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Solution of and Standard Approximations for an Exactly Soluble
Three-Particle Model of Stripping
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(Received 24 March 1967)

An exact numerical solution is given of a model for stripping and elastic scattering based on three pairwise
interacting spinless particles. Results are given (a) in the absence of a proton-nucleus Coulomb interaction
and (b) when its presence is included approximately. The distorted-wave Born approximation as defined
for this model has been calculated exactly and, together with the absorption model, is compared with the
exact results.

l. INTRODUCTION

~CONSIDERABLE progress has been recently made~ in the study of potential scattering of three-
particle systems. '' The same problem has been in-
dependently discussed by Amado' on the basis of a
field-theoretical model with Lee-model-type vertices
between 6elds rt, p, 2, d, and J3, viz.

n+P d

5+2 B.
It had been shown before by Amado et at.4 that a

simple Lee model in the limit of the normalization
constant Z ~ 0, and a two-particle system interacting
through a separable potential, yield the same S matrix
in the st-p (8 E) sector. T-he same has been proved by
Rosenberg' for Amado's extended Lee model' with
vertices (1.1). Finally, it can be showns that a further
generalization of the Lee model including a vertex

(1.2)

is again equivalent to a model with three pairwise
separable potentials.

It was erst observed by Amad. o that a theory with
vertices (1.1) may serve as a model for deuteron-
stripping and elastic-scattering reactions on a nucleus
3 which has no internal degrees of freedom and which
can bind a neutron but not a proton. Calculations
have subsequently been made by Aaron and Shanley. '
Mitra' extended Amado's model in a potential formula-
tion by assuming proton and neutron to be identical
and Shanley' actually performed the calculations sug-
gested by Mitra.

The following is an account of an extended study of
deuteron stripping and elastic scattering which we
undertook for two reasons.

(a) The models of Amado and Mitra either dis-
regard the p-A interaction completely or neglect the
Coulomb interaction, which breaks charge indepen-
dence. The effect of the latter interaction must be pro-
nounced in a three-particle model, where it is solely
responsible for the difference between (d,p) and (d,rt)
reactions.

(b) Various approximations have been applied in
the past to the description of stripping reactions.
Some of these approximations may be precisely defined
within the framework of what will be termed in the
following the exact three-particle model. Consequently,
we may compare the outcome of the approximate cal.-

culation with the exact one. We shall illustrate our point
by a formulation and catcgtutioe of the distorted-wave
Born approximation (DWBA) without recourse to an
optical potential, the parameters of which have to be
determined by fitting elastic scattering data.

In Sec. 2 we treat the deuteron and target nucleus as
a three-particle system, interacting through three
separable pair potentials. Our interest is focused on the
pair interaction e„~between the proton and the nucleus.
We consider in particular interactions v„g which are
quantitatively the same as e„~ but lead to a bound
proton. The calculated cross sections are compared with
those where an additional Coulomb interaction re-
duces the binding of the proton.

In Sec. 3 we calculate on one hand the DWBA for
stripping, and on the other hand some versions of the
absorption model. The results are again compared with
the exact ones. The last section contains a discussion of
our results and a comparison with the calculations by
Aaron and Shanley~ and Shanley. '

2. THREE-PARTICLE MODEL WITH
THREE PAIR INTERACTIOHS

'L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1961)
LEnglish transl. : Soviet Physics —JETP 12, 1014 (1961)g.' C. A. Lovelace, Phys. Rev. 135, 81225 (1964).' R. D. Amado, Phys. Rev. 132, 485 (1963).

4 M. T. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124,
1258 (1961).' L. Rosenberg, Phys. Rev. 140, B217 (1965).' A. I. Jaffe and A. S. Reiner, Phys. Rev. 152, 1304 (1966).

7 R. Aaron and P. E. Shanley, Phys. Rev. 142, 608 (1966).
A. N. Mitra, Phys. Rev. 139, 81472 (1965).' P. E. Shanley, thesis, Northeastern University (unpublished).
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From here on we shall base our discussion of a three-
particle system from the point of view of a potential
theory. Consider a nucleus A together with a proton
and, neutron, all three spinless and interacting through
relative s waves only. A, p, rt are in this order numbered

by 1, 2, 3, while pairs are d.enoted. by the index of the
particle absent in the pair.

We denote by k; the particle momenta in the center-
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a+A ~p+8
I+A —+ 22+8'

a+A ~23+p+A (2 2)

only elastic scattering and stripping reactions will be
considered here.

We recall the definition of bound-state scattering
amplitudes Tp .

of-mass system and define'

p1——
I 2m2m3(m2+m3)) '"(m3k2 —m2k3)

211 I 2ml(m2+m3)(ml+m2+m3))
X&m, (k2yk3) —(m2+m, )k1). (2.1)

Four other momenta, which are pairwise linearly de-

pendent on p& and q&, are defined by cylic permutation
of the indices in Eq. (2.1).

We are interested in reactions initiated by a deuteron,
but out of the four possible reactions

8+A ~ a+A

with
&p-'I f-(3)

I p-) = g-(p-') r-(~)g-(p-)

g-'(p-) dp-
r (s)= —X„—'+

S p
2

(2.9)

(2.10)

Finally, one may eliminate the coupling constant )
from (2.10) in favor of the bound-state energy. The
condition that each pair interaction supports a bound
state is

ga (pa)dpa

pa+ pa
(2.11)

It is useful to introduce state vectors lg ) whose

projections &p I g ) on momentum eigenstates equal the
(s-state) form factors g (p ).We further need potentials

~p~)

to be applied here is the off-energy-shell scattering
matrices t belonging to the different pair interactions
n . If those are of the separable form (2.6), t reads

simply

zp. (p) =—&gpl G3(3) I g.&«—b.p), (2.12)
&qp'I 2 p.+(s) I q.&= v p*(pp')

X&ppe'I Up-+(~) lp-q-&~-(p-)dp. dpp', (2 3)

with 32, 32p bound-state wave functions of pairs n and p
belonging to energies —e, —ep. The transition operators
Up " in (2.3) are defined as

as well as amplitudes Xp both de6ned by Lovelace, '

X .(s)=—&g I Go(s) U t(s)Go+(s)
I g.)

—Zp (s)(1+&-&g-IGo(p) I g-)) (2.13)

For later reference, we explicitly write down an off-

energy-shell element of Xp which reads

Up+(s)= P 2~—P v„G(s)e3
v&P v&P

(2 4)
&qp'I xp-(~) I a-&= v p*(pp') &pp'e'I Up. '(~)

I p.q-&

in which G(s), and G3(s) to be used later, are, respec-
tively, the resolvents (H—s) '—= (H3+p v —s) ' and

(B3—s) ' of the total and unperturbed three-particle
Hamilton operators. Finally, physical amplitudes are
obtained from Eq. (2.3) by relating the energy parame-
ter s to the (in general off-shell) momenta as follows

s= g~
—e~= gp

—ep. (2.5)

g-(P-) = —(P-'+ ~-) 3 -(P-)

and is normalized as follows

(2 7)

We now assume for each pair n (u=1,2,3) the
existence of a separable s-wave potential'

&p-'I ~-lp-& = —~-g-(p-') g-(p-) (2 6)

The coupling constants X are chosen to be suKciently
large to bind the pair n with energy —e . The quantity

g may in that case be shown to be the form factor of
the bound-state wave function'

(2p+Pp') (~-+P-')
X 3.(p.) dp dpp'

(pp"+cp" ~)(p-'+v-' p)—
g-'(p-)d p-—&qp'lzp. (s) I 11„) 1+X„
pa +pa S

(2.14)

Comparison of Eq. (2.14) with (2.3) shows by use of

Eq. (2.8) and (2.10) that X and T are only identical
on the energy shell (2.5). In anticipation of a relevant
discussion in Sec. 3A we wish to stress here that the
two amplitudes diQer off shell in spite of the term
"off-shell amplitude" used for X Lcf. Sec. (3A)].

As shown by Lovelace, the amplitudes Xp satisfy
coupled integral equations. ' We therefore just cite the
result for deuteron-induced reactions in a situation
where all channels are governed by a single s-wave
boundstate:

g.'(p-) dp-

(p-'+ ~-)'
(2 g)

3

&213'
I
z„(s) I a,"&,(s—q,"')

A tool of paramount interest in the Faddeev theory X &q,
"

I X,1(~) I e&d21,
" (2 15)
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The model. is 6nally specified by the masses ns; and
a choice for the form factors g (p ). It will be assumed
that no~ ——~ and nz„=no =m, although these restric-
tions could be removed easily. For the form factors,
we adopt for the p-I and aa-A interaction functions of
the Hulthen type

(2.16)

&,~= T+&,~(s)+&., (2.17)

where v„~&0)=v„g is separable. The perturbation e,
changes the energy and wave function of the bound
state to lowest order as follows

where 6' means the principal value.

(2.18)

The parameters for the p-aa interaction are chosen to
fit the deuteron binding energy ez ——2.22 MeV and the
p-aa triplet scattering length (a,=5.38F. The parameters
for the m-A system are tak.en, in agreement with Aaron
and Shanley, ~ to 6t a fixed binding energy and. radius
R„of the neutron orbit.

We 6nally come to v», which is completely neglected
in Amado's original work. A 6rst choice for ga(pa) would
be a Hulthen form factor like (2.16). Mitra' suggested,
and Shanley actually used, e»&"=~„&. If, however,
one wants to account for a reduced proton binding
energy on one hand, and a stripping pattern which is
different for (d,p) and (d,aa) reactions on the other
hand, " one is bound to alter the simplest assumption
made above for e».

As a 6rst attempt one may search for parameters of
v» which account for the observed differences, without
ascribing the modi6cations to a qualitatively different
dynamical cause. We shall see later on that reasonable
p-A parameters will not produce d ncross sections -which
are smaller than those for d-p reactions as is actually
observed.

We therefore suggest incorporating a Coulomb inter-
action m, without spoiling the separability of the total
e» interaction. Since v, itself is non-separable, one has
to have recourse to approximations. It seems reasonable
to express the effect of v, by a modi6cation of the
unperturbed form factor g3&') = g2. The ensuing change
in the / matrix, Eqs. (2.9) and (2.10), will cause some
distortion of the proton wave function due to the
Coulomb interaction.

Let H» be the total Hamiltonian of the proton in
the field of a point nucleus

(2.19)

ra(s) is the same bound-state propagator as given in
Eq. (2.10). Using the Fourier transform of a), =Zea/r,
we find for ())a(') in Eq. (2.18), by means of Eqs. (2.7)
and (2.19),

aa")(Pa)
a a"'(Ps) =&

—es +Pa

~(1 —
1 ') a "'(P ) (— "')C "'(P ')

(ea(a)+paa)(ga(a)+pa )

Zea 1 ga(')(Pa")
X -dpa'dpa" (2 2o)

2~a
I
ya' —pa"

I
"a("+pa"'

One obtains from Eqs. (2.7) and (2.18), the perturbed
form factor

aa"'(Pa) = —(ea"'+Pa ) a a (Pa) (2.21)

which is not of the Hulthen type. It will therefore be
impossible to treat expressions like (2.21) analytically
which is the main reason for the choice of Hulthen form
factors (2.16). In practice we searched therefore for a
best 6t of Eq. (2.21) with a sum of a few Hulthen form
factors (2.16).

Before continuing, we wish to discuss the validity of
the procedure followed. The separation energies of the
last bound nucleons in, for instance, 0'7 and F' are
4.14 and 0.60 MeV, respectively. The diRerence is
small compared to the total energy of 0"and can then
be treated as a perturbation. However, the situation is
diRerent when the nuclei are considered as three-
particle systems: The difference of the separation
energies is not small compared to any one of them. We
therefore simply assume that 6rst-order perturbation
theory will incorporate some dynamical features of the
Coulomb force. The normalization constant X in Eq.
(2.20) (usually of second order in the perturbation) is
then crucial and may differ considerably from 4."

To summarize: We added to two separable s-wave
potentials ~„„and e„~ a third one e». Starting from
v»~" ——v„~, we perturbed the form factor g3~ '=g g
by v, and used the resulting form factor to construct a
corrected separable s-wave interaction with a built-in,
simulated eRect of the Coulomb potential.

is the resolvent of the unperturbed part of the Hamil-
tonian (2.17) and replaces a)~z in Eq. (2.6):

&(pa' —na)
(1 a'I 8")(a)11a)=

s—Pa

"For /=1 capture, see for instance B. Zeidman and J. M.
Fowler, Phys. Rev. 112, 2020 (1958).

"The procedure becomes better as Z becomes smaller. It will
be used in particular for a perturbation calculation of the prop-
erties of He' starting from H',
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varying proton binding energy and range parameters. Eq=1.77 MeV.

an effect is seen in backward directions. (d,n) stripping
for low Eq is apparently very sensitive to small changes
in the parameters of e„~.Deuteron elastic cross sections
increase under the influence of an over-all attractive
vv~ of Hulthen form. From Figs. 1(c) and 2(c) however,
we infer that e, suppresses forward scattering.

3. STANDARD APPROXIMATIONS
FOR STRIPPING

(A) Distorted-Wave Born Approximation

The exact amplitude for a transition between channels
n and P may, in the distorted-wave representation, be
written as'4

~- =(x I(—
&&G+(v-—w-) I

X-") (3 1)

G+ in Eq. (3.1) is again the total Green function as in

Eq. (2.4), while v~=g ~7 v is the interaction missing
in the channel Hamiltonian Hv=Hv+v~. The states
Ix~+) are distorted waves which develop from the
channel wave function Ip~)= I y„q,,) by action of
some channel potential m~:

One now de6nes the amp1itude in the D%BA by
neglecting in Eq. (3.1) the second term within the
brackets. Thus"

"'"'=(Xp
I vs —wp'IX-'). (3.4)

It is natural to determine the (as yet unspecified) w

in such a fashion that
I
X +) and the actual scattering

state If ) will lead to identical elastic scattering
amplitudes T . In other words, m wil1 just be the
exact optical potential for channel n, with infinite

energy resolution.
We shall demonstrate below that IX +) may be

determined froIn the elastic scattering amplitudes,
without entering an actual calculation of m ."One may
then wonder why I Xp

—
) has not been chosen to be the

exact optical-model wave function for channel P. The
answer lies in the explicit presence of the optical
potential wp in Eq. (3.4), which necessitates either the
computation of wpt or manipulations with IXp ). In
order to avoid these, we propose the choice apt=~„g
(v„~) for the outgoing proton (neutron) channel. For
both (d,p) and (d,ts) reactions one sees that the DWBA
amplitude (3.4) becomes

IX')=(1+(E H+v„w, +is)—'wv) Iy.—). Dw»+= (x I
v „I

x +) . (3.4')

lirn is(xp lg )=0. (3.3)

"I„,R. Dodd and K, R. Greider, Phys. Rev. 146, 671 (1966).

For y =P, wp is chosen in such a fashion that the dis-
torted wave IX,+) generated through Eq. (3.2), does
not possess a component corresponding to a rearrange-
ment of channel P, or'4

The customary choice of T with Xp
—the wave function

"Notice the apparent asymmetry in Eq. (3.4} with respect to
initial and 6nal channels, which is due to our choice to express the
amplitude (2.3}by means of the operator U+ Kq. (2.4}.Diferent
operators U lead to amplitudes T, which in its DWBA read
(Ref. 14) Ts w a =(xp lv —w lx +). T+ and T can be shown
to be identical on the energy shell.

"The possibility of determining the d optical potential ip this
fashion is digcusscd ig. Ref. 18,
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of an elastically scattered proton (neutron) from a
bound state of a neutron (proton) and the nucleus will,
when derived from (3.4), lead to vp —w t&v„„.Never-
theless the equality sign is used in the standard DWBA.

We now study Eq. (3.4) for stripping and consider
6rst a nucleon channel P. The state ) Xp) then describes
the scattering of a proton (neutron) from a nucleus
8 (8') in the absence of a p nintera-ction. It is therefore
the product of the wave function q2 (ys) of the nucleus
8 (8') and a scattering state

I $„g ) () $„~ )) for the
proton (neutron). Clearly no neutron (proton) pickup
is possible, and wp thus satis6es the requirement (3.3)
explained above.

I $„g ) satis6es an effective single-particle equation,
which for separable v„~ (and correspondingly for v„g)
can be solved as follows (P= 2):

~ Pi&, describing a deuteron incident on the core nucleus
A.

~
Xi+) is therefore known, provided the same holds

for the partially off-energy-shell elastic-scattering
amplitude (Ei qi' '—ei)——

&qis il vil ai"&= (qil 2»"(Ei) I qi'& (3 7)

~gati+)= g ~A').
y=1

(3 g)

We noticed already in Sec. 2 the difference between
the truly off-shell amplitudes and the Lovelace ampli-
tudes X. The Lovelace equations (2.15) are thus un-
suited to determine the former. We shall now show how

Tii(3.7) may be obtained, in particular for the energy
variable E»= q10 '—e1.

We first decompose the scattering state (Pi+& ap-
pearing in Eq. (3.7) as proposed by I addeev. '

(Psqs
~
X2) P2(p2) (q2 ~ 4A ) q'2(p2)

gs(q2) fs(q2 )ts(ES+ e2 se)
X &(q2 —q2')+

E2+ 52 q2 ss
(3.5)

The components (Pi&& satisfy

IA'&=&»i&i& —Go(~)4(~) Z Ilti'&, (39)

E2 is the total energy of the three-particle system and
q2' the momentum of the outgoing proton.

Next we turn to the n= 1 channel. As proposed above,
we construct

I
Xi+) taking into account the requirement

that it shall reproduce the exact d elastic scattering.
Thus t Xi+) is by de6nition given by

&piqi ~
Xi+)= q i(pi) [&(qi—qi')+(qis '—qi'+Se)-'

X(qis ilmil42')), (36)

where qis and yi(pi) are, respectively, the incident mo-

mentum and bound-state wave function of the deuteron.

~
Pi+& is the total scattering state which develops from

with tp the scattering matrix of the channel Hamil-
tonian H~. Its matrix elements are related to fp

[Eq (29)) by

(ps'qs'
I &u(s) I psqs)

= ~(qs' —qs')(ps'I 4(s—qs') I ps& (2 9')

The set of coupled integral equations (3.9) is treated in
much the same manner as Phillips" treated a corre-

sponding set for three-body bound states. Let us start
with the momentum representative of Eq. (3.9) which,

"A. C. Phillips, Phys. Rev. 142, 984 (1966).
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by use of Eqs. (3.10) and (2.9), is written as

(ii,q, lA'&= &»(u.q. ill&+(p —p, '—V.') ' (Ii.q, li s'qs'&g~(ps')»(~ —V1")dl 1'dqs' gs(ps")(iis"qs'I 2 6'&dl s"

~»(I sqs I &1&+(~ Pv'—C'—) ' (p.q. li 'q ')a (p") (~—v ")(q 'IQ &du 'dq '. (3.10)

Equation (3.10) defines new amplitudes IQ). It is tedious but straightforward to show that for s= El= qls '—sl

these Q satisfy the equation

q„l Q,)= —(q„lZ„(E,& I q, ') —2 (q, lZ„(E,) I
e'&»(E,—v, 's)(q, 'I Q,)de', (3.11)

where the potentials Z are given by Eq. (2.12). Comparison of Eqs. (3.11) and (2.15) shows that

&q. lQ.)=(q I&.-(E ) lq ').
We now substitute Eq. (3.8) into Eq. (3.7), using Eqs. (3.10) and (2.6), and obtain after some algebra

(3.12)

(qll2'»+(El) lql'&=(ql~llvll41"&= —& (qllZ»(V1' —sl) iqs'&»(El —Vs")(e'IQs&dqs'. (3.13)

One then invokes Eqs. (3.4), (3.5), (3.6), (3.7), and (3.13) in order to derive the final result (vp —wp+= v = v v):

2 „w»+= —(q, lZ„(E,) Iq, )— (qp I Zpl(E) I
ql'&(ql'

I
T'»+(El)

I
ql'&dql'

gl gl +M
—

gp 4p) rp(Vp'+la)
gp(e')

gp gp +zs

(q "IT +(E ) I q ')
&& (qp'I Zpl(qp" —sp) I

ql'&dqp'+(qp'I Zpl(qp" —sp) I
ql"& dqp'dql" . (3.14)

gl —gl +is

After putting qp on the energy shell

tip
—sp= (gl ) el= El

Eq. (3.14) constitutes the exact DWBA for stripping.
The presence of the partially oR-shell amplitude T»+
shows [cf. Eq. (3.13)j that amongst others one has
to solve the set of coupled integral equations (3.11).
This is done by first performing a partial-wave analysis
and, proceeding as in the solution of the Lovelace
equations (2.15).Again, in both Eqs. (3.11) and (3.14),
one has to deform the contour to avoid, singularities. "
Notice further the fact that the energy variable in the
last term of Eq. (3.14) is not a parameter but a function
of the integration variable.

The theory given above holds for the DKBA per-
taining to stripping. A DWBA analysis for d elastic
scattering will yield exact results once a d optical
potential is determined. This is possible in principle,
as has already been mentioned above. "

(B) Absorption Model

Angular distributions of stripping reactions which

display pronounced diffraction patterns have recently
been analyzed in several ways. One may, for instance,

'8 A. I. Ja6'e, A. S. Reiner, and J. E. Ventura, Nucl. Phys. A95,
235 (1967).

endow the nucleus with definite optical properties,
which amounts to prescribing definite boundary condi-
tions for the wavefunction of ingoing and outgoing
particles on a well-dehned nuclear surface region. "

In an equivalent procedure one assumes absorption
of low partial waves in ingoing and outgoing chan-
nels. ""In the simplest model, one only studies the
Born term or the equivalent one-particle-exchange term.
Such a term is described in our model by the poten-
tial Z in Eq. (2.15).We therefore ask whether removal of
a few low partial waves from the Born term will re-
produce the "observed" (in this case the exactly cal-
culated) angular distributions. This, of course, amounts
in a semiclassical picture to a nucleus acting as an object
with some absorption radius.

If the cross section shows diffraction due to strong
absorption, a D%BA fit should also show it through
the imaginary parts of optical potentials. It is now to
our detriment that the DWBA calculation circum-

vents a determination of those potentials. A comparison
was nevertheless thought to be advantageous.

In Figs. 5(a) and 5(b), we plot differential cross sec-

tions for (d,p) and (d,n) reactions calculated with the

19 A. Dar, Nucl. Phys. 55, 305 (1964).
"N. J. Sopkovich, Nuovo Cimento 26, 186 (1962).
sr L. Durand and Y. T. Chiu, Phys. Rev. 139, 8646 (1965 ).
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In view of the impossibility of ascribing a radius to our
nucleus which is diferent from the orbit sizes of the two
outer nucleons, we 6nd it hard to apply criteria for the
validity of the di6raction picture based on the above
observations.

4. DISCUSSION AND COMPARISON

We have described above a three-particle model for
nuclear stripping. Exact calculations have been per-
formed for a system of spinless particles interacting
through separable interactions leading to a s-wave
bound state in each channel. One of our two objectives
has been the study of the effect of a proton-"nucleus"
interaction e~~, which had initially been neglected.
Mitra8 and Aaron and Shanley' included a v„z——~ z.
In a three-particle model this entails identical p and e
stripping patterns, contrary to what is observed.

Ke therefore assumed e„~gv„~ in two alternative
ways. We Grst tried to account for the reduced binding
of the proton by changing the parameters of the neutron-
nucleus interaction. For reasonable parameters the thus
calculated stripping cross sections for emerging protons
are smaller than those for neutrons, contrary to observa-
tion. However, inclusion of a Coulomb interaction yields
the correct behavior.

There is, of course, no way to compare the outcome
of our computations with a real experiment, except for
the deuteron-nucleon system. Nevertheless, the angular
distributions obtained very much resemble typical
stripping patterns and show that stripping by a real
nucleus may presumably be accounted for in part by
the dynamics of a three-particle system. A three-
particle model of course does not give any spectroscopic
correction factor.

Qle computed for our model what is commonly
termed the DWBA and found very satisfactory agree-
ment with the exact solution. Our result is to be con-
trasted with the calculations of Shanley' who employs
optical potentials, with parameters chosen to fit p and d
elastic scattering.

We further tested the model where out of the one-

particle exchange term the lowest partial waves were
absorbed. The fit, in spite of the low energies involved,
is reasonable for (d,p) stripping throughout the entire
angular range. Shanley' reproduces diffraction patterns
by applying rescattering corrections in initial and 6nal
channels, ""but the resulting patterns 6t less well than
those of the simple absorption model.

Finally we touch upon a last approximation to
stripping recently proposed by Butler. "He assumes
that for suAiciently high incident-deuteron energies,
the constituent proton and neutron are scattered like
plane waves, the momenta of which remain correlated
as in the deuteron bound-state wave function. Butler' s
model cannot be compared with ours since his cross
section for a three-particle model vanishes exactly. '~"

In conclusion we consider deuteron elastic scattering,
which in our model, for the parameters chosen, is of the
same order of magnitude as stripping. It is known that
for medium-weight nuclei, deuteron elastic cross sec-
tions exceed stripping cross sections by far. Also the
shape shows far more oscillation than in our curves.

Only a few deuteron elastic scattering data exist for
light nuclei. For 0" the elastic angular cross sections,
although still larger than the stripping cross section,
no longer differs by orders of magnitude.

We do not aim to compare our results in detail with
experiment. In spite of the inclusion of a proton-
nucleus interaction we still think the model to be crude.
On the other hand, we doubt whether it pays to include
spins and in particular more single-particle bound.
states; such an attempt in any case is hardly possible
with present-day computers. It has merely been our
goal to see the influence of s~~ (till now neglected)„
and in particular to test standard approximations in
stripping calculations. We feel that inferences from
those tests are of relevance beyond the scope of our
model.

n S. T. Butler& Nature 207, 1346 (1965).
s' R. M. May, Nature 207, 1348 (1965)."Y. Tikochinsky (unpublished)."C. F. Clement, Phys. Rev. Letters 17, 759 (1966).


