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The elastic constants of CaF; have been measured under hydrostatic pressure to 4 kbar and at tempera-
tures of 77.35, 194.5, 273.15, and 295.5°K. The ultrasonic data are analyzed according to the self-consistent
method suggested by Cook. The result gives the adiabatic as well as the isothermal elastic constants directly
as a function of pressure. From the pressure derivatives of the bulk modulus, we extrapolate the isotherms
according to the Murnagham equation of state. The effective Debye temperature and Griineisen constants
have been calculated also as a function of pressure and temperature. While the Debye temperature at 4.2°K
agrees well with other experiments, the Griineisen constants calculated from the pressure derivatives of the
elastic constants differ significantly from the macroscopic values. The reason is discussed. Our data are
insufficient to resolve the discrepancy between the v calculated by Ganesan and Srinivasan and the y calcu-
lated from Batchelder and Simmons’s experiment. Further experiments at low temperatures are needed.

I. INTRODUCTION

HE study of anharmonic effects of crystal lattices!
is important in understanding the temperature
and pressure dependence of the physical properties of
solids. This basic problem of lattice dynamics is ap-
proached generally by proposing an atomic model from
which the phonon spectrum and dispersion curves can
be calculated. Thermodynamic properties such as
specific heat, thermal expansion, and elastic constants
provide some measure of the average of the phonon
spectrum. They can be useful as guidelines in restricting
the lattice model. Elastic constants are particularly
useful since they measure directly the long-wave portion
of the dispersion curves. For CaF, the thermal ex-
pansivity,? the specific heat, and the elastic constants?
have been carefully measured as a function of tempera-
ture. Part of this paper will report on the result of the
measurement of the elastic constants as a function of
pressure.

To measure the pressure dependence of the elastic
constants, one faces the difficulty of knowing the length
of sample at pressure and the conversion factor between
the adiabatic and the isothermal elastic constants under
pressure. We have solved these problems by using a
self-consistent integration method suggested by Cook*
in analyzing the ultrasonic data. The result yields the
adiabatic as well as the isothermal elastic constants
directly as a function of pressure.

Another part of this paper will show the application
of elastic constants in evaluating some related thermo-
dynamic properties of CaF,. The equation of state can
be easily obtained by integrating the bulk modulus.
The Griineisen constant is calculated from the Griin-
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eisen formula and from the pressure derivatives of the
elastic constants. The effective Debye temperature is
also calculated.

II. MEASUREMENT OF ELASTIC CONSTANTS

The technique and apparatus of measuring elastic
constants® are well developed. Here we will describe
the experiments briefly but discuss the sources of
experimental error in some detail.

We use the phase-comparison method® to measure
the transit time of an ultrasonic pulse travelling along
certain directions in a single crystal. The CaF, single
crystal of size  in. cube and % in.X% in.X1 in. are
furnished by the Harshaw Chemical Company. To
facilitate the data analysis by Cook’s method, three
single crystals are measured simultaneously; this also
gives the necessary combination to determine the three
elastic constants. The pressure vessel was designed by
Martinson? for his Na work. Measurements were made
at room temperature, ice point, dry-ice point, and
liquid-N. point under hydrostatic pressure generated
by a gas pressure system. We use glycerine as the
bonding material for the 10 mc/sec quartz transducer
at temperatures below 200°K and Nonaq grease at
temperatures above 200°K.

The main sources of error in elastic-constant mea-
surement are:

(1) The precision of measuring the sample length
and of making the two opposite surfaces parallel. A
supermicrometer can measure to 10~ in. and it is not
difficult to measure length to better than 105 in. But
to prepare two faces parallel to one part in 10* is another
matter; this depends on the sample and the method of
polishing. A careful mechanical polish of CaF, samples

5 H. B. Huntington, in Solid State Physics, edited by F. Seitz
am;‘ 113. Turnbull (Academic Press Inc., New York, 1958), Vol. 7,

8 A. D. Colvin, M.S. thesis, Rensselaer Polytechnic Institute,
New York, 1959 (unpublished).

“R. H. Martinson, Ph.D. thesis, Cornell University, 1966
(unpublished).
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TasBLE I. Values of elastic constants and errors of measurement for CaF; at 1 atm and 77.35°K. The most probable values for the

CuiS= (17.1028-0.0037) X 101 dyn/cm?,
C1s5= (4.6557--0.0132) X 104 dyn/cm?,
CuaS= (3.60850.0052) X 101 dyn/cm?.

elastic constants are:

Direction Direction of
of wave particle Elastic constant pv? Error
Crystal motion motion measured (101 dyn/cm?) ()
[1007] [100]L Cu® 17.0972 0.032
A [100] 1[1003S CusS 3.6085 ~0
[110] [110]L 3 (CuS+Cr2842Cu®) 14.4892 0.010
[110] [110]L 3(C115+C1354-2Cs5) 14.4862 0.029
B [110] [oo1]s CasS 3.5612 1.31
[110] [1io]s 3(Cu8—C1e®) 0.6227 0.056
C (1007 [100]Z Cu 17.1083 0.032
[111] L[111738 3(C115—Cr25+4CusS) 5.3530 0.021

fixed in a doughnut-shape mold with finely ground
surfaces can produce surfaces parallel to one part in
10% This puts an upper limit on the accuracy of mea-
suring absolute values of elastic constants.

(2) The orientation of the crystal and the transducer.
In our experiment the crystals are oriented by a Bragg
diffractometer which gives an orientation accurate to
less than 5/100 of a degree. There is no orientational
error of the transducer for the longitudinal waves.
However, to complete the measurement of the three
elastic constants, at least one transverse wave is re-
quired. For certain transverse waves, the misorien-
tation of the transducer can introduce the most sig-
nificant error in the measurement. Waterman® has
studied this problem carefully and has found that the
error in sound-velocity measurement is roughly equal
to the square of the misorientation measured in radians.
Therefore, a misorientation of 2° will give an error of
1 part in 10° for velocity and 2 parts in 10° for the elastic
constant. It is easy to introduce a 2° misorientation of
the transducer during the experiment; the error then
becomes serious. Fortunately, it is possible to eliminate
this error by taking advantage of the degeneracy of the
transverse waves along the [100] and [111] directions.
We have used shear waves, always along one of these
two directions, to eliminate the error in orienting the
transducers.

(3) Correction for the phase shift in the bond. For
thin bonds, the transit time 7 can be expressed as®

2r=(n+3)/ fatk(1/fa—1/f0), ¢Y)

where # is the number of waves in the crystal, fo is the
resonance frequency of the transducer, f, is the de-
structive-interference frequency of the nth mode, and
k is the ratio of the acoustic impedances of the crystal
and the transducer. Here the error is due to the ambi-
guity of determining #, the validity of the thin-bond

8 P. C. Waterman, Phys. Rev. 113, 1240 (1959).
9 J. William and J. Lamb, J. Acoust. Soc. Am. 30, 308 (1958).

approximation and of knowing the resonance frequency
of the transducer as a function of pressure and tem-
perature. The first two problems can be solved by taking
a sequence of the null frequencies and then by inter-
polating to find the transit time at the resonance
frequency. McSkimin and Andreatch® have measured
the pressure and temperature dependence of the quartz
resonance frequency. However, it is difficult to measure
precisely the resonance frequency of the transducer
because of the coupling to the bond and the crystal.
The total error is estimated to be about 1 part in 104,

(4) Pressure and temperature measurement. The
temperature measurement is not very critical in elastic-
constant measurements especially at low temperatures.
The pressure measurement is considered to be the most
important error in the pressure derivatives. We use a
Guildline potentiometer to measure the resistance
change of the Manganin gauge under pressure. The
potentiometer has a sensitivity of 1 part in 10% and is
considered to be sufficient for a pressure change of 1 bar.
The problem here is the calibration of the Manganin
gauge and occasionally the existence of gas leaks from
the pressure vessel. The reproducibility of the pressure
derivatives in our work on CaF, is about 29,

We have made some measurements at 77.35°K and
1 atm to check the source of errors in our experiment.
The result is summarized in Table I.

III. ANALYSIS OF ULTRASONIC DATA

The adiabatic elastic constant, or a combination of
elastic constants is given by

C5(P)=p(l/7)?,
=po(lo/7)%S(P), (2
where po and p are the densities at P=0 and P=2P,
respectively, and S(P)=1Iy/! is the ratio of the initial

0 H. J. McSkimin and P. Andreatch, J. Acoust. Soc. Am. 34,
609 (1962).
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TaBLE II. The pressure dependence of the isothermal
elastic constants of CaFs.

HO AND A. L.

b P Cu® Ci” Cu® A
(a) 295.5°K
0.001 3.1795 16.057 4.344 3.380 2.719
0.264  3.1805 16.108 4.332 3.387 2.723
0.582 3.1817 16.113 4.363 3.391 2.729
0.950 3.1832 16.125 4.393 3.396 2.736
1.269 3.1844 16.145 4.413 3.400 2.742
1.669 3.1859 16.166 4.435 3.405 2.748
2.126 3.1876 16.200 4.460 3.411 2.756
2.629 3.1895 16.233 4.486 3.417 2.764
3.139 3.1915 16.272 4.514 3.424 2.773
(b) 273.15°K
0.001 3.1835 16.163 4.382 3.409 2.580
0.265 3.1845 16.197 4371 3.410 2.586
0.578 3.1857 16.198 4.407 3.415 2.592
0.911 3.1870 16.208 4.434 3.419 2.598
1.281 3.1884 16.231 4.456 3.423 2.604
1.741 3.1901 16.265 4.477 3.429 2.610
2.026 3.1912 16.282 4.493 3.433 2.615
2.520 3.1931 16.317 4.515 3.439 2.622
3.030 3.1950 16.352 4.540 3.446 2.629
3.505 3.1968 16.383 4.565 3.452 2.636
4.028 3.1988 16.419 4.593 3.458 2.644
(© 1945°K
0.001 3.1963 16.582 4.486 3.500 1.549
0.241 3.1972 16.597 4.497 3.504 1.551
0.574  3.1984 16.617 4.509 3.508 1.553
0924  3.1998 16.638 4,522 3.512 1.556
1.273 3.2011 16.659 4.535 3.516 1.558
1.615 3.2023 16.680 4.548 3.520 1.560
2,129  3.2042 16.711 4.567 3.527 1.564
2.677 3.2063 16.742 4.590 3.533 1.567
3.189  3.2082 16.771 4.611 3.539 1.571
3.732 3.2102 16.803 4.631 3.546 1.574
4164  3.2118 16.827 4.647 3.551 1.577
(@ 77.35°K
0.001 3.2085 17.064 4.648 3.609 1.820
0.158 3.2091 17.078 4.653 3.610 1.821
0.272 3.2095 17.081 4.655 3.610 1.821
1.072 3.2124 17.130 4.691 3.621 1.828
1.538 3.2141 17.159 4.711 3.627 1.832
1.848 3.2152 17.178 4.724 3.630 1.834
2.381 3.2171 17.209 4.748 3.636 1.839
2936  3.2191 17.246 4.766 3.642 1.842
3.409 3.2209 17.273 4.789 3.648 1.847

a Units: p, kbar; p, g/cm3; Cu?, C127, CaT, 10!t dyn/cm?; A, %.

sample length to the length at P atmospheres. Cook’s
method provides a self-consistent way of calculating .S
as a function of pressure. Since

15(dP/dS)=1(CpuT+2C1,7),
= (Cuu®+2C1%)/3(1+4),

1

3pole®

therefore,

S(P)=1+ / (14-A)rg%dP. 3)
0

Here we use the superscript T and S to designate the
isothermal and adiabatic elastic constants and
A=p2TB5/pCp, the conversion factor between the
isothermal ‘and adiabatic constants; A is, of course, a
function of pressure itself.

In our experiment, in order to eliminate the error
from misorientation of transducers, we work with the
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longitudinal waves along [100] and [110] directions
and the transverse waves along [100] and [111]
directions. The corresponding elastic constants have
been listed in Table I. A combination of three of these
waves will give 75. Equation (3) is solved by iterated
integration; since A and .S are functions of pressure,
the adiabatic and the isothermal elastic constants can
be easily calculated. The pressure derivatives are
evaluated by the standard least-squares method.

We have made two pressure runs at each of the fixed
temperatures 295, 273.15, 194.5, and 77.35°K. The
results from the Cook’s analysis are tabulated in Table
II for one of the runs. The conversion factor A is also
listed to facilitate the calculation of the adiabatic
elastic constants. The average values of the pressure
derivatives are collected in Table III. It is also tempting
to calculate the second pressure derivatives; however,
due to the hardness of CaF; and the maximum pressure
employed, namely, 5 kbar, their values should be con-
sidered as only an order-of-magnitude estimate. We
show the values for the bulk modulus in Table IV.

IV. EQUATION OF STATE

If we write the pressure dependence of the isothermal
bulk modulus as a Maclauren expansion

BT=—VoP/dV|r=B"+B "' P+3B,""P?, (4)

then the isotherms can be obtained by integration. In
fact, a linear expansion of B? in P will give the so-called
Murnaghan equation of state'':

V/Vo=[14(Bo"" /B )PT A", ©®)

For CaF, we expect Eq. (5) to hold reasonably well at
pressure as high as 200 kbar since the contribution of
the $B¢"”P? is only 39, at 100 kbar and 2%, at 200
kbar. Two isotherms at 77.35 and 194.5°K are plotted
in Fig. 1. There is no static-pressure measurement nor
shock-wave experiment available for comparison.

10|

o5}
Y
sof-

77.35°K
851 194.5°K

L L ' L
8% 50 100 150 200

P(KBAR)

Fic. 1. The isotherms of CaF; at 77.35 and 194.5°K calculated
from Murnagham’s equation of state.

1 F, D. Murnaghan, Finite Deformation of an Elastic Solid

(John Wiley & Sons, Inc., New York, 1951).
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TaBLE 1II. The pressure derivatives of the elastic constants of CaFs. All elastic constants are in units of
101 dyn/cm? and their pressure derivatives are dimensionless.
295.5°K 273.15°K 194.5°K 77.35°K
Cn7(0) 16.0714-0.006 16.16140.005 16.5834-0.001 17.0654-0.001
Cu® 6.20 +0.35 6.24 £0.20 5.89 +0.03 6.09 +£0.04
C115(0) 16.5070.006 16.5784-0.005 16.8404-0.001 17.096+-0.001
Cu® 6.62 +0.37 6.65 +0.21 6.11 +0.03 6.12 +0.04
C17(0) 4.334-+0.005 4.37740.004 4.487-+0.001 4.646--0.001
Cr™’ 5.85 +0.27 5.43 +0.20 3.86 +0.02 4.16 =+0.05
Ciof 4.451+0.005 4.490-+0.005 4.556-£0.001 4.655-£0.001
Ci%' 6.08 +0.28 5.64 +0.21 3.96 +0.02 4.17 +0.06
Cu(0)= 3.383+0.001 3.407+0.001 3.501£0.001 3.608=-0.001
Cud 1.33 +0.04 1.26 +0.01 1.21 +0.01 1.17 20.02
a The isothermal and the adiabatic values for Cys are the same.
V. EFFECTIVE DEBYE TEMPERATURE AND The Griineisen constant is defined as
GRUNEISEN CONSTANT
v=22:vCvi/2: Cvs, (7a)
° .
At 0°K the Debye temperature is given by with the mode v; defined as
vi=0 Inw;/d InV, (7b)

h(3q Np\'?
®D=—(—q— —'3) om, (6a)
RN\dr M
where ¢ equals the number of atoms in the molecule
(3 for CaF;), N/M is the number of atoms per gram,
and v, is the average sound velocity which can be cal-
culated by the following spatial integral’?:

1 1 do773
vm——-I:— > -——-I .

3i=1J 94w
For temperatures above 0°K, Eq. (6a) gives the
effective Debye temperature. We evaluate the effective
Debye temperature as a function of temperature and
pressure. To check the agreement between the Debye
temperatures calculated from elastic constants and
from specific-heat data near 0°K at which the two
Debye temperatures should be equal, we have also

measured the elastic constants at 4.2°K. The results
are

(6b)

Cuuf=17.124X10" dyn/cm?,
C127=4.675X10" dyn/cm?,
CuT=3.624X10" dyn/cm?.

The corresponding Debye temperature is 519.4°K,
while the calorimetric value is 508+5°K.

TaBLE IV. The pressure derivatives of the isothermal
bulk modulus of CaFe..

BoT BoT""
T°K (101 dyn/cm?) BT’ (1071 cm?/dyn)
295.5 8.2544-0.002 6.08+0.27 —0.8+1.7
273.15 8.3044-0.002 5.914-0.26 —1 *13
194.5 8.518+0.001 4.604-0.06 —0.3+0.3
77.35 8.800+0.001 5.48+0.16 —0.2+1

2 G. A. Alers, Physical Acoustics (Academic Press Inc., New
York, 1965), Vol. 111, Part B.

where Cy; is the contribution to the specific heat Cy
from the ith phonon of frequency ;. It is impossible
to calculate v without a proper atomic model and
detailed calculations in lattice dynamics. Generally an
approximation is used to evaluate v. Griineisen assumes
that all v, are equal; then «, called the macroscopic
¥m, can be expressed as

vm=BVBS/Cp=BVBT/Cy. (8)
6, = 519.4°k
3.2¢
\\
2.8 \
\
\
\
2.4 \
Y \ _Ganesan and Srinivasan
N
~ Batchelder
2.0F S~ -~ and Simmons
I,I,I’I/—_’O’_/—’o_:
1.6} I/ ®
L2F
_D_——D\
.8 0.
~a

4 1 1 1

(o] 100 200 300

T(°K)

Fic. 2. Temperature variations of the Griineisen constant of
CaF,. Circles are the macroscopic v values calculated from Eq.
(8) ; squares represent the v values calculated from the pressure
derivatives of the elastic constants. The Batchelder and Simmon’s
values are obtained from their thermal-expansion measurements
and the Ganesan and Srinivasan values are calculated according
to a rigid-ion model.
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TasLE V. Effective Debye temperature and
Griineisen constants of CaF..

T(°K) P (kbar) 60(°K) Yo Ym
42 0 5194
0 518.7 0.994 1.650
77.35 1.072 1.665
1.848 1.675
2.936 1.689
3.409 1.695
0 512.9 1.026 1.736
0.924 1.745
194.5 2.129 1.757
3.189 1.768
4.164 1.778
0 507.5 0.798 1.723
0.911 1.733
273.15 2.026 1.745
3.030 1.756
4,028 1.768
0 506.2 0.727 1.679
0.950 1.689
295.5 1.669 1.697
2.629 1.708
3.139 1.713

At low temperatures, only the long-wave phonons
contribute to the specific heat; Eq. (7a) becomes

o [z 00/ [z 5]

where the integrations are carried out over all solid
angles. The mode v; are related to the pressure de-
rivatives in the following manner:

vi= 4+ (BY/2C)dCT/dP. (9b)

Equations (9a) and (9b) should be valid in the tem-
perature range where Cy « 73, It is tempting, as is often
done, to calculate v at high temperatures (7> 0p) by
taking out the 1/v;* weighing factor since all phonons
are excited. However, Eq. (9b) becomes insufficient to
account for all mode v,’s; thus the pressure derivatives
of elastic constants do not give enough information in
evaluating v at high temperatures.

To calculate the two spatial integrals in Egs. (6b)
and (9a) properly, one must solve v; and v; along
arbitrary directions in space and then integrate them
numerically. A computer program was employed for
these calculations. The results together with the v
values calculated as a function of pressure are sum-
marized in Table V.

(9a)

VI. DISCUSSION

It is clear that Cook’s method provides a proper
analysis of the ultrasonic data under hydrostatic
pressure. Its application is straightforward and the
self-consistent integration can be carried out easily
with the aid of a computer. A complication in the
experiment is that at least two sound velocities must
be measured simultaneously as a function of pressure

HO AND A. L.
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in order to obtain the transit time corresponding to
the bulk modulus.

In Table VI we compare our elastic constants of
CaF; at room temperature with those obtained by
other authors. There is no clear indication that the
values measured in other experiments are isothermal
or adiabatic. Nevertheless, the comparison is made
with our adiabatic values. The agreement in Cy;® and
CuS is excellent, while the discrepancy in C1s8 could
mainly be due to the misorientation of the transducer.
There are no experimental pressure derivatives of
elastic constants of CaF; available for comparison.

We have shown some applications of the elastic
constants in calculating the thermodynamic properties
of CaF, such as the equation of state, the effective
Debye temperature, and the Griineisen constants. It
is also possible to develop a phenomenological atomic
model, for instance, the simple Born von Karman
model, by adjusting the model parameters according
to the elastic constants, and to proceed to calculate
the atomic properties of the solid.

Anderson® found that for most substances the
Murnaghan equation of state describes the compression
of the solid better than a polynomial expansionof AV/V,
in terms of pressure. For CaFy, since the contribution
of the second pressure derivative is small, the isotherms
determined from elastic-constant data at low tempera-
tures should be quite satisfactory for pressures as high
as 200 kbar.

The Debye temperature at 4.2°K is calculated to be
519.4+0.1°K. This value is in good agreement with the
following ones due to Huffman and Norwood?:

O, (elastic constants)= (513.6=2.5)°K ,
O, (specific heat) = (508+5)°K.

The temperature variation of the Griineisen constant
is very interesting. Batchelder and Simmons? found
that the vy calculated from their thermal expansion
measurement [see Fig. 2] decreases with tempera-
ture; this contradicts the Ganesan and Srinvasan’s™

TasiE VI. Comparison of elastic-constant values of CaF; at
room temperature (units of 101 dyn/cm?).

Cus CioS CusS
Voigt® 16.4 4.47 3.38
Bhagavanatham® 16.44 5.02 3.47
Huffman and Norwood® 16.4 5.3 3.370
Haussiihld 16.357 4.401 3.392
Srinivasane (theoretical) 16.8 4.8 4.0
Present work 16.494 4.462 3.380

a W, Voigt, Lehrbuch der Kristallphysik (B. G. Tenbuer, Leipzig, 1910),
744

D. .
b S, Bhagavantam, Proc. Ind. Acad. Sci. A41, 78 (1955).

¢ See Ref, 3. X

d S, Hanssiihl, Phys, Status Solidi 3, 1072 (1963).

e R, Srinivasan, Proc. Phys. Soc. (London) 72, 574 (1958).

130, L. Anderson, J. Phys. Chem. Solids 27, 547 (1966).
1S Ganesan and R. Srinivasan, Can. J. Phys. 40, 74 (1962).
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prediction based on a solid-sphere model. Since it is
very difficult to measure the thermal expansion at low
temperatures, the low-temperature v determined from
the Griineisen formula is no longer reliable. Therefore,
it was suggested that an independent v determined
from the low-temperature pressure derivatives of
elastic constants [see Eq. (9a) and (9b)] can resolve
this problem. However, as seen from Table V, the v
calculated from these two formulas are not equal since
the Griineisen assumption does not apply for CaF,;
for instance, at 77.35°K the average mode v of the
longitudinal wave is 1.66 and for the transverse waves,
the v are 0.81 and 0.98. The v, calculated from the
pressure derivatives of elastic constants should be
reasonably accurate at 78°K and below because of the

OF ELASTIC CONSTANTS 869
high Debye temperature of CaF,. Judging from our
result, there is little change of v above 78°K. The value
of v for temperatures below 78°K cannot be known until
more measurements at low temperatures are completed.
We plan to continue this experiment to low-temperature
regions in the near future.
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Electron Paramagnetic Resonance and Spectroscopic Study of
LaCl; :Eu?*+ and Associated Color Centers*}

Boris I, Kmu} anp H. W. Moos§
Department of Physics, The Johns Hopkins University, Baltimore, Maryland
(Received 1 March 1967)

The electron-paramagnetic-resonance (EPR) spectrum of LaCls: Eu?* was observed to obtain the ground-
state splitting of Eu?t in sites of Cs symmetry. A good fit to the observed energy levels in the ground
manifold of Eu?t was provided by the parameters b20=427.20X 10~ cm™, b= 5.43X10™* cm™, b’ = —0.045
X107 cm™, bet=2.97X107* cm™, g1;=1.9924, and g1=1.9927. The shift in b,° from room temperature to
4.2°K was less than 5%. EPR spectra which could be attributed to europium ions in at least one other in-
equivalent site were observed but not analyzed in detail. The color centers produced in LaCls:Eu*t by
ultraviolet radiation appeared to be due to electrons removed by the radiation from Eu?* ions, which were
then trapped at certain crystal defects. The Eu?* donors were shown to reside in the normal Cy, rare-earth
sites, and the polarization of the color-center absorption spectrum indicated that the color-center defects
had relatively high symmetry. If the color-center defects were due to anion vacancies such as one finds for
certain color centers in alkali halide crystals, then the defect was probably a cluster of more than one

chlorine vacancy.

I. INTRODUCTION

HIS paper presents the results of an optical and
electron-paramagnetic-resonance (EPR) study

of LaCls:Eu?t. The two significant features are the
large splitting of the 857/, ground state and the polarized
color-center absorption bands which are easily produced
by ultraviolet radiation. A comparison of the splitting
of the 857/, state of Eu?t and Gd?* is of interest since
the explanation of this splitting is not yet complete.!?

* Partially supported by the National Aeronautics and Space
Administration under Grant No. NsG-361.

+ This paper is based in part on a Ph.D. dissertation by Boris F.
Kim, The Johns Hopkins University, 1967 (unpublished). For
further details see the dissertation, available through University
Microfilms, Ann Arbor, Michigan.

1 Present address: Armed Forces Radio-biology Research
Institute, Bethesda, Maryland.

§ Alfred P. Sloan Foundation Fellow.

1C. A. Hutchison, Jr., B. R. Judd, and D. F. D. Pope, Proc.
Phys. Soc. (London) B70, 514 (1957).

2B. G. Wybourne, Phys. Rev. 148, 317 (1966).
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