'&, (s3)

where

Iy„+)= I
x )y(E+p~ —H,—v.„)-'U,

I y„+). (s4)

Now 1@~+)may be written

Iy„+&= I y.+&+(E+i~—H.—v.,—U.)-
X(U,-U.) ly.+&. (55)

Since U~ and U~ are both repulsive and so support no
bound states, the iterative solution of Eq. (55) at least
has the possibility of existing. In fact, it is possible to
show that on the Banach space of bounded Holder
functions, ' (E+ig Hp U—~) '—(U~—Uq) is a bounded
operator, whose norm decreases with energy, so that
for su6iciently large energies,

(56)

Furthermore, in view of our previous remarks on the
applicability of the local plane-wave approximation,
Kq. (56) is probably quite good even at low energies,
when (K«I&„+& is multiplied by a square-integrable
function of q and integrated with respect to q. The fact
that Eq. (56) is frequently a good approximation does
not imply that we can with impunity replace U~
everywhere by U&, however. Instead, we formally
keep the Green's function g„(W) de6ned by Kq. (47),
except in circumstances where the use of

gg(w) = (W Hp Ug) '——(57)

can be shown not to be misleading.
We now continue calculating Ifd+&: as has been

discussed in many previous works, ' the kernel of Eq.
(53) is noncompact" as it stands, and further manipu-
lations are needed to make it suitable for numerical
solution. V/e define the two-body scattering matrices
as in Sec. III:

t.(w) = v.+v.g„(w)t„(w), (ss)

t~(w) = V„+V„g,(W)t„(W), (59)

t ~(w)= V ~+V „g„(W)t„„(W). (60)

We also de6ne operators X„(W) and X„(W) by the
Faddeev-type equations'

X„(W)=t (W)+t.(W)g„(W)X,(W), (61a)

X,(W) =t,(W)+t, (W)g„(W)X.(W). (61b)

Note that I;„ is easily calculated in the recoilless case,
t„ is obtained exactly as in Eq. (19), and g„(W) may be
replaced by gd(W) in (60) without causing grief, so that
t„~ may be expressed in the form (30). We de6ne the
deuteron elastic-scattering operator by (W= E+ig)

T(w) I k.+&= (v-+ V.) lf '), (62)

and therefore,

T(w)14 +&=(v +v )14 +)

+(V.+V,)g,(W)T(W) I p,+&

+(v.+v,)g,(w)t.,(w) g,(w) T(w)14 „+). (63)

Using (61), Eq. (63) may be rewritten

T(w) I y,+&=
I x.(w)+x, (w) 71',+&

+I X„(w)+X„(w)7g (W)t„(W)
Xg„(W)T(W) I y +). (64)

LRecall that X„and X„were chosen so that

I 1—(V +V )g (W)7 '(V +V„)=X (W)+X„(W).7

Finally, we replace g~(w) by gd(W) in Eq. (60), and use
a separable form for the ordinary two-body matrix
t„„I

den6e dby t„~=V„~+V„~(w Hp) 't ~ in —the e p-
barycentric subspace7:

(q'I t-.(z) I «&= —»(q')~"~(z)»*(«)
—ep(«')h. p p(Z)vp (q), (65)

where A~ and h. 8 are the triplet and singlet spin pro-
jection operators, respectively. Putting these approxi-
mations together, we get

goal

T(w) I y.+&= Lx-(w)+x.(w) 7 I y.+&—2
p /P gl f

d«"(X-(W)+Xn(W))g p(W) I
«"~"~"; 4 x-'&~s-(«")

X.s"(W—(m)-'X"') d«"'vs-*(q'") (q"'s"v"; g z-'
I g„(W)T(W) I &„+& . (66)

(5' is the total spin of the pp-p system, and v is its s projection. ) Left-multiplying Eq. (66) by 4K &s (q')g&(w) and

"See Ref. 7 for a more complete bibliography.
'8 In this connection, "noncompact" means "not a Fredholm kernel. " An excellent summary of the mathematics of integral

equations, in a form accessible to physicists, is. given by S, %einberg, in Appendix A of Ref. 8.
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integrating appropriately, we have, in an obvious notation,

(' ';~' lg.(w)T(w) l~:)
= (» n' 0 x"

I gn(W) LX-(W)+Xn(W) 7gn(W) I4 n') —2 dK"(» n' 0 x"
I gn(W) I:X-+Xn7gn(w) I

ns-"' 4*-')

X s-(W —(2M) 'E"')(ns" ",'4'x- Ig.(W) ly.'&.

~e shall now assume that g„(W) Inrn., Qx') is the off-
shell continuation of Ign+); this is consistent with ap-
proximation (56) and the respresentation, Eq. (30), we
have been tacitly using for t „(W); it is also most
convenient. With this assumption implemented in Kq.
(67), we can now calculate T(W) Irtn+&~T(w)gn(W)
lvrn, ' Px') by solving the integral equation (67) and
substituting the solution in (66); then using the defini-
tion (62) and Eq. (53) Lwith approximation (56) if
convenient7, we see that

IA &=I&, )+g,(w)T(w)g, (w) I ";~"&

quadratures implied by the matrix element. Finally,
in contrast with the phenomenological optical potential,
the "optical potential" derived here contains the possi-
bility of S=1 —+ S=0 transitions, evenwhen the nuclear
interactions V and V~ are identical. Such transitions
lead to isospin violating components of the deuteron-
scattering wave function

I ps+&, so that transitions, from
initial states with deuterons and T=O targets to T=1
final states, can take place via this direct mechanic~. "

Let us suppose V„=—V„, and brieQy examine how- the
Coulomb effects bring about S=1~S=O transitions.
Equation (61) implies that X„+Xnhas the form

dK-( „(W)l..„." y.„)„„(W-(2~)-Z-s) -( )+ ( )='-( )+'( )
s"v" +connected terms. (69)

X&s- "'4'x-'lg (W)T(w) In '4' '&) (6g)

Since all the amplitudes describing transitions with a
deuteron in the initial state may be expressed as matrix
elements involving ll4+&, our task of describing deu-
teron reactions with Coulomb modi6cation is formally
complete. The final expression for the deuteron scatter-
ing amplitude is reminiscent of the distorted-wave Born
approximation. This is no accident. "The object which
plays the role of the deuteron optical potential in Kq.
(67),"

(ns. '; y "Ig„(w)l x.(w)+x„(w)7g, (w) ln, ', 4

is, however, much more complicated than the optical
potential used in DWBA calculations. It is derived from
a detailed theory of three-particle scattering, and is not
at all phenomenological in nature. It is exactly known,
given the ability to solve Eqs. (61), and to perform the

The connected terms are in fact square-integrable, and
so do not propagate two-body momentum correlations
nearly as strongly as tn(w), which contains the factor
8(k '—k ), and t„(w), which may be written (leaving
the spin-dependence implicit, and assuming a recoilless
target)

(k„'k„'
I t„(W) I k„k„)= dk"(kn'

I ys- )

X (k„'
I &„(W—(2m)-'k" s)

I k„&(y„„ lk„), (70)

where t„(Z) is the usual two-body m-C scattering
amplitude, and where (ps "Ik„) is the momentum-space
wave function appropriate to proton-target Coulomb
scattering. In the recoilless approximation, and using
the approximate orthogonality implied. by (56), we
obtain the explicit result (lpx') is the deuteron-target
Coulomb wave function)

(s'n'4 "lg.(W)D-(w)+J.(W)7g.(w) ln"; 4x'&=
&n &y'0'tsa'y

5g.* X——,
'

S P g2p0~ 0'p

X dx , , Lb....(K'—x,"~.'I4 (W—(2m)-'x') IK—x, ~n&
W —(4m) 'E"—m '(x—sK')'

ns(x ——'.K)
+&.n.„(K'—x) ~.'Ii.(w —(2m)-'x') IK—x, o„)7 (r, r ~ ~ Is„& (71)

W —(4m) 'E' —m '(x—-'K)'

In Eq. (71), we mean tn' to be the ordinary off-shell
proton-target scattering matrix obtained from the
usual Lippmann-Schwinger equation, except that the

n J. V. Noble, Phys. Rev. 157, 9&9 (1967).
».prom now on where necessary, we shall denote this object

by (Kr'v'IB(W) [ &n).

momentum-space matrix element of V~ is taken in
the basis of Coulomb wave functions rather than in
the basis of plane waves. This effectively reduces the
proton-target nuclear potential by approximately the

"J.V. Noble (to be published).
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factor Cs(k„')Cs(k„); it also shifts the positions of any
poles (bound states) in f„' by an amount approximately
equal to the Coulomb energy in that nucleus. Now, if
the two-body scattering matrices, t„and t„', are inde-
pendent of spin, examination of Eq. (71) reveals that
the amplitude for 5=1—& 5=0 vanishes identically,
independent of the presence of the Coulomb modifica-
tions. The only way the spin of the neutron can Aip
relative to that of the proton is if, say, the nucleon-target
interactions have spin-orbit parts; the proton wave
function is excluded from the target region by the
Coulomb force preferentially relative to the neutron
wave function, in the intermediate states, and the
spin-orbit parts of V and V„can thus flip one nucleon's
spin more often than the other' s.

The nature of the "connected terms" appearing in

Eq. (69) to a large exten. t precludes their contributing
much to the isospin-violating matrix elements (K'00l-
B(W) l

K1v). The major asymmetry in Eq. (71) between
the neutron and proton coordinates arises from the
presence of the function t„' instead of t„, inside the
brackets. This came about through the fact that t~
was diagonal in neutron coordinates, and that t„had
the form (70) which, because of the completeness
relation for Coulomb wave functions, led to the appear-
ance of two fewer Coulomb wave functions in the I

term than in the t„' terms. This reduction and conse-
quent symmetry occurs to a much smaller extent in
such higher iterations as t„g,t,+t,g„t„." Prom the
computational point of view, therefore, it is probably
su%.cient to calculate the T-violating part of the
"optical potential" using expression (71) alone. This
is the procedure followed in an application of this theory
to isospin-violating (d,cr) reactions, which will be
published separately. "

C. The Three-5'ucleon Problem

The modi6ed Faddeev equations introduced in Sec. II
are obviously directly applicable to the calculation of
the properties of the ground state of He', and to the
discussion of p-d scattering. These calculations are
being carried out by Adya, "so we shall not discuss this
application further here.

V. SUMMARY AND CONCLUSION

The object of this paper has been to show that the
formal treatment of repulsive Coulomb interactions in
the framework of an otherwise well-behaved three-body
problem is not particularly hard. On the other hand,
as we have seen, drastic approximations of various

"To be completely honest, we should note that the asymmetry
occurs again in the next terms, t„g„t„g~t„+t~g~t„g„t~,in the series
expansion of Kq. (61l, and in all odd-order terms. However, these
terms contribute substantially only in the lowest partial waves,
and so their spin dependence is not nearly so strong as that of the
first-order terms.

~' S. Adya and R. D. Amado (private communication).

kinds are required to render the Coulomb-modified
nuclear-scattering problem numerically tractable. This
is partly because, lacking a general solution, we do not
understand the detailed properties of the Coulomb wave
function of three charged particles; and partly because
the simplest three-body problems already tax the ca-
pacity of the largest and fastest currently available
computers. The approximations made in Secs. III and
IV were suggested with this limitation in mind, with
the aim if including at least some of the physics arising
from Coulomb forces in three-body scattering into the
canon' of numerically accessible problems.

APPENDIX: CALCULATION OF THE COULOMB
GREEÃ'S FUNCTION AT NEGATIVE ENERGIES

It is straightforward to show that for Yukawa po-
tentials, the kernel V~GOV~GO is a completely continuous
operator on the Banach space of bounded, continuous
functions of six variables, when the energy is negative
and real. To see this, one merely notes that

dpt' dps'l(ptpsl

and is continuous in pt and ps. '4 In fact, Paddeev has
shown' that this kernel is completely continuous on a
slightly more restricted Banach space at all energies.
Now consider the kernel E„ in which V~ and V2 are
Yukawa potentials of range e (in appropriate units),
@=1, 2, Clearly the case of repulsive Coulomb
potentials is obtained by taking the limit as n ~~ . We
now ask at what energies the limiting kernel, E(W)
= lim„„ IC„(W), is bounded on the appropriate Banach
space. For these energies, we can apply the well-known
theorem" that the limit in norm of a sequence of com-
pletely continuous transformations is itself completely
continuous. We anticipate the result of this query by
stating that E(W) is only bounded for negative, real
W, or. when Im(W)WO.

In appropriate units, the kinetic energy in the center-
of-mass system can be written

co= pt +ps +2&pt'ps, (A2)

where a~&1. We shall assume that all the masses are
finite, so that 0.(1.

We 6rst show that E(E+t'rl) maps a typical member
of either of the previously mentioned Banach spaces into

"F. Riesz and 3. Sz.-Nagy, Fanctsona/ Aaalysss (F. Ungar
Publishing Company, New York, 1955), p. 224.

"Reference 24, p. 178.
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a function which becomes unbounded as 2/~0, if we define [if[[=max[pi, ps)f(pl, ps), I Jl is majorized by
E&0.The typical element is just the constant function,

l~l &[if[I dp '(p —p ') 'LIE[ "(1—')) '
of superfiuous coupling constants, the kernel E(W)
maps the function 1 into the function

1(pl)ps j W) dpi dp2 (pl pl ) (p2 p2 )

X (W—pl' —ps"—2llpi ps') '(W —ss/') '. (A3)

We now show that the function I(0, ps, E+ir/) becomes
in6nite as q~0, regardless of the value of E or p~.
With pi ——0, we may do the integration over pl", the
result is

2~'(nP2')-'tan-'[QP2'(Ps" (1—n') —W)-"')

X dp'(p —p') 'LIEI+p "(1—')) ' . (AS)

In obtaining the bound (AS), we have used the in-
equalities

pi'+ p2 +2&pl'P2 (pl+~P2)
+ (1—n') ps") (1—u') p

" (A9)
~'= (Ps'+~pi')'+(1 —~')Pl" ~&(1—~')Pl".

Both integrals in (AS) are finite, and the end result is
that

( 1—ns- l/

Substituting this expression into (A3), and doing the
I I[&Clif[[ pl 'tan

I pl
ps' integration, we obtain

Sx'
[I(0,ps; W) I

= dps'LP2'(W —ps")) '
A p

X tan —i [~ps'(ps'2(1 —(p) —W)
—i/')

XQo((P2'+Ps")/2P2P2') (A4)

where Qp(z) is the Legendre function of the second
kind, of order 0. Adding and subtracting Qp((ps'+W)/
2P2+W) in the integrand of (A4), we obtain two
integrals:

( —
1 a2- 1/h

X p tan.-'I p, — I, (A10)

where C is a constant involving n's and ~'s, and whose
exact form is irrelevant here. We have thus shown that
the kernel U;GOU,60 is completely continuous""', -;, at
negative real energies, for iQj.

Finally, it remains to be seen how to construct the
Green's function g(W), defined in Eq. (3). One way to
do this is as follows. We 6rst define the formal operators

k, (W)=[1—U,Gp(W)) ', i=1, 2, 3. (A11)

la=
Ps'+xg W+xP-

~x[x(W—x))- Q, —
[
—Q,

0 2psx 1 2xWi/2/'

We next write g(W) formally as

g(W) =Gpklksks[(1 —UGp)klksks), (A12)

X tan '[nx(xs(1 —ns) —W) '"). (A&) which satisfies the Lippmann-Schwinger equation

( W+ P22)
Is= Qol

I 2P,&Wr
dx tan '[nx(x'(1 —Q') —W) ' ')

X [x(W—x')] '. (A6)

J(pil ps IE[)= dpi dps (pi —pl) '

X(ps —ps') '[[El+pi'+ps"+2apl ps') '

The integral (AS) is finite since its integrand has only
logarithmic singularities. The integral in (A6) is infinite,
however, since its integrand has a simple pole coin-
ciding with a logarithmic singularity. This shows that
E(E+i2/) is not a bounded operator for E~&0, in the
limit as g —+ 0.

%hat of the case E&0? Consider the integral

g(W) =Gp(W)+ g(W) UGp(W), (A13)

if the inverse of the object in the square brackets
in (A12) is well-defined. ' (By U we just mean Ui
+Us+Us. ) Expanding (A11), and performing some
manipulations, we hnd that

[(1—UGo) klk, ks) = 1—[U2GoUlGo+ UsGoUiGo)klksks
—UsGpU2Gpksks. (A14)

But at negative energies, with purely repulsive Coulomb
potentials, the k; are bounded operators (in fact, their
norms are less than 1 for all negative energies), and so
the right side of (A14) is just 1 minus a completely
continuous kernel. Therefore, the inverse of the operator
in the square brackets in (A12) may be constructed by
the usual methods. Finally, if we write the right-hand
side of (A14) as 1 E, and write Eas—

where f(p, ,p,) is any bounded, continuous function; if

X([El+"') 'f(pi Ps) (A&)
[(1 UG)(1 U G)(1 U G)

—(1—(Ul+ U2+ Us)Gp))klksk„(A15)
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that is, as the difference between a positive operator of
unit norm, and a positive-definite operator of norm less
than 1, we see that the norm of X itself is less than j.,
and. so the Neumann series for (1—E) ' converges.

We briefiy recapitulate the results of this Appendix:
we have shown that no reformulation, of the Faddeev, '
Weinberg, or Blankenbecler and Sugar' type, of the
scattering equation for g(W), yields a tractable integral
equation at positive, real energies. They all evidently
suffer from the same disease as the two-body Lippmann-
Schwinger equation for the Coulomb Green's function,
namely the scattering amplitude diverges in the forward
direction. This strongly implies that an entirely new

approach is required to construct the Coulomb Green's

function for, three charged particles at positive energies.
Secondly, we have shown how a method suggested by
Sugar and Blankenbecler' may be applied to the case
of repulsive potentials, at negative energies. This
particular form of the solution )Eq. (A12)j has the
advantage of being nearly in the product form, which
Amado has found more closely resembles the true so-
lution than the partial-sum form. "Evidently there is
some merit to Amado's contention, since the kernel E
has norm less than 1, indicating that the product
Gok1k2ke is the first term in a convergent series expansion
for g(—(E~).

"R.D. Amado, Phys. Rev. 158, 1414 (1967).
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Migdal's Quasiparticle Model and Partial Muon Capture in 0"
MANNQUZ RHO*$
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By means of the process involving the capture of muons in 0" (g.s.) leading to detinite anal states in N'e,
we examine simultaneously (a) the qnasipartscle model of nuclear structure developed by Migdal and
(b) the pseudoscalar coupling generated by the axial-vector coupling in the etfective weak-interaction
Hamiltonian. In (a) we clarify the basic assumptions". essential for the model and the connection between
this model and other better-known (nuclear)'models. In (b), it is shown that the Migdal model successfully
eliminates the well-known discrepancy between theory and experiment in ts +0"(0+) -+ v„+N" (2 ) and
also in e +0'e(0+) -+ e +0"*(2 ). This in turn enables us to make use of the nuclear model to obtain a
reasonable estimate of Cp=rn„tv/Fx. The conclusion is that the one-pion-pole dominance hypothesis is
compatible with all available data in 0"and that there seems to be no urgent need to introduce the tensor
coupling as some people have suggested.

I. INTRODUCTION

'HK major diQiculty with the use of complex nuclei
as a means of studying the muon capture process

is the inherent uncertainty associated with the nuclear
structure. One process which does not involve nuclear
physics is capture in hydrogen. But since the capture
takes place mainly in muon-hydrogen molecules, there
is some uncertainty associated with the molecular struc-
ture. Moreover, not all the necessary information on the
weak-coupling constants can be deduced from this
muon-hydrogen experiment.

The p, capture process involves a large momentum
transfer g m„100 MeV/c, and for this reason it can
provide valuable information about effects which are
not found in processes like P decay; e.g. , the induced
pseudoscalar (P) coupling generated by the axial-vector

*Work partially supported by the U. S. Atomic Energy Com-
mission. Document ORO-2915-75.

)On leave of absence from Service de Physique Theorique,
Centre d'Etudes Nucleaires de Saclay, Gif-sur-Yvette, France.

' H. Primako8, Rev. Mod. Phys. 31, 802 (1959).
'M. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354

(1958).

coupling. ' s Goldberger and Trieman (GT) have ob-
tained a theoretical estimate of the I' coupling constant
by relating the constant to the pion lifetime and pion-
nucleon coupling constant in the one-pion-pole domi-
nance hypothesis. ' At this moment, there is no clear
experimental verification of the GT result. There is
evidence, however, which suggests that the actual I'
constant might be much larger than the GT estimate.
One set of experiments which seems to indicate this is
the measurement of the asymmetry of the neutrons
emitted after the capture of partially polarized muons. '
The other is the radiative p, capture in complex nuclei. 4

These two seem to require a larger I' coupling constant
than the theoretical estimate.

Here we are concerned with another type of experi-
ment, which seems to have been proposed originally by
Shapiro and Blokhintsev. ~ This is to look at the partial-

' See the review by H. P. C. Rood LCern Report, 1965 (un-
published) j, where other references are given.

M. Conversi, R. Diebold, and L. di Lella, Phys. Rev. 136,
B1077 (1964); H. W. Fearing, ibH. 146, 723 (1966).

L S. Shapiro and L. D. Blokhintsev, Zh. Eksperim. i Teor. Fiz.
59, 1112 (1960) LEnglish transl: Soviet Phys. —JETP 12, 775
(1961)j.


