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The Landau dispersion equation 2k2=Fkp2Z’(¢.) +kp2Z' (¢:) is studied experimentally for w=cw,+iw;,
where w;=0 determines the stable-unstable boundary of ion waves, kp. and kp; are the electron and ion
Debye wave numbers, and Z({) is the plasma dispersion function. The decrease of the phase velocity with
the frequency predicted by dispersion relation is observed for the spontaneously excited ion waves in the
mercury-vapor discharge. The cutoff frequency beyond which no ion waves appear is also observed. The
cutoff frequency increases with the electron drift velocity in the plasma. The dependence of the cutoff fre-
quency on the electron drift is explained by the ion-wave instability in a two-Maxwellian-component plasma.
One-way propagation of externally excited ion waves is also shown.

I. INTRODUCTION

INCE the beginning of the study of plasma physics,
it has been widely known that certain kinds of
electrostatic waves (such as plasma oscillations) can
be sustained in a plasma.! So-called ion waves in which
momentum transfer is mainly due to ions are a typical
example in the low-frequency region. According to the
fluid model of a plasma, the dispersion relation of the
ion waves is given by?

wpd/ (P —ywpd/kpd) =1+kpd/vok?, 1)

where w,; is the ion plasma frequency, kp, and kp; the
electron and ion Debye wave numbers, respectively,
and v,, v are the electron and ion compressional coef-
ficients, respectively. These waves are sustained by
Coulomb forces resulting from a slight deviation from
charge neutrality in the plasma. Since the ions and
electrons move in phase, the motion of the plasma is, in
a certain sense, similar to the ambipolar diffusion in a
nonuniform plasma.? If 2<<kp,, i.e., for long wavelength,
Eqg. (1) is reduced to

w2/k2= ('YGT5+’Y;‘T"J) /M; (2)

where M is the ion mass and 7', and T, the electron
and ion temperatures (eV). This relation determines
the velocity of the ion acoustic waves.

However, the fluid model does not predict the excita-
tion and damping mechanism of the ion waves. In
fact, only with kinetic theory can the effect of Landau
damping® of ion waves be described. Recently, ion wave
instabilities have been discussed by several authors®2
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using kinetic theory. The Landau dispersion equation
for longitudinal waves in a two-Maxwellian-component
plasma is

2k2=kplZ' (o) +hplZ' (§),
§‘6=[(w/k) —V]/Be; §‘z=w/k[31,

where Z({) is the plasma dispersion function, Z’({) its
derivative, 8, and B; are the electron and ion thermal
velocities and V is the relative drift velocity between
ions and electrons. In the absence of electron drift, this
equation reduces, with approximation of |, |<1 and
| £ 1>>1, to the ordinary dispersion relation Eq. (1)
for the case of y,=1, v;,=3. When Eq. (3) is solved for
complex frequency w=w,+1iw; the imaginary part w;
gives the growth or damping rate of the waves. There-
fore the region of instability is determined from the
condition w;=0. Taking the temperature ratio T,/ T; as
a parameter, the stable-unstable boundary can be
expressed in terms of wave number & and drift velocity
V. The essential character of the ion wave instability
induced by the relative velocity between the two types
of particles may be considered as a version of two-stream
instability.®® From a mathematical point of view, it is
equivalent to the Nyquist’s criterion in automatic-
control theory.!4 .

Recently, we have experimentally observed the sim-
ple dispersion relation [Eq. (1)] without considering
the theoretical effect of ion temperature.’® Also we have
observed the existence of a cutoff frequency in the
dispersion relation beyond which no spontaneous
excitation of the waves appears.’® The dependence of
cutoff frequency on electron drift has been explained
by the drift instability of a two-Maxwellian-component
plasma.’® In the present work, as an integration of our
previous short papers, we report on the ion wave in-
stabilities in mercury-vapor discharges with a more
detailed analysis in terms of the kinetic theory of
plasma, especially for the Landau dispersion equation
[Eqg. (3)7]. In Sec. IT the theoretical background of our
experiment is briefly summarized. In Sec. III our
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experimental arrangements for the mercury-vapor dis-
charges are shown. In Sec. IV the experimental results
on the dispersion of ion waves and the dependence of the
cutoff on electron drift are presented. The one-way
propagation of the waves is also shown. These results
are in good agreement with the Landau dispersion
equation. The detailed discussions omitted in the
previous short papers are given in Sec. V.

II. THEORETICAL BACKGROUND

We assume a collisionless and uniform plasma with
no external magnetic field. In the one-dimensional
approach, the longitudinal waves are described by the
Boltzmann-Vlasov and Poisson equations as follows!:

dfe/ 3t+v9f./dZ — (e E/m) 0f .,/ dv=0, (4)
of /t+vdf,/0Z+ (eB/M)af /=0, (5
s [" Gt (6)

where ions are singly ionized. To linearize the above set
of equations, we assume small perturbations in f, and
f+, which are proportional to exp[i(kz—wt) ]. Then, after
the Fourier-Laplace transformation, the equations can
be solved as an initial-value problem. However, the
dispersion relation is easily written even before the final
solutions are obtained. Following Landau, the disper-
sion equation is given by

22 =FpZ (¢ +hp2Z' (§5) (3)

for a two-Maxwellian-component plasma. In Eq. (3),
7', the derivative of the plasma dispersion function, is
defined by

xe

) = 2 f ve
2@ =g [ T ™
where the integration path C is from — to 4o
except for a small semicircle under the pole ¢.1* The
numerical values of Z(¢) and Z’(¢) are tabulated in
the book of Fried and Conte® for { = (04=70)—(104710)
at 0.1 intervals.

Concerning the spontaneous excitation of ion waves
in the discharge, we assume that the wave number % is
real and the angular frequency w, complex, with w=
w,+iw;. Then, w;>0 represents growing waves and
»;<0, damped waves. The stable-unstable boundary
is determined by solving Eq. (3) for w;=0. Then Eq. (3)
can be written as

2k2/sz =Z,(§‘e)+(Te/T1)Z,(§z)a (8)

where one can see easily that the temperature ratio
T,/ T; is significant in the determination of the stable-
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Fic. 1. Stable-unstable boundary as a function of T./T;.

unstable boundary. According to Jackson? the stable-
unstable boundary is obtained by graphically solving
Eq. (8). Some examples of the boundary are shown in
Fig. 1 in the case of rather a small drift velocity. The
unstable region becomes larger as the temperature ratio
T,/ T increases, because the effect of Landau damping
due to the thermal motion of ions decreases. The theory
predicts that stable-unstable boundary can be repre-
sented, in terms of the experiment, by the appearance
of cutoff frequency or wave number beyond which no
spontaneously excited waves are observed. Also, accord-
ing to the theory such a cutoff wave number increases,
at a constant temperature, with the electron drift
velocity in our experimental range. The dependence of
the cutoff wave number on the electron drift velocity
is examined in the experiment, as is shown below.

It is worthwhile to show the relation between the
two different forms of the dispersion relation as given
in Egs. (1) and (3). From the asymptotic expansion
of Z'(¢) it can be easily shown that!!

Z'(g)—>=2 for |51, )
Z'(§)—1/0243/2% 2/ (26 2=3)  for [ & [>1.
(10)
Substituting (9) and (10) into (8), one obtains

wpit/ [ =3k T/ M ]=1+4kpl/k>. (11)
Equation (11) is identical with Eq. (1) provided that
ve=1 and y;=3. The assumption | {, |[<<1 and | {; |>>1
means that the drift velocity is much smaller than the
electron thermal velocity and the phase velocity of the
waves is much larger than the ion thermal velocity. In
such a case, the plasma kinetic theory in the one-dimen-
sional approach gives the same result as the fluid model,
where the density fluctuations of ions are adiabatic
while those of electrons are isothermal. In our experi-
ment, however, the phase velocity of the waves exceeds
the ion thermal velocity by a factor of only 2 or 3, and
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therefore | ¢; [>>1 is not sufficiently satisfied, whereas
| £ |1 is well satisfied.

We wish to add an important comment on the condi-
tion for a growing mode in our plasma. Because w is
complex in our case, the argument of the dispersion
function Z must be complex, that is, { =Re{--:Im¢. As
is easily derived from the definition of the function
Z, ImZ'(¢)=0 for Ref=0, respectively, whenever
Im¢>0, Im¢>0 corresponds to the growing mode. In
Eq. (8), since the left-hand side contains only a
real term, the imaginary parts in the right-hand side
should cancel each other. This requires, at least, that
ImZ'(¢,)ImZ'(¢:) <0. Taking into account our plasma
state, where the electron drift velocity is higher than
the phase velocity of ion waves, a necessary condition
for a growing mode is expressed as 0<w,/k<V, when
V>0. This implies one-way propagation of the ion
waves; only the waves propagating in the direction of
the electron drift are enhanced.

In the following sections, experimental results for
the ion waves are compared with the Landau dispersion
equation (8), in order to examine the relation between
ion-wave instabilities and the cutoff-frequency de-
pendence on the electron drift velocity.

III. EXPERIMENTAL ARRANGEMENTS

A diagram of the mercury-vapor discharge tube is
shown in Fig. 2. The tube is 3.5 cm in diam and 25 cm
in length. The maximum effective length of positive
column is about 20 cm. An indirectly heated cathode,
7 mm in diam, is installed. The anode is composed of
three tungsten wires (0.5 cm in diam and 15 mm in
length) combined to form an “asterisk’” anode. The
surface of such an anode is much smaller than that of a
usual disk anode. However, the maximum discharge
current throughout our present experiments is less than
40 mA, and compared with the disk anode we can
observe no distinct difference in the discharge states
except for a slight increase in the voltage at the asterisk
anode. The electric field in the plasma remains un-
changed. Empirically we find that this particular shape
of anode provides us with the most effective boundary
for the ion waves.

A grid of the same shape and size which also acts as a
boundary for ion waves is inserted into the positive
column. It does not disturb the discharge parameters.
In particular, the internal electric field on which the
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electron drift velocity strongly depends is not changed.
The grid is kept at the floating potential. A Langmuir
probe movable both axially and azimuthally is installed.
It has a cylindrical tungsten tip of 0.2 mm in diam and
3 mm in length.

The mercury pool of the tube is immersed in a thermo-
stat to control the mercury-vapor pressure. In this way,
the electron drift velocity in the plasma is varied.

Spontaneously excited ion waves between the asterisk
anode and grid are observed for wide ranges of the
anode-grid distance (0.3-5.0 cm) and discharge cur-
rents (3.0-30 mA). In order to examine the frequency
spectra of the waves, the spectrum analysis is carried
out by either a panoramic spectrum analyzer or a
selective level meter.

The propagation of the waves is examined by a phase-
sensitive detector which measures wavelength directly
(Fig. 3). In earlier experimental work on the dispersive
character of ion waves, the dependence of velocity on
the wave number has not been observed?:?' because
the wavelength was presumed constant from geometrical
considerations. In our experiment, however, this ambi-
guity is removed by the direct measurement of the
wavelength, and the variation of velocity with wave
number is clearly demonstrated.

Electron density is measured by the Langmuir probe
and varies between 2X10® and 5X10°/cm3. More
exactly, however, the density can be determined as a
fitting parameter in the dispersion relation.

The electron temperature T, is also measured by the
probe. The value T, =1.240.1 (eV) is independent of
electron density. We may expect that there is no signifi-
cant difference between T and T.. in the plasma
because the internal electric field in the plasma is very
small and there is no external magnetic field.

The ion temperature T, which is an important
parameter in comparison with theory, is not measured
directly in the experiment. As will be shown later, the
ion temperature is of the order 0.1 eV.

The electron drift velocity is varied by controlling
the mercury vapor pressure. The mercury vapor pres-
sure p (mm of Hg) ranges from 3.4X10~* to 2.7X 1073
in accordance with the temperature variation from 5 to
30°C. The internal electric field £ (V/cm) in the
plasma column is calculated from the average difference
of space potentials in the plasma. We obtain £~0.01,

Grid Anode

I —

F1c. 3. Block diagram for
measurement of the wave-
length by means of phase-
sensitive detection.
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which seems rather smaller than expected. The transla-
tion of E/p into the electron drift velocity is made
according to empirical data. (See Fig. 4.)2%

IV. EXPERIMENTAL RESULTS
A. Dispersion Relation of Ion Waves

The experimental confirmation of the dispersion
relation for ion waves is shown. Typical examples of
spectrum analysis are given in Fig. 5, where Fig. 5(a)
is an oscillogram of the panoramic spectrum analyzer
and Fig. 5(b) is an X-Y recorder chart from the level
meter.

The properties of the spectrum are as follows:

(a) The fundamental frequency is inversely propor-
tional to the anode-grid distance, Lag.

(b) The fundamental frequency is independent of
the discharge current and the cathode-anode or cath-
ode-grid distances.

(c) The heater current of the cathode does not affect
the spectrum.

(d) In the low-frequency region, the frequency dif-
ference between two neighboring spectra is almost
constant and is equal to the fundamental frequency.

(e) The frequency difference decreases for higher-
frequency components.

(f) The deviation of the frequency difference from
the fundamental frequency arises at a lower frequency
when the discharge current decreases.

(g) There exists a distinct cutoff frequency beyond
which there are no systematic spectra except for a large
oscillation of definite frequency. [Fig. 5(a)]. The cutoff
frequency f. is proportional to the square root of the
discharge current and is independent of Ls¢ and the
heater current.

The inverse proportionality of the fundamental
frequency f; to the anode-grid distance seems to be
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F1G. 4. Electron (solid line) and ion (dotted line) drift velocities
in mercury-vapor discharges. (See Refs. 22 and 23.)

22 Handbuch der Physik, edited by S. Fliigge (Springer-Verlag,
Berlin, 1956), Vol. 21.
# K. Kingdon and E. Lawton, Phys. Rev. 56, 215 (1939).
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Fi6. 5. (a) Frequency spectra of the anode potential. (Oscillo-
gram obtained by a spectrum analyzer.) Frequency range is
0-1 Mc/sec in full scale. Discharge current is 12 mA. Mercury
temperature T'p is 10°C. Anode-grid distance Lig is 1.8 cm. Cutoff
frequency appears at about 500 kc/sec. (b) X-V chart obtained
by a level meter. Lyg=4.0 cm. T,=29.5°C. The cutoff frequency
increases with the root of the discharge current. Amplitude is in
arbitrary scale. See Fig. 7.

explained by assuming ion acoustic standing waves
between the grid and the anode, the fundamental wave-
length of which should be 2X Lag. However, the meas-
urement of wavelength using the phase-sensitive
detection always reveals that the wavelength corre-
sponding to the fundamental frequency f; is just the
anode-grid distance Lag. The phase velocity of the ion
acoustic wave becomes V,=f;X Lac=8.040.5X10*
cm/sec, which is almost independent of the discharge
current.

The fundamental wavelength Lag can be explained
as follows. As was shown in Sec. II, only the waves
propagating from grid to anode are enhanced. In the
plasma, by an unknown mechanism to be discussed
later, an instantaneous feedback from anode to grid, or
vice versa, occurs, keeping the phase of the waves the
same at the anode and grid. (Such a feedback was noted
in our previous observations on ion waves.?*?) There-

2 M. Hagi, A. Hirose, and H. Tanaca, J. Phys. Soc. Japan 20,
2307 (1965).

% A. Hirose, M. Koganei, and H. Tanaca, J. Phys. Soc. Japan
21, 806 (1966), )
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Fic. 6. (a) Dispersion relation at 7,=14.5°C. (k-» diagram)
solid lines come from the simple dispersion relation, Eq. (1),
for respective discharge currents. (v,=1 and v;=3.) kp,=60 cm™!
for I;=10 mA and kp,="78 cm™ for ;=16 mA. (b) Phase velocity
(in the unit of ion thermal velocity) plotted against wave num-
ber (in the unit of electron Debye wave number). Solid line is
calculated from the Landau dispersion equation, Eq. (8), and
dotted line from the fluid model, Eq. (1), with y,=1 and v;=3.

fore, instead of standing waves composed of two
counter-directed waves, only the one-way propagating
waves satisfying the “same phase condition” V,=f, X
Lag/n for n=1, 2, 3¢+, are observed.

The spectrum properties (e) and (f) above represent
the dispersion of the waves, indicating that the phase
velocity decreases with the frequency. The nth wave
number %, corresponding to the nth spectrum com-
ponent f, is given by k,=2mn/Lac. Then, the relation
between %, and w.(=2nf,) is obtained as a k-w diagram
in Fig. 6(a). Low-frequency waves propagate with an
almost constant velocity, the so-called ion acoustic
wave velocity. The phase velocity of the waves decreases
as the frequency increases, thus deviating from the ion
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acoustic velocity. The solid curves are obtained from
the simple fluid model [Eq. (1)] using the plasma
density measured by probes. The temperature ratio
T,/ T;is chosen as 12 for a reason to be explained later.
The dispersion of the waves is well demonstrated. The
dependence of dispersion on discharge current disap-
pears if the wave number £ is normalized by the Debye
wave number kp.. (The agreement of theory with
experiment at each current assures, in turn, such a
normalization. Normalization by the ion plasma fre-
quency w,; and Debye wave number kp, is used
hereafter.)

For a comparison with the more exact theory, i.e.,
Eq. (8), the normalized wave number—velocity (k/kp,—
w/kB;) diagram is shown in Fig. 6(b), where the solid
line comes from the Landau dispersion equation for
T./T;=12. This line is insensitive to the electron drift
velocity in our experimental range. For reference, the
dotted line is calculated from the fluid model Eq. (1)
with v,=1 and v;=3. As the estimation of the wave
velocity may contain errors of about 4=59%,, there is no
practical difference between two theoretical results.

B. Dependence of Cutoff Frequency on Electron Drift

The cutoff wave number is compared with the theo-
retical stable-unstable boundary described in Sec. II.
Using the cutoff phenomenon in the dispersion relation
of ion waves, we investigate the mechanism which
sustains ion waves in the discharges. In our previous
paper,’® it was reported that the cutoff frequency f,
equals f,;/V2 or, in terms of the wavelength, the cutoff
wavelength is 2w\p, where Ap is the electron Debye
length. This interesting result is only partially correct,
because the cutoff frequency strongly depends on
electron drift velocity. Our previous result corresponds
to a rather large electron drift velocity (low mercury
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F16. 7. Variation of cutoff frequency due to the mercury-pool
temperature. O =6°C, X=8°C, @=10°C, A=14.5°C, O=
18°C, (D=23°C, ¥V =26°C, ©=29.5°C. At each temperature, the
cutoff frequency increases with the root of the current or the den-
sity.
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vapor pressure). Let us now summarize the properties
of the cutoff.

(a) At each electron drift velocity (mercury vapor
pressure), the cutoff frequency f. is always proportional
to the root of the plasma density (discharge current)
(Fig. 7). Therefore, the normalized cutoff frequency
wo/wpi 1s useful in the following analysis.

(b) The normalized cutoff frequency w./wp; de-
creases with the mercury vapor pressure (Fig. 8).

(c) The heater current and the anode-grid distance
are not responsible for the cutoff.

(d) The cutoff appears very distinctly.

An abrupt disappearance of higher modes strongly
suggests that a stable-unstable boundary exists in the
vicinity of the cutoff frequency or the cutoff wave
number. For the convenience of theoretical discussion,
the cutoff frequency w./wp; is translated into the cutoff
wave number k./kp., either by direct measurement or by
means of the dispersion relation. Thus, the cutoff wave
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Fic. 8. Translation of Fig. 7. Cutoff frequency is expressed in
the unit of ion plasma frequency to eliminate the discharge
current.

number k./kp, is plotted against the electron drift
velocity. (Fig. 9).

The solid line in Fig. 9 indicates the theoretical
stable-unstable boundary, calculated from the Landau
dispersion equation, corresponding to the temperature
ratio T,/ T;=12 as a best fit. Though the ion tempera-
ture T; is not measured directly, the agreement of
theory with experiment will provide a satisfactory
demonstration of the drift instability of two-Maxwel-
lian-component plasma.? The ion waves are enhanced
by the relative drift velocity between electrons and
ions. More precisely, a doubly-humped distribution
function’ ( fo+f;) makes the waves grow against the
Landau damping which might have depressed any
longitudinal waves in the absence of drift velocity.

C. One-Way Propagation of Ion Waves
(External Excitation)

According to theory (Sec. IT), only the waves in the
direction of the electron drift are enhanced if the ion
drift velocity is smaller than the wave velocity. The
result that the fundamental wavelength is Lag instead
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Fic. 9. Stable-unstable boundary experimentally obtained
(circle). Solid line represents the theoretical boundary for
T,/ Ti=12.

of 2Lac (as discussed in Sec. IV A) may be a partial
confirmation of this one-way propagation. For a direct
confirmation of this statement, the propagation of
externally excited ion waves has been examined by
means of phase-sensitive detection (Fig. 3). For this
purpose, the spontaneously excited waves have to be
eliminated from the measurement of the propagation
waves. The former disappear when the separation of
grid and anode, Lag, becomes more than 10 cm.

The grid is used as an exciter, and two typical results
are shown in Fig. 10. Cathode-directed waves suffer
a strong damping and are hard to detect. On the other
hand, anode-directed waves can propagate safely even
though they also experience appreciable damping.
However, a quantitative discussion of damping rate
would be inadequate under our present experimental
conditions.

V. DISCUSSIONS

As stated in the previous sections, the prediction of
the Landau dispersion equation [Eq. (8)] is experi-
mentally confirmed. This equation was derived from
the collisionless Vlasov equation. In our plasma, how-

Exciter
+

Anode~- ~Cathode

F1c. 10. Examples of demonstrating the one-way propagation
of the ion acoustic waves. Output from the phase-sensitive de-
tector is traced against the axial position of photomultiplier
(cf. Fig. 3). | shows the position of the exciting grid, and only
anode directed waves can propagate though they experience
damping. Cathode-directed waves are not detected. Exciting
frequency is 40 kc/sec for the upper and 67 kc/sec for the lower.
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Fic. 11. Oscillogram of the anode potential when a pulse is sup-
plied to the anode. Lag=35.4 cm. The time scale is 30 usec/
division.

ever, the electron-neutral collision frequency is of the
order 105-107, and the effect of such collision on the
damping of the waves seems to be very important.
Fortunately, it is proved,”® by numerical calculation,
that electron-neutral collision scarcely affects the cutoff
frequency when the electron drift is rather small, as is
so in our case. Our cutoff is, therefore, almost due to the
collisionless damping.

In our observation of ion waves spontaneously excited
between the electrodes, the measurements of the growth
or damping rate was impossible. Signals arrive at the
anode, and by an unknown mechanism they are in-
stantaneously fed back to the grid in the plasma column.
This feedback mechanism, probably of electrostatic
nature,””® keeps the ion waves the same at both elec-
trodes. This is why the standing-wave type of resonance
relation, Vi=f,X Lac/n (n=1, 2,+++) is observed for
spontaneously excited and one-way propagating waves.
The anode and the grid, in a certain sense, are short-
circuited and only the waves satisfying the above
relation are observed, others being damped by inter-
ferences due to phase randomization. This sort of
behavior may be related to our previous observation
that the plasma column oscillates as a whole when rf
signals are supplied at the grid or the anode.?*? The
spontaneously excited ion waves themselves have the
same effect on the plasma column. Therefore, without
the method of phase-sensitive detection, the photo-
multiplier’s output shows no phase difference among
oscillations measured at different axial positions. This
means that the plasma column is oscillating as a whole
at the same frequency as that of the propagating ion
waves. In our previous experiments on ion wave prop-
agation, we had obtained Fig. 11 as an example of
multiple reflections of ion waves.?® This is an oscillogram

2% H, Momota, S. Ohuchi, and J. Washimi, in the 22nd Con-
ference of the Physical Society of Japan, 1967 (unpublished).
2 E. B. Armstrong, K. G. Emeleus, and T. R. Neil, Proc. Roy.
Irish Acad. A54, 291 (1951).
( » IS-) Alexeff and W. D. Jones, Phys. Rev. Letters 15, 286
1965).
2 H. Tanaca and M. Hagi, Phys. Fluids 9, 222 (1966).
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of the anode potential when a pulse is supplied at the
anode. We had interpreted Fig. 11 as multiple reflec-
tions of ion wave pulses between the grid and the
anode. This is not correct, however, based on our
present knowledge of the one-way propagation of the
ion waves. The second pulse in Fig. 11 was previously
considered to have traveled from the anode to the grid
and back again towards the anode, being reflected at the
grid. However, only propagation of ion waves from the
grid to the anode is possible under the present condi-
tions. When the first pulse is supplied at the anode, a
pulse signal instantaneously appears at the grid (feed-
back mechanism) and it travels towards the anode
arriving as the second pulse. Next, the arrival of the
second pulse at the anode again gives rise to a pulse
at the grid which will appear as the third pulse after
propagation, with the wvelocity of the ion acoustic
waves, and so on. Simply, it is a repetition of one-way
propagation and not the presumed multiple reflections
of the pulses. The mechanism of such an instantaneous
feedback between electrodes in the plasma is not yet
known.

In the present experiment on ion wave instabilities,
the temperature ratio T,/T; appears as a prominent
parameter in determining the stable-unstable boundary.
The electron temperature 7, is directly measured by
the probe, while the ion temperature 7'; is very hard to
measure in a simple way. From the relation between
the cutoff wave number and the electron drift velocity,
we experimentally obtained the ratio T,/T;=12 as the
best fitting value. However, the electron drift velocity
is estimated as a function of E/p, where the electric
field E (of the order 0.01 V/cm) is measured by the
probe. Taking into account inevitable errors in the
measurements of the electric field, the experimental fit
would be tolerable for T,/ T;=10-15. In spite of clear
cutoff phenomena shown in Fig. 5, such uncertainty
is inevitable because the electron drift velocity is
estimated from the internal electric field. The velocity
of the ion acoustic waves can be measured with con-
siderable accuracy and one might expect to be able to
determine the ion temperature from the fluid theory
relation, V,=[(T,+3T;)/M ]'2. However, the uncer-
tainty in the measurement 7. makes it difficult to
estimate the ion temperature from the above relation.
Furthermore, the dispersion relation from kinetic theory
[the solution of Eq. (8) for w,] is not too sensitive to
the ratio 7',/T;, so that the experimental choice of a
particular value of T,/T; is not very exact. Recently, it
has been reported that the ion temperature in a low-
pressure mercury-vapor discharge is quite high (7T;=
2150°K).% Such a high ion temperature is understand-
able, if collisions between ions and neutral atoms are
not so frequent as to thermalize the ions. The collision
frequency »;, (ion-neutral) is of order 5X10%/sec and
the mean free path of the ion is comparable with the

3 N. Jonov and A.Y. Tontegode, Zh. Tekhn. Fiz. 34, 354 (1964)
[English transl.: Soviet Phys.—Tech. Phys. 9, 279 (1964)].
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diameter of the discharge tube. We may therefore say
that the collisions between ions and neutrals are rare
and the ion temperature would be higher than the
neutral gas temperature.

The ion drift velocity, which might be of the order
of 109, of the phase velocity of the ion waves, has been
neglected in the experimental analysis. Under our
experimental condition, where only anode-directed
waves are observed, the detection of the Doppler effect
due to ion drift velocity is not observed. The effect of
the ion drift velocity will be discussed in our next ex-
periment of the damping and growth rates of ion waves.

We may add a remark on the ion-plasma oscillations.
As was already reported,’® the distinct oscillation be-
yond the cutoff frequency [see Fig. 5(a)] may be
considered as the ion-plasma oscillation because its
frequency almost satisfies the relation w?=4wrne?/M,
where # is the electron density measured by the probe.
However, we have no adequate experimental basis to
distinguish it from the so-called potential-minimum
oscillation.?! The electron density # in the experimental
analysis is estimated from the dispersive behavior of
the waves, and neither this “ambiguous” ion-plasma
frequency nor the information from the Langmuir probe
is used. The Langmuir probe reveals that a strong radial
dependence of the electron density is present in the
discharge tube. However, the value at the axial center
is most consistent with the experimental dispersion
relation. The spontaneous waves, therefore, seem to be
excited near the central axis of the tube, and the cross
section responsible for the enhancement of the waves
may be very small. In such a case, the simplified one-
dimensional theory may be very applicable to the
analysis. On the other hand, in the case of the external
excitation, the waves will be emitted from the full
surface of the grid which is almost half the size of the
tube in diameter. Therefore, the one-dimensional ap-
proach will not be adequate because of the nonuni-
formity of the density and the finite dimension of the
plasma.

Concerning the cutoff frequency, it should be noted
that the waves in our experiment are spontaneously
excited in a plasma because of a relative drift velocity

3t F, W. Crawford, J. Appl. Phys. 33, 15 (1962).
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between ions and electrons. Under our experimental
conditions, at rather a high ion temperature, the cutoff
always occurs under the ion-plasma frequency.'®? Re-
cently, the propagation of externally excited waves of
frequency much higher than the ion-plasma frequency
has been reported.® In this case, the electron thermal
motion plays an important role in sustaining the prop-
agation of such high-frequency waves. Further, this
propagation is observed in a quiescent plasma. There-
fore, our cutoff in the self-excitation of the waves in a
drifting plasma does not concern the external excitation
of waves by a dipole grid.34%

Finally, we may add a remark on the compressional
coefficients v, and v;. In the absence of an external
magnetic field, the experimental requirement for y,=1
has been reported.?® In our case, too, v.=1 is experi-
mentally obtained, which is a reasonable prediction
from the kinetic theory. This means that the electrons
contribute to the waves as an electron fluid back-
ground.® On the other hand, there has been no experi-
mental report on v;. However, as stated in Sec. IV, our
observation on the dispersion relation requires v;=3,
which agrees with theoretical expectation in the one-
dimensional approach. v, and v; in a magnetic field are
under detailed study, and a critical transition from
Ye=1 to v.,=3 is observed.’

Our results on the cutoff frequency in the dispersion
relation can be safely considered as an experimental
confirmation of the Landau dispersion equation.

The ion waves in an external magnetic field are under
examination.
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Fic. 11. Oscillogram of the anode potential when a pulse is sup-
plied to the anode. Lag=35.4 cm. The time scale is 30 usec/
division.
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Fic. 5. (a) Frequency spectra of the anode potential. (Oscillo-
gram obtained by a spectrum analyzer.) Frequency range is
0-1 Mc/sec in full scale. Discharge current is 12 mA. Mercury
temperature T, is 10°C. Anode-grid distance L g is 1.8 cm. Cutoff
frequency appears at about 500 ke/sec. (b) X-Y chart obtained
by a level meter. Lig=4.0 cm. Tp=29.5°C. The cutoff frequency
increases with the root of the discharge current. Amplitude is in
arbitrary scale. See Fig. 7.



