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An exact numerical solution is given of a model for stripping and elastic scattering based on three pairwise
interacting spinless particles. Results are given (a) in the absence of a proton-nucleus Coulomb interaction
and (b) when its presence is included approximately. The distorted-wave Born approximation as defined
for this model has been calculated exactly and, together with the absorption model, is compared with the

exact results.

1. INTRODUCTION

ONSIDERABLE progress has been recently made

in the study of potential scattering of three-
particle systems.'? The same problem has been in-
dependently discussed by Amado® on the basis of a
field-theoretical model with Lee-model-type vertices
between fields #, p, 4, d, and B, viz.

n+p=d
nt+A=B. (1.1)

It had been shown before by Amado ef al. that a
simple Lee model in the limit of the normalization
constant Z — 0, and a two-particle system interacting
through a separable potential, yield the same .S matrix
in the n-p (9-N) sector. The same has been proved by
Rosenberg® for Amado’s extended Lee model® with
vertices (1.1). Finally, it can be shown® that a further
generalization of the Lee model including a vertex

p+A=B 1.2)

is again equivalent to a model with three pairwise
separable potentials.

It was first observed by Amado that a theory with
vertices (1.1) may serve as a model for deuteron-
stripping and elastic-scattering reactions on a nucleus
A which has no internal degrees of freedom and which
can bind a neutron but not a proton. Calculations
have subsequently been made by Aaron and Shanley.”
Mitra® extended Amado’s model in a potential formula-
tion by assuming proton and neutron to be identical
and Shanley?® actually performed the calculations sug-
gested by Mitra.

The following is an account of an extended study of
deuteron stripping and elastic scattering which we
undertook for two reasons.
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(a) The models of Amado and Mitra either dis-
regard the p-A interaction completely or neglect the
Coulomb interaction, which breaks charge indepen-
dence. The effect of the latter interaction must be pro-
nounced in a three-particle model, where it is solely
responsible for the difference between (d,p) and (d,n)
reactions.

(b) Various approximations have been applied in
the past to the description of stripping reactions.
Some of these approximations may be precisely defined
within the framework of what will be termed in the
following the exact three-particle model. Consequently,
we may compare the outcome of the approximate cal-
culation with the exact one. We shall illustrate our point
by a formulation and calculation of the distorted-wave
Born approximation (DWBA) without recourse to an
optical potential, the parameters of which have to be
determined by fitting elastic scattering data.

In Sec. 2 we treat the deuteron and target nucleus as
a three-particle system, interacting through three
separable pair potentials. Our interest is focused on the
pair interaction v,,4 between the proton and the nucleus.
We consider in particular interactions v,4 which are
quantitatively the same as v,4 but lead to a bound
proton. The calculated cross sections are compared with
those where an additional Coulomb interaction re-
duces the binding of the proton.

In Sec. 3 we calculate on one hand the DWBA for
stripping, and on the other hand some versions of the
absorption model. The results are again compared with
the exact ones. The last section contains a discussion of
our results and a comparison with the calculations by
Aaron and Shanley” and Shanley.?

2. THREE-PARTICLE MODEL WITH
THREE PAIR INTERACTIONS

From here on we shall base our discussion of a three-
particle system from the point of view of a potential
theory. Consider a nucleus 4 together with a proton
and neutron, all three spinless and interacting through
relative s waves only. 4, p, » are in this order numbered
by 1, 2, 3, while pairs are denoted by the index of the
particle absent in the pair.

We denote by k; the particle momenta in the center-
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of-mass system and define?
p1= [ 2mams(matmsz) J1/2(mako— moks)
qi= [Zml(m2+m3) (m1+m2+ m3)]—1/2
X (m(ket-Ks) — (matma)ks).  (2.1)

Four other momenta, which are pairwise linearly de-
pendent on p; and qi, are defined by cylic permutation
of the indices in Eq. (2.1).
We are interested in reactions initiated by a deuteron,

but out of the four possible reactions

d+A4—d+4

d+A4 — p+B

d+A4—n+B

d+A4A —ntpt+4 (2.2)
only elastic scattering and stripping reactions will be
considered here.

We recall the definition of bound-state scattering
amplitudes T'g,:

(06 | Tpa(5) | Q)= / os*(ps")

X{(psas' | Upat(s) Ipuqa> ¢a(Pa)dpadps’, (2.3)

with ¢,, ¢ bound-state wave functions of pairs « and 8
belonging to energies — €., — €g. The transition operators
Ugst in (2.3) are defined as

Ugat(s)= > Vy— > ”76(5)7)6
e

(24)

in which G(s), and G°(s) to be used later, are, respec-
tively, the resolvents (H—s) 1= (Ho+2_« va—s)"! and
(Ho—s)™! of the total and unperturbed three-particle
Hamilton operators. Finally, physical amplitudes are
obtained from Eq. (2.3) by relating the energy parame-
ter s to the (in general off-shell) momenta as follows

(2.5)

We now assume for each pair a (@=1,2,3) the
existence of a separable s-wave potential?

Naga(Ppa’)ga(pa) - (2.6)

The coupling constants A\, are chosen to be sufficiently
large to bind the pair ¢ with energy —e.. The quantity
g may in that case be shown to be the form factor of
the bound-state wave function?

ga(Pa) = (Pﬂz_i_ ea) ‘Pa(Pa)
and is normalized as follows
/ gaz(?a)dpa_ i
(paitea?

A tool of paramount interest in the Faddeev theory

§=ga’— ea=5""— €5

(e | va| Pa)=—

2.7

(2.8)
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to be applied here is the off-energy-shell scattering
matrices 7, belonging to the different pair interactions
94 If those are of the separable form (2.6), f. reads
simply

Do’ | 1a(8) | Pe) = ga(pe) Ta(8) galpa) (2.9)

ra(s)=—[ka‘1+ / %]_1' (2.10)

Finally, one may eliminate the coupling constant A
from (2.10) in favor of the bound-state energy. The
condition that each pair interaction supports a bound

state is
2(pa)d
e
€atpa’
It is useful to introduce state vectors |g.) whose
projections {p.|g.) on momentum eigenstates equal the

(s-state) form factors go(pa). We further need potentials
Z Bay

with

(2.11)

Zpa(5)= (g5 Go(5) | ge) (1 — 8ap) , (2.12)
as well as amplitudes Xg, both defined by Lovelace,?
Xa(s)=(gs| Go(5)Upa’ (5)G0*(5) | go)

— Za(8) (14+-Na{ga| Go(5) | £a)) -

For later reference, we explicitly write down an off-
energy-shell element of Xz, which reads

(2.13)

(96" | Xa(s) |@a) = / 05*(08)(Ps'as’ | U™ (5) | Palla)

(est+15"2) (€atpo?) .
(b6 95— ) (peP+-ga2—s)
gaX(Pa)dPe

pa2+Qa2— N

/

X ﬁoa(pa) dps

—{a5' | Za(s) Iqa>[1+>\a / ] . (2.14)

Comparison of Eq. (2.14) with (2.3) shows by use of
Eq. (2.8) and (2.10) that X and T are only identical
on the energy shell (2.5). In anticipation of a relevant
discussion in Sec. 3A we wish to stress here that the
two amplitudes differ off shell in spite of the term
“off-shell amplitude” used for X [cf. Sec. (3A)].

As shown by Lovelace, the amplitudes X, satisfy
coupled integral equations.? We therefore just cite the
result for deuteron-induced reactions in a situation
where all channels are governed by a single s-wave
boundstate:

(06" | Xp1(5) | @)= — (a4’ | Zp1(5) | @1)

3

- Z=1 (06'| Z6+(5) |y ) 72 (s—04")

X{ay" | Xn(s) |a)day”  (2.15)
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The model is finally specified by the masses m; and
a choice for the form factors go(po). It will be assumed
that m4= and m,=m,=m, although these restric-
tions could be removed easily. For the form factors,
we adopt for the p-» and #-A4 interaction functions of
the Hulthén type

N
ga(pa)= —
P’ +0B42

(2.16)

a=172.

The parameters for the p-n interaction are chosen to
fit the deuteron binding energy ¢;=2.22 MeV and the
p-n triplet scattering length a,=5.38F. The parameters
for the -4 system are taken, in agreement with Aaron
and Shanley,” to fit a fixed binding energy and radius
R, of the neutron orbit.

We finally come to v,4, which is completely neglected
in Amado’s original work. A first choice for gs(p;) would
be a Hulthén form factor like (2.16). Mitra8 suggested,
and Shanley® actually used, v,4® =9v,4. If, however,
one wants to account for a reduced proton binding
energy on one hand, and a stripping pattern which is
different for (d,p) and (d») reactions on the other
hand,*® one is bound to alter the simplest assumption
made above for v,4.

As a first attempt one may search for parameters of
9,4 Which account for the observed differences, without
ascribing the modifications to a qualitatively different
dynamical cause. We shall see later on that reasonable
p-A parameters will not produce d-» cross sections which
are smaller than those for d-p reactions as is actually
observed.

We therefore suggest incorporating a Coulomb inter-
action v, without spoiling the separability of the total
9,4 interaction. Since v, itself is non-separable, one has
to have recourse to approximations. It seems reasonable
to express the effect of v, by a modification of the
unperturbed form factor g3 =g,. The ensuing change
in the ¢ matrix, Egs. (2.9) and (2.10), will cause some
distortion of the proton wave function due to the
Coulomb interaction.

Let H,4 be the total Hamiltonian of the proton in
the field of a point nucleus

HpA= T+'UpA (0)+7jc y

where v,4®=v,4 is separable. The perturbation v,
changes the energy and wave function of the bound
state to lowest order as follows

(2.17)

eV~ e5'— (05 | 1] 05©@)
| s )~ [1=68O (— ]l 0s®),

where @ means the principal value.

GO()=(Tptvpa—s)"

(2.18)

0 For /=1 capture, see for instance B. Zeidman and J. M.
Fowler, Phys. Rev. 112, 2020 (1958). -
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is the resolvent of the unperturbed part of the Hamil-
tonian (2.17) and replaces v,4 in Eq. (2.6):

8(ps’—ps)

(05| SO (s) | psy=———

S—ﬁaz
¢g3(°)(Ps')fs(s)gs“”(ﬁs)
(s—pi?)(s—psd)

73(s) is the same bound-state propagator as given in
Eq. (2.10). Using the Fourier transform of v.=Ze?/7,
we find for ¢3® in Eq. (2.18), by means of Egs. (2.7)
and (2.19),

(2.19)

g3(0)(P3)

€30+ p3*

_G’// { 3(ps—ps) 8V (P)7s(— &) (p4) l
&0+ py? (e3 @+ ps?) (3 +p3"?)

Ze? 1 80 (ps")

One obtains from Egs. (2.7) and (2.18), the perturbed
form factor

g5V (ps) = — (es@+ps%) 03V (ps)

which is not of the Hulthén type. It will therefore be
impossible to treat expressions like (2.21) analytically
which is the main reason for the choice of Hulthén form
factors (2.16). In practice we searched therefore for a
best fit of Eq. (2.21) with a sum of a few Hulthén form
factors (2.16).

Before continuing, we wish to discuss the validity of
the procedure followed. The separation energies of the
last bound nucleons in, for instance, O'7 and F'7 are
4.14 and 0.60 MeV, respectively. The difference is
small compared to the total energy of O and can then
be treated as a perturbation. However, the situation is
different when the nuclei are considered as three-
particle systems: The difference of the separation
energies is not small compared to any one of them. We
therefore simply assume that first-order perturbation
theory will incorporate some dynamical features of the
Coulomb force. The normalization constant N in Eq.
(2.20) (usually of second order in the perturbation) is
then crucial and may differ considerably from 1.1

To summarize: We added to two separable s-wave
potentials v,, and v,4 a third one v,4. Starting from
14 @ =v,4, we perturbed the form factor g3 =gna
by v, and used the resulting form factor to construct a
corrected separable s-wave interaction with a built-in,
simulated effect of the Coulomb potential.

@3 D(ps) zN[

dm%m”]. (2.20)

(2.21)

11 The procedure becomes better as Z becomes smaller. It will
be used in particular for a perturbation calculation of the prop-
erties of He? starting from H3,
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We now turn to the numerical results pertaining to
the three models discussed. After a partial-wave analysis
of the amplitudes X1 [Eq. (2.15)7], the resulting equa-
tions for X! were numerically solved by performing
a contour deformation, which procedure is by now
standard.!%13

For the parameters, we used throughout the fixed

12 T H. Hetherington and L. H. Schick, Phys. Rev. 137, B935
(1965).

13 R. Aaron and R. D. Amado, Phys. Rev. 150, 857 (1966).
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(b)
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N €n =8.9 MeV

2000 1} €p=0.35MeV i
i Rn=23 F

do/d) mb/sr.

100

Fic. 1. Differential cross sections for (a) (d,p), (b) (d,n) reac-
tions, and (c) elastic d scattering with fixed v,, and v, 4 and binding
energies ,=8.90 MeV, ¢,=0.35 MeV. Graphs are given for (i)
9p4, including v, (Z=38); (ii) vpa of Hulthén type, excluding v,
(different charge radii Rp; (ili) Amado model (for # stripping)
(vp4=0). E;=6.7 MeV. [Notice different scale for Fig. 1(3.]

values ¢,=8.90 MeV and a neutron radius R,=2.3F.
Notice that such a radius refers to the size of the orbit
of the added particle, which is not necessarily of the
order of the nuclear radius. We then compare the exact
results (i.e., for v,4 including v, taken for Z=38), with,
on one hand, the Amado model (which neglects v,4
altogether) and, on the other hand, two choices of
Hulthén potentials for v,4 not including v,. Whenever
2,470, we took a fixed proton binding energy e,=0.35
MeV. The size parameter 8, in the exact theory equals,
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F1c. 2. Same as Fig. 1 except that E4=11.2 MeV.

as mentioned, the one in v,4. On the other hand, two
different values for 3, were tested in the pure Hulthén
approximation for v,4.

Instead of the shape parameters 8, we give in the
figures the neutron radius R, in terms of 3, and a.?=¢,:

R,?= [(an3+ﬁn3) (an+.3n)3_' 16017»%7;3]
X [zanzﬁn2(an+ﬁn)2(0‘71‘_6”)2]_1 . (222)

Figures 1(a), 1(b), and 1(c) display the resulting
differential cross sections for (d,p) and (d,n) reactions
and elastic d scattering. The incident deuteron energy
was chosen to be E4=6.7 MeV, whereas Fig. 2(a), 2(b),
and 2(c) give parallel results for E;=11.2 MeV.

One notices the apparently negligible influence of the
proton-nucleus interaction for (d,p) stripping. This is
at least the case for a v,4 which gives a low binding
energy, i.e., for a peripheral proton. (d,n) stripping is

MODEL OF STRIPPING

200 T
(b)
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of course impossible if v,4=0. Here one sees that the
dynamical cause of a weak proton-nucleus binding is
crucial; the inclusion of a Coulomb potential sub-
stantially reduces the cross section. In the case of
elastic deuteron scattering we find it hard to interpret
the cross sections. In particular, the curve for a v,4 of
the Hulthén type is certainly unexpected. We further
tested Hulthén’s potentials for v,4 by varying e,, and
R ,(ap,Bp). For the same €,=8.90 MeV, we now choose
R,=1.7F. Two sets of values were chosen for 8,, both
leading to the same R, [cf. Eq. (2.22)] and E;=1.77

MeV. The results are shown in Figs. 3(a), 3(b), and 3(c).

Figures 4(a), 4(b), and 4(c) refer to the same R, and

two values of R, viz, 1.7 and 1.9F. Here the deuteron

energy is 11.2 MeV.

The influence of any v,4 in (d,p) cross sections re-

mains small, although for very low incident energies

939
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Fic. 3. Differential cross sections for (a) (d,p), (b) (d,n) reactions, and (c) elastic d scattering with fixed 2., and v,4. Graphs given

for (i) no interaction between proton and nucleus (Amado model); (i) Hulthén-type interactions between proton and nucleus with
varying proton binding energy and range parameters. E;=1.77 MeV.

an effect is seen in backward directions. (d,#) stripping
for low E; is apparently very sensitive to small changes
in the parameters of v,4. Deuteron elastic cross sections
increase under the influence of an over-all attractive
9,4 0f Hulthén form. From Figs. 1(c) and 2(c) however,
we infer that v, suppresses forward scattering.

3. STANDARD APPROXIMATIONS
FOR STRIPPING

(A) Distorted-Wave Born Approximation

The exact amplitude for a transition between channels

a and B may, in the distorted-wave representation, be
written as!4

Tpa™= (X5~ | (Tp—w5") — (55— wg")
XGt(Ta—wa) | Xat). (3.1)

Gt in Eq. (3.1) is again the total Green function as in
Eq. (2.4), while ,=3_ 4 «y 7, 1s the interaction missing
in the channel Hamiltonian H,=H,+v,. The states
|x,%) are distorted waves which develop from the

channel wave function |¢,)=]|¢,,q,) by action of
some channel potential w,:

I XyE)= {1+ (E— H+0,—wyie) " 'w,)} l éy). (3.2)

For y=g, wg is chosen in such a fashion that the dis-
torted wave |X,*) generated through Eq. (3.2), does
not possess a component corresponding to a rearrange-
ment of channel 8, or!t

lim e(X5~|a)=0. (3.3)

%1, R. Dodd and K. R. Greider, Phys. Rev. 146, 671 (1966).

One now defines the amplitude in the DWBA by

neglecting in Eq. (3.1) the second term within the
brackets. Thus!®

T5aPWBAT = (X5~ | g—ws" | Xot). (34)

It is natural to determine the (as yet unspecified) w,
in such a fashion that |X,*) and the actual scattering
state |¢q1) will lead to identical elastic scattering
amplitudes To. In other words, w. will just be the
exact optical potential for channel o, with infinite
energy resolution.

We shall demonstrate below that |X,*) may be
determined from the elastic scattering amplitudes,
without entering an actual calculation of w,.1 One may
then wonder why |Xg™) has not been chosen to be the
exact optical-model wave function for channel 8. The
answer lies in the explicit presence of the optical
potential wgt in Eq. (3.4), which necessitates either the
computation of wg' or manipulations with |Xg7). In
order to avoid these, we propose the choice wg'=vp4
(vn4) for the outgoing proton (neutron) channel. For
both (d,p) and (d,n) reactions one sees that the DWBA
amplitude (3.4) becomes

T PWBA+= <xﬂ_l Vpn| Xat). (34"

The customary choice of T with Xg~ the wave function

15 Notice the apparent asymmetry in Eq. (3.4) with respect to
initial and final channels, which is due to our choice to express the
amplitude (2.3) by means of the operator U Eq. (2.4). Different
operators U~ lead to amplitudes 7, which in its DWBA read
(Ref. 14) TgPVBA~ = (X5~ |Pa—Wa|XaT). TF and T~ can be shown
to be identical on the energy shell.

16 The possibility of determining the & optical potential in this
fashion is discussed in Ref. 18,
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of an elastically scattered proton (neutron) from a |¢1), describing a deuteron incident on the core nucleus
bound state of a neutron (proton) and the nucleus will, 4. |X;+) is therefore known, provided the same holds
when derived from (3.4), lead to #g—1w, #v,n. Never- for the partially off-energy-shell elastic-scattering
theless the equality sign is used in the standard DWBA. amplitude (E1=g:° *—€;)

We now study Eq. (3.4) for stripping and consider

By |yt = + 0
first a nucleon channel 8. The state |Xg) then describes (@er|nulYrt)= (| Tut(Er) | @) 3.7)
the scattering of a proton (neutron) from a nucleus We noticed already in Sec. 2 the difference between
B (B’) in the absence of a p-n interaction. It is therefore

L the truly off-shell amplitudes and the Lovelace ampli-
the pfoduct of the wave function ¢; (¢s) of the nucleus  ydes X. The Lovelace equations (2.15) are thus un-
B (B') and a scattering state |£,47) ([£247)) for the  gyited to determine the former. We shall now show how

proton (neutron). Clearly no neutron (pr.oton) pickup T11(3.7) may be obtained, in particular for the energy
is possible, and wg thus satisfies the requirement (3.3

> ) variable Ey= q1°*— e
explained above.

C o . . We first decompose the scattering state [y¢1*) ap-
|£,47) satisfies an effective single-particle equation, pearing in Eq. (3.7) as proposed by Faddeev.!
which for separable 7,4 (and correspondingly for v,4)
can be solved as follows (8=2): [¥ih)= 2 |[¢a7). (3.8)
y=1

(Pol2 | X2) = @2(p2)(e| £pa™) = pa2(p2)

0 ro(Eqtea—1i
x[a(qz—qzo):g3(Q2)ga(Q2)”( e “)]. (3.5)
E2+€2—Q22""1«€

The components |17) satisfy

[¥17)= 81y | 1) — Gos)L,(s) s§ [¥1?), (3.9)

E is the total energy of the three-particle system and ~ with #5 the scattering matrix of the channel Hamil-
q2° the momentum of the outgoing proton.

tonian Hp. Its matrix elements are related to Zs
Next we turn to the a=1 channel. As proposed above, [Eq. (2.9)] by

we construct |X;*) taking into account the requirement ,

that it shall reproduce the exact d elastic scattering. (ps'as" [ 5(s) | Bsts) .

Thus |X;*) is by definition given by =8(as'—as")ps' | #s(s—gs?) | pe).  (2.9)

{11 | X = o1(p1)[8(q1—q1%)+ (¢1° 2— g2 +ie) 1 The set of coupled integral equations (3.9) is treated in

X{quen| B1l¥it)], (3.6) much the same manner as Phillips!” treated a corre-

sponding set for three-body bound states. Let us start

where q:° and ¢1(p1) are, respectively, the incident mo-  with the momentum representative of Eq. (3.9) which,
mentum and bound-state wave function of the deuteron. ——

|¢1*) is the total scattering state which develops from 17 A, C. Phillips, Phys. Rev. 142, 984 (1966).
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by use of Egs. (3.10) and (2.9), is written as
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(P19 |¥1°) = 815(p 8y | 1)+ (s — Py 2 — ¢, / / (P18y | D' )gs(ps ) Ts(s—q5'*)dps’das’ / gs(ps")(ps" a0y | % Y19)dps”’

=015(Polts | 1)+ (s— P42 — g4 / / (D4| 05’05 )gs(ps") T5(s— 5’ (a0’ | Qs)dps'das’ .

(3.10)

Equation (3.10) defines new amplitudes |Q). It is tedious but straightforward to show that for s=E1=q:’—e

these Q satisfy the equation

4y 07)=—(ay| Zn(Er) |qo')— 57 /(CIv!Zva(El) [a5")7s(Er—gq5'2)(as’ | Qs)das’

(3.11)

where the potentials Z are given by Eq. (2.12). Comparison of Egs. (3.11) and (2.15) shows that

(av|Qv)= (ay| X7a(E1) 1%

(3.12)

We now substitute Eq. (3.8) into Eq. (3.7), using Egs. (3.10) and (2.6), and obtain after some algebra

(@] Tt (Er) |4:®) = (qren | 51 [¢1h) = —’E / (1] Z15(g12— 1) | @5")7s(Er—gq5'2){as’ | Qs)das’ .

(3.13)

One then invokes Egs. (3.4), (3.5), (3.6), (3.7), and (3.13) in order to derive the final result (fg—wgt="2a="2p):

TePWBA+= —(qg| Zs1(E1) | q1°)

g8(gs")

X[(‘lﬂ’ | Z61(g6"*— €p) | a1®)das’+ (0 | Zg1(g5"*—€5) |@1”’)

After putting gg on the energy shell
gs*— es=(q1")*—er=Ex,

Eq. (3.14) constitutes the exact DWBA for stripping.
The presence of the partially off-shell amplitude 7'11*™
shows [cf. Eq. (3.13)] that amongst others one has
to solve the set of coupled integral equations (3.11).
This is done by first performing a partial-wave analysis
and proceeding as in the solution of the Lovelace
equations (2.15). Again, in both Egs. (3.11) and (3.14),
one has to deform the contour to avoid singularities.!?
Notice further the fact that the energy variable in the
last term of Eq. (3.14) is not a parameter but a function
of the integration variable.

The theory given above holds for the DWBA per-
taining to stripping. A DWBA analysis for d elastic
scattering will yield exact results once a d optical
potential is determined. This is possible in principle,
as has already been mentioned above.!8

(B) Absorption Model

Angular distributions of stripping reactions which
display pronounced diffraction patterns have recently
been analyzed in several ways. One may, for instance,

18 A, 1. Jaffe, A. S. Reiner, and J. E. Ventura, Nucl. Phys. A95,
235 (1967).

/ (98] Zs1(E) |ay' Yay' | Tut(Ev) | q:0)day
Q" —qi"* e

gs(09)malas+i9) f o)
T 5" —qg*+ie

(@ | Tt (EY) | (l1°>d
Q=g e

qﬁ'dql"] RNERT)

endow the nucleus with definite optical properties,
which amounts to prescribing definite boundary condi-
tions for the wavefunction of ingoing and outgoing
particles on a well-defined nuclear surface region.*®

In an equivalent procedure one assumes absorption
of low partial waves in ingoing and outgoing chan-
nels.202! In the simplest model, one only studies the
Born term or the equivalent one-particle-exchange term.
Such a term is described in our model by the poten-
tial Z in Eq. (2.15). We therefore ask whether removal of
a few low partial waves from the Born term will re-
produce the “observed” (in this case the exactly cal-
culated) angular distributions. This, of course, amounts
in a semiclassical picture to a nucleus acting as an object
with some absorption radius.

If the cross section shows diffraction due to strong
absorption, a DWBA fit should also show it through
the imaginary parts of optical potentials. It is now to
our detriment that the DWBA calculation circum-
vents a determination of those potentials. A comparison
was nevertheless thought to be advantageous.

In Figs. 5(a) and 5(b), we plot differential cross sec-
tions for (d,p) and (d,n) reactions calculated with the

19 A, Dar, Nucl. Phys. 55, 305 (1964).
20N, J. Sopkovich, Nuovo Cimento 26, 186 (1962).
21T, Durand and Y. T. Chiu, Phys. Rev. 139, B646 (1965).
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same parameters leading to Fig. 1 (E;=6.7 MeV). @ e T
Those results are compared on the one hand with the (d,p)reaction |1 (d,n) reaction lso
DWBA calculation, and on the other hand with the —_-53;;2 ve (228) | : sone dote o8
result for the one-particle exchange model with partial 1440F .. Absorption model ||} 172
waves 1<2 absorbed. Figures 6(a) and 6(b) give the a0l Eq=6.7 MeV il |
. . M €, =8.9 MeV 1! 64
same cross sections for E;=11.2 MeV. In Figs. 7(a), \ e =0.35Mev !
. . ]
7(b), 8(a), and 8(b) curves are given for the absorption "20“'1‘ R=2.3F i 156
model with a variable number of partial waves removed. Foolt e il lag &
. 3 r H 1 o
Most prominent is the apparently correct representa- £ |‘. jt f:; €
. . . 1}
tion of the DWBA for the entire angular range, which, $ 800l | W3 {40 $
. . . . . \
we stress again, is obtained without parameter adjust- s ook | 3
. . 132
ments. The absorption model, on the other hand, gives (W
a reasonable fit for the (d,p) reaction over the entire 4sof\i | {24
angular range. This result is certainly striking in view [\
of the low incident energy. The fit is substantially less 320 | SR
160 P
T T T T T T T T _-
(a) (b) o AR -= . lg
(d,p) reaction d (d,n)reaction 40 " 80 12 160
720 —y jincl v (Z=8) | same dota 144 8 deg
-~DWBA ! os inla) . . .
€40k  -—-Absorption model || lizs Fic. 7. Differential cross sections for (a) (4,p) and (b) (d,n)
\ (t22) ! reactions in comparison with DWBA and model for absorption
seo ‘\ £4-6.7 MeV ! Juz of various partial waves. E4=6.7 MeV.
. 'I €, =89 MeV i .
s I €,=035MaV i log @ T T T T T
5480 lll Rp=5.2F i £ 1600+ (@ ‘ l I (b)
=] 4003.\l Ra=2.3F \ “ 80 g \ (d,p) reaction (d,n) reaction 160
E ‘l‘\ ‘\‘ |‘ 5 1400_\‘ — Vpa incl ve (Z=8) some data as
320f ||t i 64 \ ——DWBA
“l| i I200-\'\l --~Absorption model 50 .
240} i ' N 1 Eq4=11.2 MeV s
! K4 Y €, =89 MeV ] a
160 ! £10001} ) =035 Mev 40 s
g | W\ Rpe23F 3
8ot 3 800 '.|l‘ Rp=52F 130 &
- ° (
0 40 80 iZ_O_AIGO “‘
8 deg ~120
Fic. 5. Differential cross section for (a) (d,p) and (b) (d,%)
reactions with fixed v,p» and v,4. Graphs given for (i) v,4 incor- 1o
porating Coulomb effect (Z=8); (i) absorption model; (iii)
DWBA, E;=6.7 MeV. _ . .
0= 40 80 120 160 40 80 120 160
T X T ~T T T T T 8 deg 8 deg
720 (o) (b)
(d,p) reaction . (d,n)reaction F1c. 8. Same as Fig. 7 except that Eq=11.2 MeV.
h — Vpa incl v¢(Z=8) same dota
6401 __powea as in (a) 63
} - Absorpti del . . .
550.'1‘ ey good for the (d,n) reaction. It will, however, be noticed
! Eq=Il2 MeV from Figs. 7 and 8 that the fit is sharp. It is therefore
| =8.9 MeV & . .
4801} o= N8 N clear that the use of a rounded-off absorption function??
- 1 €p =0.35MeV @ . . . . .
< ! Rp=5.2F 3 instead of a step function in ! would considerably im-
e 4001 | Rys23F c prove the fit.
€ 520l | 5 A final remark concerns the interpretation of the
S i ® angular distributions as diffraction patterns. One ma;
| gu p ¢
240} | derive from the value of the largest absorbed partial
1 2
| wave an impact parameter of the order of the nuclear
160r & radius (b~2.5F). However, the interaction radii
i L.
sob | estimated from diffraction minima are about a factor 2
larger, and are thus of the order of the proton radius
0 and definitely larger than the size of the neutron orbit.
22 W, E. Frahn and R. H. Venter, Ann. Phys. (N.Y.) 24, 243
FiG. 6. Same as Fig. 5 except that E;=11.2 MeV. (1963).
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In view of the impossibility of ascribing a radius to our
nucleus which is different from the orbit sizes of the two
outer nucleons, we find it hard to apply criteria for the
validity of the diffraction picture based on the above
observations.

4. DISCUSSION AND COMPARISON

We have described above a three-particle model for
nuclear stripping. Exact calculations have been per-
formed for a system of spinless particles interacting
through separable interactions leading to a s-wave
bound state in each channel. One of our two objectives
has been the study of the effect of a proton-“nucleus”
interaction v,4, which had initially been neglected.?
Mitra® and Aaron and Shanley” included a v,4=1%44.
In a three-particle model this entails identical p and »
stripping patterns, contrary to what is observed.

We therefore assumed v,47%v,4 in two alternative
ways. We first tried to account for the reduced binding
of the proton by changing the parameters of the neutron-
nucleus interaction. For reasonable parameters the thus
calculated stripping cross sections for emerging protons
are smaller than those for neutrons, contrary to observa-
tion. However, inclusion of a Coulomb interaction yields
the correct behavior.

There is, of course, no way to compare the outcome
of our computations with a real experiment, except for
the deuteron-nucleon system. Nevertheless, the angular
distributions obtained very much resemble typical
stripping patterns and show that stripping by a real
nucleus may presumably be accounted for in part by
the dynamics of a three-particle system. A three-
particle model of course does not give any spectroscopic
correction factor.

We computed for our model what is commonly
termed the DWBA and found very satisfactory agree-
ment with the exact solution. Our result is to be con-
trasted with the calculations of Shanley® who employs
optical potentials, with parameters chosen to fit p and d
elastic scattering.

We further tested the model where out of the one-
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particle exchange term the lowest partial waves were
absorbed. The fit, in spite of the low energies involved,
is reasonable for (d,p) stripping throughout the entire
angular range. Shanley® reproduces diffraction patterns
by applying rescattering corrections in initial and final
channels,?:2! but the resulting patterns fit less well than
those of the simple absorption model.

Finally we touch upon a last approximation to
stripping recently proposed by Butler.2® He assumes
that for sufficiently high incident-deuteron energies,
the constituent proton and neutron are scattered like
plane waves, the momenta of which remain correlated
as in the deuteron bound-state wave function. Butler’s
model cannot be compared with ours since his cross
section for a three-particle model vanishes exactly.24-26

In conclusion we consider deuteron elastic scattering,
which in our model, for the parameters chosen, is of the
same order of magnitude as stripping. It is known that
for medium-weight nuclei, deuteron elastic cross sec-
tions exceed stripping cross sections by far. Also the
shape shows far more oscillation than in our curves.

Only a few deuteron elastic scattering data exist for
light nuclei. For O the elastic angular cross sections,
although still larger than the stripping cross section,
no longer differs by orders of magnitude.

We do not aim to compare our results in detail with
experiment. In spite of the inclusion of a proton-
nucleus interaction we still think the model to be crude.
On the other hand, we doubt whether it pays to include
spins and in particular more single-particle bound
states; such an attempt in any case is hardly possible
with present-day computers. It has merely been our
goal to see the influence of v,4 (till now neglected),
and in particular to test standard approximations in
stripping calculations. We feel that inferences from
those tests are of relevance beyond the scope of our
model.

% S, T. Butler, Nature 207, 1346 (1965).

24 R. M. May, Nature 207, 1348 (1965).

26V, Tikochinsky (unpublished).

26 C. F. Clement, Phys. Rev. Letters 17, 759 (1966).



