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The elastic constants of CaF2 have been measured under hydrostatic pressure to 4 kbar and at tempera-
tures of 77.35, 194.5, 273.15, and 295.5'K. The ultrasonic data are analyzed according to the self-consistent
method suggested by Cook. The result gives the adiabatic as well as the isothermal elastic constants directly
as a function of pressure. From the pressure derivatives of the bulk modulus, we extrapolate the isotherms
according to the Murnagham equation of state. The effective Debye temperature and Gruneisen constants
have been calculated also as a function of pressure and temperature. While the Debye temperature at 4.2'K
agrees well with other experiments, the GrQneisen constants calculated from the pressure derivatives of the
elastic constants differ significantly from the macroscopic values. The reason is discussed. Our data are
insufBcient to resolve the discrepancy between the p calculated by Ganesan and Srinivasan and the p calcu-
lated from Batchelder and Simmons's experiment. Further experiments at low temperatures are needed.

I. INTRODUCTION

'HE study of anharmonic eAects of crystal lattices'
is important in understanding the temperature

and pressure dependence of the physical properties of
solids. This basic problem of lattice dynamics is ap-
proached generally by proposing an atomic model from
which the phonon spectrum and dispersion curves can
be calculated. Thermodynamic properties such as

specific heat, thermal expansion, and elastic constants
provide some measure of the average of the phonon
spectrum. They can be useful as guidelines in restricting
the lattice model. Elastic constants are particularly
useful since they measure directly the long-wave portion
of the dispersion curves. For CaFg, the thermal ex-

pansivity, ' the speci6c heat, and the elastic constants'
have been carefully measured as a function of tempera-
ture. Part of this paper will report on the result of the
measurement of the elastic constants as a function of
pressure.

To measure the pressure dependence of the elastic
constants, one faces the difBculty of knowing the length
of sample at pressure and the conversion factor between
the adiabatic and the isothermal elastic constants under
pressure. We have solved these problems by using a
self-consistent integration method suggested by Cook4

in analyzing the ultrasonic data. The result yields the
adiabatic as well as the isothermal elastic constants
directly as a function of pressure.

Another part of this paper will show the application
of elastic constants in evaluating some related thermo-

dynamic properties of CaF2. The equation of state can
be easily obtained by integrating the bulk modulus.

The Gruneisen constant is calculated from the GrQn-

t ~ork supported by the U. S. Atomic Energy Commission.
' G. Leibfried and W. Ludwig, in SolH State Physics, edited

by F. Seitz and D. Turnbull (Academic Press Inc., ¹w York,
1955), Vol. 12.

~ D. N. Batchelder and R. O. Simmons, J. Chem. Phys. 41,
2324 (1964).

~D. R. Huffman and M. H. Norwood, Phys. Rev. 117, 709
(1960).

4 R. K. Cook, J. Acoust. Soc. Am. 29, 445 (1957).

eisen formula and from the pressure derivatives of the
elastic constants. The effective Debye temperature is
also calculated.

II. MEASUREMENT OF ELASTIC CONSTANTS

The technique and apparatus of measuring elastic
constants' are well developed. Here we will describe
the experiments briefly but discuss the sources of
experimental error in some detail.

We use the phase-comparison method' to measure
the transit time of an ultrasonic pulse travelling along
certain directions in a single crystal. The CaF2 single
crystal of size 2 in. cube and —,

' in. X& in. X1 in. are
furnished by the Harshaw Chemical Company. To
facilitate the data analysis by Cook's method, three
single crystals are measured simultaneously; this also
gives the necessary combination to determine the three
elastic constants. The pressure vessel was designed by
Martinson7 for his Na work. Measurements were made
at room temperature, ice point, dry-ice point, and
liquid-N2 point under hydrostatic pressure generated
by a gas pressure system. We use glycerine as the
bonding material for the 10 mc/sec quartz transducer
at temperatures below 200'K and Nonaq grease at
temperatures above 200'K.

The main sources of error in elastic-constant mea-
surement are:

(1) The precision of measuring the sample length
and of making the two opposite surfaces parallel. A
supermicrometer can measure to 10 4 in. and it is not
dBBcult to measure length to better than 10 5 in. But
to prepare two faces parallel to one part in 10' is another
matter; this depends on the sample and the method of
polishing. A careful mechanical polish of CaF2 samples

H. B. Huntington, in Sol@ State Physics, edited by F. Seitz
and D. Turnbull (Academic Press Inc., New York, 1958), Vol. 7,
p. 213.

6 A. D. Colvin, M.S. thesis, Rensselaer Polytechnic Institute,
New York, 1959 (unpublished).

~R. H. Martinson, Ph.D. thesis, Cornell University, 1966
(unpublished) .
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ALE I. Values of elastic constants and errors of measurement for CaF2 at 1 atm and 77.35'K. The most probable values for the
elastic constants are:

C&P = (1'7.1028&0.0037)X 10"dyn/cms
C&ss= (4.6557~0.0132) )&10"dyn/cm'
C44s (3 6085~0.0052) y 10» dy ycm2.

Crystal

Direction
of wave
motion

[100$
[100)
[1103

[110]
[1103
L110j

[100]

Direction of
particle
motion

[1003L
J [100)S

[110)L,

[110jL
[001JS
[110]S

[1007L

J [111$S

Elastic constant
measured

C„s
C44s

—,
' (C +C +2C )

q(C11 +C19 +2C44 )
C44s

—,(C„s C»s)

Cl1

8 (Cll Cls +C44 )

p8
(10"dyn/cm')

17.0972
3.6085

14.4892

14.4862
3.5612
0.6227

17.1083

5.3530

Error
(%)

0.032

0.010

0.029
1.31
0.056

0.032

0.021

fixed in a doughnut-shape mold with finely ground
surfaces can produce surfaces parallel to one part in
104. This puts an upper limit on the accuracy of mea-
suring absolute values of elastic constants.

(2) The orientation of the crystal and the transducer.
In our experiment the crystals are oriented by a Bragg
diffractometer which gives an orientation accurate to
less than 5/100 of a degree. There is no orientational
error of the transducer for the longitudinal waves.
However, to complete the measurement of the three
elastic constants, at least one transverse wave is re-
quired. For certain transverse waves, the misorien-
tation of the transducer can introduce the most sig-
nificant error in the measurement. Waterman has
studied this problem carefully and has found that the
error in sound-velocity measurement is roughly equal
to the square of the misorientation measured in radians.
Therefore, a misorientation of 2' will give an error of
1 part in 10' for velocity and 2 parts in 10' for the elastic
constant. It is easy to introduce a 2 misorientation of
the transducer during the experiment; the error then
becomes serious. Fortunately, it is possible to eliminate
th, is error by taking advantage of the degeneracy of the
transverse waves along the $100] and $1111directions.
We have used shear waves, always along one of these
two directions, to eliminate the error in orienting the
transducers.

(3) Correction for the phase shift in the bond. For
thin bonds, the transit time r can be expressed as'

where e is the number of waves in the crystal, fs is the
resonance frequency of the transducer, f„is the de-
structive-interference frequency of the eth mode, and
k is the ratio of the acoustic impedances of the crystal
and the transducer. Here the error is due to the ambi-
guity of determining n, the validity of the thin-bond

s P. C. Waterman, Phys. Rev. 113, 1240 (1959).' J. William and J. Lamb, J. Acoust Soc. Am. 30, .308 (1958).

approximation and of knowing the resonance frequency
of the transducer as a function of pressure and tem-
perature. The first two problems can be solved by taking
a sequence of the null frequencies and then by inter-
polating to And the transit time at the resonance
frequency. McSkimin and Andreatch' have measured
the pressure and temperature dependence of the quartz
resonance frequency. However, it is difFicult to measure
precisely the resonance frequency of the transducer
because of the coupling to the bond and the crystal.
The total error is estimated to be about 1 part in 10'.

(4) Pressure and temperature measurement. The
temperature measurement is not very critical in elastic-
constant measurements especially at low temperatures.
The pressure measurement is considered to be the most
important error in the pressure derivatives. We use a
Guildline potentiometer to measure the resistance
change of the Manganin gauge under pressure. The
potentiometer has a sensitivity of 1 part in 10' and is
considered to be sufhcient for a pressure change of 1 bar.
The problem here is the calibration of the Manganin
gauge and occasionally the existence of gas leaks from
the pressure vessel. The reproducibility of the pressure
derivatives in our work on CaFs is about 2%.

We have made some measurements at 77.35'K and
1 atm to check the source of errors in our experiment.
The result is summarized in Table I.

IIL ANALYSIS OF ULTRASONIC DATA

The adiabatic elastic constant, or a combination of
elastic constants is given by

(2)

where po and p are the densities at P=O and P=P,
respectively, and S(E)=ls/l is the ratio of the initial

'0 H. J. McSkimin and P. Andreatch, J. Acoust. Soc. Am. 34,
609 (1962).
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T~LK II. The pressure dependence of the isothermal
elastic constants of CaFg.

0.001 3.1795
0.264 3.1805
0.582 3.1817
0.950 3.1832
1.269 3.1844
1.669 3.1859
2.126 3.1876
2.629 3.1895
3.139 3.1915

0.001 . 3.1835
0.265 3.1845
0.578 3.1857
0.911 3.1870
1.281 3.1884
1.741 3.1901
2.026 3.1912
2.520 3.1931
3.030 3.1950
3.505 3.1968
4.028 3.1988

0.001 3.1963
0.241 3.1972
0.574 3.1984
0.924 3.1998
1.273 3.2011
1.615 3.2023
2.129 3.2042
2.677 3.2063
3.189 3.2082
3.732 3.2102
4.164 3.2118

0.001
0.158
0.272
1.072
1.538
1.848
2.381
2.936
3.409

3.2085
3.2091
3,2095
3.2124
3.2141
3.2152
3.2171
3.2191
3.2209

(a) 2
16.057
16.108
16.113
16.125
16.145
16.166
16.200
16.233
16.272

(b) 2

16.163
16.197
16.198
16.208
16.231
16.265
16.282
16.317
16.352
16.383
16.419

(c) 1
16.582
16.597
16.617
16.638
16.659
16.680
16.711
16.742
16.771
16.803
16.827

(d)
17.064
17.078
17.081
17.130
17.159
17.178
17.209
17.246
17.273

95.5'K
4.344
4.332
4.363
4.393
4.413
4.435
4.460
4.486
4.514

73.15'K
4.382
4.371
4.407
4.434
4.456
4.477
4.493
4.515
4.540
4.565
4.593

94.5'K
4.486
4.497
4.509
4.522
4.535
4.548
4.567
4.590
4.611
4.631
4.647

7.35'K
4.648
4.653
4.655
4.691
4.711
4.724
4.748
4.766
4.789

C44&

3.380 2.719
3.387 2.723
3.391 2.729
3.396 2.736
3.400 2.742
3.405 2.748
3.411 2.756
3.417 2.764
3.424 2.773

3.409 2,580
3.410 2.586
3.415 2.592
3.419 2.598
3.423 2.604
3.429 2.610
3.433 2.615
3.439 2.622
3.446 2.629
3.452 2.636
3.458 2.644

3.500
3.504
3.508
3.512
3.516
3.520
3.527
3.533
3.539
3.546
3.551

1.549
1.551
1.553
1.556
1.558
1.560
1.564
1.567
1.571
1.574
1.577

3.609 1.820
3.610 1.821
3.610 1.821
3.621 1.828
3.627 1.832
3.630 1.834
3.636 1.839
3.642 1.842
3.648 1.847

a UnitS: P, kbar; p, g/Cm~; CXF, CIF', C44T', 10» dyn/Cm2; 6, %.

sample length to the length at P atmospheres. Cook' s
method provides a self-consistent way of calculating S
as a function of pressure. Since

',S(dP/dS) = ', (Cg-P+2Cl2r), -
= (Cu'+2Cla')/3(1+A)

therefore,

longitudinal waves along [100] and [110] directions
and the transverse waves along [100] and [111]
directions. The corresponding elastic constants have
been listed in Table I. A combination of three of these
waves will give 7z. Equation (3) is solved by iterated
integration; since 6 and S are functions of pressure,
the adiabatic and the isothermal elastic constants can
be easily calculated. The pressure derivatives are
evaluated by the standard least-squares method.

We have made two pressure runs at each of the Axed
temperatures 295, 273.15, 194.5, and 77.35'K. The
results from the Cook's analysis are tabulated in Table
II for one of the runs. The conversion factor 6 is also
listed to facilitate the calculation of the adiabatic
elastic constants. The average values of the pressure
derivatives are collected in Table III. It is also tempting
to calculate the second pressure derivatives; however,
due to the hardness of Cap2 and the maximum pressure
employed, namely, 5 kbar, their values should be con-
sidered as only an order-of-magnitude estimate. We
show the values for the bulk modulus in Table IV.

IV. EQUATION OF STATE

If we write the pressure dependence of the isothermal
bulk modulus as a Maclauren expansion

Br = —VBP/8 V i r Bo~+Bor'——P+,'Bor"P', -(4)

then the isotherms can be obtained by integration. In
fact, a linear expansion of B~ in I' will give the so-called
Murnaghan equation of state":

V/Vo= [1+(B r'/Bo~)P] "s".
For CaF& we expect Eq. (5) to hold reasonably well at
pressure as high as 200 kbar since the contribution of
the —',Bo "P' is only -', % at 100 kbar and 2% at 200
kbar. Two isotherms at 77.35 and 194.5'K are plotted
in Fig. 1. There is no static-pressure measurement nor
shock-wave experiment available for comparison.

I.O

Vj
Vo

.90

S(P)= 1+ (1+6)re'dP
3pplp' p

(3)
77.55 K

I94.5 K

Here we use the superscript T and S to designate the
isothermal and adiabatic elastic constants and
A =p'TBs/pC~, the conversion factor between the
isothermal and adiabatic constants; 6 is, of course, a
function of pressure itself.

In aur experiment, in order to eliminate the error
from misorientation of transducers, we work with the

.800
l

IOO

P (pHBARl

I50 200

FIG. 1.The isotherms of CaF2 at 77.35 and 194.5 K calculated
from Murnagham's equation of state.

"F. D. Murnaghan, FAsite Deformatioe of ue E4sAc Solid
(John Wiley R Sons, Inc. , New York, 1951).
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TABLE III. The pressure derivatives of the elastic constants of CaF2. All elastic constants are in units of
10"dyn/cm' and their pressure derivatives are dimensionless.

C]1 (0)
Cll
CII (0)
C1P'

»'(o)
C1P'
C12S
CIP'
C44(0) '
C44'

295.5'K

16.071~0.006
6.20 +0.35

16.507+0.006
6.62 +0.37
4.334~0.005
5.85 ~0.27
4.451~0.005
6.08 ~0.28
3.383+0.001
1.33 ~0.04

273.15'K

16.161~0.005
6.24 ~0.20

16.578w0.005
6.65 ~0.21
4.377+0.004
5.43 ~0.20
4.490+0.005
5.64 ~0.21
3.407+0.001
1.26 ~0.01

194.5'K

16.583+0.001
5.89 ~0.03

16.840~0.001
6.11 ~0.03
4.487~0.001
3.86 ~0.02
4.556~0.001
3.96 &0.02
3.501~0.001
1.21 ~0.01

77.35'K

17.065~0.001
6.09 ~0.04

17.096m 0.001
6.12 &0.04
4.646~0.001
4.16 ~0.05
4.655~0.001
4.17 ~0.06
3.608+0.001
1.17 ~0.02

a The isothermal and the adiabatic values for C44 are the same.

V. EFFECTIVE DEBYE TEMPERATURE AND
GRUNEISEN CONSTANT

At O'K the Debye temperature is given by

The Griineisen constant is de6ned as

y= Q; y;Cv'/Z; Cv;,

with the mode y, dined as

(7a)

h 3q Xp) "s
0 =-

u4 m)
(6a)

1 3 1 dn —1j3

where q equals the number of atoms in the molecule
(3 for CaFs), sV/M is the number of atoms per gram,
and v is the average sound velocity which can be cal-
culated by the following spatial integral":

&,=ah, /ah U, (7b)

where C~; is the contribution to the specific heat C~
from the ith phonon of frequency co;. It is impossible
to calculate y without a proper atomic model and
detailed calculations in lattice dynamics. Generally an
approximation is used to evaluate y. Gruneisen assumes
that all y; are equal; then y, called the macroscopic

y, can be expressed as

~m=—
3 i=1 v,' 4x

(6b) y =PUBs/C„=PUBS/Cv.

For temperatures above O'K, Eq. (6a) gives the
effective Debye temperature. We evaluate the eGective
Debye temperature as a function of temperature and
pressure. To check the agreement between the Debye
temperatures calculated from elastic constants and
from specific-heat data near O'K at which the two
Debye temperatures should be equal, we have also
measured the elastic constants at 4.2'K. The results
are

CtP = 17.124)&10"dyn/cm'

Cts =4.6/5&&10 dyn/cm

C44 ——3.624&&10"dyn/cm .

The corresponding Debye temperature is 519.4'K,
while the calorimetric value is 508+5'K.

312

2.4 "

2.0-

1.6-

l.2-

eo =5i94

& Ganesan and Srinivasan

Jps I

Bate helder
and Simmons

TmLE IV. The pressure derivatives of the isothermal
bulk modulus of CaF2. .8- 0~o

T'K

295.5
273.1.5
194.5
77.35

g3 0
F

(10» dy /cm*)

8.254~0.002
8.304+0.002
8.518~0.001
8.800~0.001

6.08~0.27
5.91~0.26
4.60~0.06
5.48~0.16

g3
ass

0
(10 "cm'/dyn)

—0.8~1.7
—1 &1 3
—0.3~0.3
—0.2~1

~ G. A. Alers, PIsysccal Acogstscs (Academic Press Inc. , New
York, 1965), Vol. III, Part S.

l

loo
l

200
I

500
T( K)

FIG. 2. Temperature variations of the GrQneisen constant of
CaF2. Circles are the macroscopic y values calculated from Kq.
(8); squares represent the p values calculated from the pressure
derivatives of the elastic constants. The Batchelder and Simmon's
values are obtained from their thermal-expansion measurements
and the Ganesan and Srinivasan values are calculated according
to a rigid-ion model.
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TABLE V. EGective Debye temperature and
Griineisen constants of CaI'"2.

T ('K)

4.2

77.35

194.5

273.15

295.5

P (kbar)

0
0

1.072
1.848
2.936
3.409

0
0.924
2.129
3.189
4.164

0
0.911
2.026
3.030
4.028

0
0.950
1.669
2.629
3.139

80 ('K)

519.4
518.7

512.9

507,5

506.2

+0

0.994

1.026

0.798

0.727

1.650
1.665
1.675
1.689
1.695
1.736
1.745
1.757
1.768
1.778
1.723
1.733
1.745
1.756
1.768
1.679
1.689
1.697
1.708
1.713

At low' temperatures, only the long-wave phonons
contribute to the specific heat; Eq. (7a) becomes

Z&s

(9a)

VX. MSCUSSION

lt is clear that Cook's method provides a proper
analysis of the ultrasonic data under hydrostatic
pressure. Its application is straightforward and the
self-consistent integration can be carried out easily
with the aid of a computer. A complication in the
experiment is that at least two sound velocities must
be measured simultaneously as a function of pressure

where the integrations are carried out over all solid
angles. The mode y; are related to the pressure de-
rivatives in the following manner:

re+ (B~/2C—r)-dC r/dI' (9b)

Equations (9a) and (9b) should be valid in the tem-
perature range where C~ ~ T'. It is tempting, as is often
done, to calculate y at high temperatures (T) On) by
taking out the 1/v,' weighing factor since all phonons
are excited. However, Eq. (9b) becomes insuflicient to
account for all mode y s; thus the pressure derivatives
of elastic constants do not give enough information in
evaluating y at high temperatures.

To calculate the two spatial integrals in Eqs. (6b)
and (9a) properly, one must solve y, and s; along
arbitrary directions in space and then integrate them
numerically. A computer program was employed for
these calculations. The results together with the y
values calculated as a function of pressure are sum-
marized in Table U.

in order to obtain the transit time corresponding to
the bulk modulus.

In Table UI we compare our elastic constants of
CaF2 at room temperature with those obtained by
other authors. There is no clear indication that the
values measured in other experiments are isothermal
or adiabatic. Nevertheless, the comparison is made
with our adiabatic values. The agreement in C11~ and
C44 is excellent, while the discrepancy in C» could
mainly be due to the misorientation of the transducer.
There are no experimental pressure derivatives of
elastic constants of CaF~ available for comparison.

We have shown some applications of the elastic
constants in calculating the thermodynamic properties
of CaF2 such as the equation of state, the effective
Debye temperature, and the Gruneisen constants. It
is also possible to develop a phenomenological atomic
model, for instance, the simple Born von Karman
model, by adjusting the model parameters according
to the elastic constants, and to proceed to calculate
the atomic properties of the solid.

Anderson" found that for most substances the
Murnaghan equation of state describes the compression
of the solid better than a polynomial expansion of 5V/Ve
in terms of pressure. For CaF2, since the contribution
of the second pressure derivative is small, the isotherms
determined from elastic-constant data at low tempera-
tures should be quite satisfactory for pressures as high
as 200 k.bar.

The Debye temperature at 4.2'K is calculated to be
519.4~0.1'K. This value is in good agreement with the
following ones due to Busman and Norwood':

Os (elastic constants) = (513.6&2.5) 'K,
O~o (specific heat) = (508+5)'K.

TABLE VI. Comparison of elastic-constant values of CaF2 at
room temperature (units of 10"dyn/cm').

Voigt~
Bhagavanathamb
HuGman and Norwood'
Haussiihl~
Srinivasan' (theoretical)
Present work

{1yS Q2S

16.4 4.47
16.44 5.02
16.4 5.3
16.357 4.401
16.8 4.8
16.494 4.462

C44S

3.38
3.47
3.370
3.392
4.0
3.380

a W. Voigt, Lehrbuch der KristalIphyszk (B. G. Tenbuer, Leipzig, 1910),
p. 744.

b S. Bhagavantam, Proc. Ind. Acad. Sci. A41, 78 (1955).
e See Ref. 3.
d S. Hanssiihl, Phys. Status Solidi 3, 1072 (1963).
e R. Srinivasan, Proc. Phys. Soc. (London) 72, 574 (1958).

's O. L. Anderson, J. Phys. Chem. Solids 27, 547 (1966).
'4 S. Ganesan and R. Srinivasan, Can. J. Phys. 40, 74 (1962).

The temperature variation of the Gruneisen constant
is very interesting. Batchelder and Simmons' found
that the y calculated from their thermal expansion
measurement )see Fig. 2) decreases with tempera-
ture; this contradicts the Ganesan and Srinvasan's"
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prediction based on a solid-sphere model. Since it is
very diKcult to measure the thermal expansion at low
temperatures, the low-temperature y determined from
the Gruneisen formula is no longer reliable. Therefore,
it was suggested that an independent y determined
from the low-temperature pressure derivatives of
elastic constants )see Eq. (9a) and (9b)j can resolve
this problem. However, as seen from Table V, the y
calculated from these two formulas are not equal since
the Gruneisen assumption does not apply for CaF2,.

for instance, at 77.35'K the average mode y of the
longitudinal wave is 1.66 and for the transverse waves,
the y are 0.81 and 0.98. The yo calculated from the
pressure derivatives of elastic constants should be
reasonably accurate at 78'K and below because of the

high Debye temperature of CaFs. Judging from our

result, there is little change of y above 28'K. The value
of y for temperatures below 78'K cannot be known until
more measurements at low temperatures are completed.
We plan to continue this experiment to low-temperature
regions in the near future.
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Electron Paramagnetic Resonance and Spectroscopic Study of
LaCls.'Eu'+ and Associated Color Centers~t'
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The electron paramagnetic resonance (EPR) spectrum of LaC1&.'Eu'+ was observed to obtain the ground-
state splitting of Eu'+ in sites of C3~ symmetry. A good fit to the observed energy levels in the ground
manifold of Eu'+wasprovided bytheparametersb2 =427.20X10 'cm ', b4 =5.48&&10 'cm ', b6 = —0.045
X10 ' cm ', b6 ——2.97)&10 ' cm ', gl~

——1.9924, and gL=1.9927. The shift in b2' from room temperature to
4.2 K was less than 5%. EPR spectra which could be attributed to europium ions in at least one other in-

equivalent site were observed but not analyzed in detail. The color centers produced in LaC13.Eu'+ by
ultraviolet radiation appeared to be due to electrons removed by the radiation from Eu'+ ions, which were
then trapped at certain crystal defects. The Eu'+ donors were shown to reside in the normal Cg, rare-earth
sites, and the polarization of the color-center absorption spectrum indicated that the color-center defects
had relatively high symmetry. If the color-center defects were due to anion vacancies such as one finds for
certain color centers in alkali halide crystals, then the defect was probably a cluster of more than one
chlorine vacancy.

I. INTRODUCTION

HIS paper presents the results of an optical and
electron-paramagnetic-resonance (EPR) study

of LaC13.Eu2+. The two signi6cant features are the
large splitting of the '57/2 ground state and the polarized
color-center absorption bands which are easily produced

by ultraviolet radiation. A comparison of the splitting
of the '57/2 state of Eu'+ and Gd'+ is of interest since
the explanation of this splitting is not yet complete. '
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