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Previously reported experiments tentatively suggest that electric 6elds applied to germanium produce
deformations which are about 104 times as large as those expected from conventional electrostriction
mechanisms. We have calculated the magnitude, temperature dependence, and angular dependence of
this effect for n-type many-valley semiconductors. Our model does not involve a polarization in real space
but, like the current, is mediated by a shift of the electron distribution in reciprocal space. This 6eld-induced
shift increases the energy of the electrons within each valley, but the increase is largest in those valleys with
smallest effective mass parallel to the Geld direction. It then becomes energetically favorable for the lattice
to deform in such a way that the deformation potential lowers the energy of the high-curvature valleys at
the expense of the low-curvature valleys. We calculate a much larger effect in germanium than in silicon,
predicting also that the induced strain should be a pure shear in germanium, and a pure volume-preserving
linear dilatation in silicon.

1. INTRODUCTION

K here present a theory of a mechanism whereby

~

~

~

electric 6eMs applied to germanium can induce
elastic deformations of the order of 104 times larger than
those expected from conventional mechanisms of elec-
trostriction. The e6ect is an intrinsically irreversible
phenomenon, associated with the Qow of current in the
semiconductor. Consequently the thermodynamic Max-
well relation

8 Z/itE = its/Bt

is violated, the left-hand. member being of the order of
10' times the right-hand member' (Z, t, and e are ap-
propriate elements of the strain, stress, and dielectric
constant tensors, and E is the applied electric field).
To emphasize the nonequilibrium nature of the eRect,
and to distinguish it from conventional electrostriction,
we refer to it as "current striction".

Although current striction shouM occur in any semi-
conductor we here carry out the theory explicitly for
m-type many-valley semiconductors, such as germanium
or silicon (but the calculated values for germanium are
of the order of 100 times larger than for silicon). The
essential mechanism is as follows. %ithin each valley
the applied 6eld shifts the electron distribution in k

space, thereby increasing the energy of the electrons.

*This work forms part of a doctoral thesis of Philipp Kornreich
at the Moore School of Electrical Engineering, University of
Pennsylvania.

f Work supported by the U. S. Army Electronics Command,
Fort Monmouth, New Jersey under Contract DA-28-043-AMC-
01810(E).

f Work supported by the U. S. Once of Naval Research.
' K. J. Schmidt —Tiedemann, J. Appl. Phys. 32, 2058 (1961).
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This increase in energy is greatest if the curvature of
e versus k is largest in the direction of the applied 6eld;
that is, it is greatest for those valleys with small eRec-
tive mass parallel to the field direction. It then becomes
energetically favorable for the lattice to deform so as to
lower the energy of the high-curvature valleys at the
expense of the low-curvature valleys. The lattice deforms

so as to ertergetically favor those valleys with largest epee

tive mass parallel to the fteld direction

Although a general suggestive similarity exists be-

tween the current striction eRect and the acousto-
electric eRect' it should be noted that the two eRects are
not reciprocally related, but are quite distinct and inde-

pendent. The acousto-electric effect is intrinsically a
dynamical eRect and depends essentially on the spa-
tial inhomogeneity induced by the phonon, whereas
the current-striction eRect is static and spatially
homogeneous.

Some three years ago one of us (A.G.) observed' elec-
tromechnical oscillations in a small area metallic con-
tact to a germanium crystal. A simple equivalent-circuit
analysis suggested the existence of a remarkably large
electrostrictive coupling. An attempt was then made to
measure, in a direct fashion, this giant electrostrictive
effect. The direct measurement is very diKcult, but
early results4 seemed to corroborate the sought for
value. The theory here to be reported was then devel-

oped, but publication was delayed while two of us (P. K.

' G. Weinreich, T. M. Sander, Jr., and H. C. White, Phys. Rev.
114, 33 (1959).

g A. A. Gundjian, Ph.D. dissertation, Moore School of Elec-
trical Engineering, University of Pennsylvania, 1965 (unpublished).

s A. A. Gundjian, Solid State Commun. 3, 279 (1965).
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and A. G.) attempted to refine the experiments and ob-
tain dednitive data. The result of that experimental
eGort has raised some doubts as to the previous' meas-
urement. The theory therefore stands without quanti-
tative experimental verification at this time.

2. FREE ENERGY OF THE PERTURBED
ELECTRON DISTRlBUTlON

where v;(k) =A(1/m;*). k is the electron velocity and
r is the net relaxation time LEq. (B8)].

Combining (2.5) and (2.6) we find f; to second order
in E and first order in boo;

f;=f; yLg„+g„]+(So„)D„+I„+a„], (2.7)

where g»i and g2i are of first order and second order in

E, respectively:
We consider a set of ellipsoidal valleys, designated by

the index i, with effective mass tensors I;*, and with
energy minima ep;. In the unstrained equilibrium state
all the epi would be equal, but we consider an arbitrarily
strained crystal in which the ep; have certain specified
values.

In the absence of an electric field the number of elec-
trons in the ith valley (per unit volume) is

plf.o

gi;=er(E v;)
Be'

1 ufo F2 f.0
gp;= e'r'E E +e'r'(E v;)'I Bei Be'

and similarly for ho;, hl;, and h&,.

(2.8)

(2.9)

where

S;=2 Q f,(k),

f,(k) = pexpp(o, (k) —p)+1] ',

o;(k) = op~+-', h k; .k;=—oo;+pi;.I

(2.1)

(2.2)

(2.3)

(3f0.
hpi=

Bei

B2 .0
hi;=er(E v;)

Be'

(2.10)

(2.11)

1
P=po+ Peo~- (2.4)

and consequently, that f;(k) is related to the unstrained.
equilibrium distribution f;o(k) by

1 i Bfg gf o

f;=f + oo;—Z o; —=f +(4;) —. (2.5)

Here the summation is over all k vectors within the ith
valley and k; denotes the value of k relative to the center
of the valley. The factor of 2 in Eq. (2.1) arises from
electron spin. Although the numbers E;do depend upon
the op;, the sum E=P;E; (or the total density of elec-
trons in the conduction-band valleys) is independent of
the epi to 6rst order. This is shown in Appendix A, where
we also show that p is shifted from its unstrained equi-
librium value pp..

1 roof o gof.o

ho;= e r E E +eor (E.v, ) . (2.12)
Nl' Be' Bei

The free energy of this nonequilibrium distribution of
electrons is given by'

F=g F,. (2.13)

F;=2 Q f;(k)o;(k)

+2P 'g $f; lnf;+(1 —f;)ln(1 —f;)]. (2.14)

Inserting Eq. (2.7) and expanding to second order in

E and to first order in op; we find (see Appendix C)

F;=F; + (1/l) ¹p;+Go,+ (8oo,)LHo;+Ho~], (2.15)

The application of the electric field E tends to displace
the distribution function in each valley in the 6eld di-
rection (Ak= —eE); this tendency is compensated by
both intervalley and intravalley scattering. However,
since the field-induced transitions are between neigh-
boring k states (intravalley), the field directly induces
no net change in the number of electrons in each valley
S';. By an iterative solution of the Boltzmann equation,
including both intervalley and intravalley scattering, we
show in Appendix 3 that, to second order in E,

where
g»i

Ho;=2iio Q ho',
~(i)

glihli
Hp, 2P 'Q——

t(a') f o(1—f o)
2fo 1—

(2.16)

(2.17)

Bfg 1 Bfj
f;=g;+erE v, +eorPE — E

Bei I;* Be
B

+corp(E v;)
Be'

+ (2 6)

The functions Go; and Ho; are second order in E, whereas
Hoi is zero order.

L. D. Landau and E.M. Lifshitz, Statistica/ Physics (Pergamon
Press Ltd. , London, 1958), p. 155.
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r)f .0 rtsf 0 . rtf 0.
Pf—40(1 f—), =P(2f40—1) (2.19)

we find
$2f. 0

esr2 Q (E.v.)2
~(i)

(2.20)

Following a procedure similar to that leading to Eq.
(B9)

As we shall see, the function B2; is the only one of
these functions which we Inust evaluate explicitly. In-
serting the value of hp;, h~;, and g~, , and noting that

independent components

Cll(~ Czz, zz= Cyy, yy= Czz, zz) ~

C12(=Czz, yy Czz, zz = Cyy, zz) p

C44(= Czy, zy Cyz, yz =Czz, zz) ~

(3.2)g, —E(&)

Mixed components such as c„,,„vanish. The quantity
X:c:X denotes Z„„c„„„„Z„„summedover all indices.

The coupling between the electronic energy and the
strain energy is characterized by the deformation po-
tential. In particular, the energy ep, of the ith valley is
given by,

1 )2 1 t'2m. )312
a„.= —;,2,

l
E.

m;* &32~2& k2 i
g2f 0

e't" — — de;,
86'

(2.21)

where &i) is a 2nd-rank tensor, so that ep; is equal to
&"„„Z„„summed over p, and v. The deformation poten-

tial E'&') for germanium or silicon-type semiconductors
(i.e., for L111)or L100j valleys) is given by

- &'~= ™el+™„(k,k,).
where we have utilized the familiar density-of-states
function

1 (2m.)3t2
g( )=

Ek i (2.22)

with m, as the "density-of-states" effective mass

m, '= det
l
m; l

= mlmsm3. (2.23)

Integrating by parts,

1 1 2m'1to2T2

to /f0
0'~2 d0;, (2.24)

p 86

1 q1 2mB'= —-'e' 'l E — E
I

m;* ) 22r2 i'32

( 1 ) BE%'4

82;= —2lesrsl E E
I

m;* l atl

00

0 '"f;"d0;, (2.25)
Bp

(2.26)

l
F= P F;+22X: C: X, (3.1)

where X is the 2nd-rank strain tensor and c is the 4th-
rank elastic modulus tensor, This tensor has only three

3. THE QUASI-EQUILIBRIUM CONDITION

For a cubic semiconductor with l valleys the total free
energy is

A

Here e and „are constants, 1 is the unit tensor, k; is
the unit vector in k space in the direction of the ith
valley, and (k;k,) is the diadic tensor product. '

It should be noted that the strain not only shifts the
energy minima ep;, but that it also alters the effective
mass tensor ns;*. The magnitude of this effect has been
evaluated by Hensel, Hasegawa and Nakayama' by
cyclotron resonance; for Si they 6nd km*/m*~SZ. This
effect consequently is too small to affect our results ap-
preciably and has been omitted in our analysis.

Recalling that F; is a function of the energy minima
00;, Eq. (3.1) now expresses the total free energy F as a
function of the strain components.

Unfortunately, statistical mechanics does rot provide
us with a general prescription for finding the expectation
values of the strain components. In equilibrium (E=O)
the strain components would be found by minimizing
F, but the steady state (EWO) is not an equilibrium
state. It is quite obvious, for instance, that the f,(k) of
Eqs. (2.7) and (2.12) are not those which minimize the
free energy, although they would do so in equilibrium.
On the other hand we have seen )Eq. (B11)j that the
X; do take the values g; which minimize F. There is an
important and fundamental difference between vari-
ables such as the f,(k) and those such as X;or the strain
components Z„„.Whereas the electric field directly in-
duces transitions which alter f;(k) within a valley it
does not directly induce transitions which alter the E;.
Similarly the direct effect of F on the strain compo sents
Z„„ is negligibly small; in fact this direct effect is pre-
cisely the ionic polarization discussed in the 6rst para-
graph of the Introduction. The mechanism of change of
the strain components consists of the same spontaneous

6H. Brook.s, in Advances in Electronics and Electron Physics
(Academic Press Inc. , New York, 1955), Vol. 7, p. 85.

~ J. C. Hensel, H. Hasegawa agd M. Nakayama, Phys. Rev,
138, A225 (1965),
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10-19

(cm ')

0.973
0.989
0.983
0.973
0.956
0.932
0.897
0.850
0.827
0.815
0.803
0.791
0.764
0.723
0.652
0.582
0.519
0.462
0.413
0.371
0.336

0.0457
0.0750
0.123
0.200
0.324
0.520
0.823
1.274
1.506
1.635
1.773
1.920
2.243
2.804
3.954
5.383
7.086
9.052

11.262
13.697
16.340

—4.0—35—3.0—2.5—2.0—1.5—1.0—0.5—0.3—0.2—0.1
0.0
0.2
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

TABLE I. Dependence of etl /Bpon, the number of electrons in
the conduction-band valleys. Here p=(keT) ', ms is the free-
electron mass, m, is the density-of-states electron mass, / is the
number of valleys. The Fermi energy p is given, for convenience,
in the third column.

where
X=Xp+BX,

e:X = —&(=-)+t94)(=-)—t(&s=-)

(3.7)

(3.S)

Of course, Hpi is independent of i, so the last two terms
cancel. Then, inverting the matrix c and invoking Kq.
(2.26) for Hs;,

In principle we should have expanded F; to second
order in ep, rather than to Grst order. Then the 6rst term
in Eq. (3.4) would contain a erst-order correction in
Z„„.However, such a term could be absorbed into the
(c:X) term in Eq. (3.4), merely altering the effective
elastic constants. This contribution to the elastic con-
stants has been calculated by Keyes, ' and his result can
be recovered by the method indicated above. The
change in the elastic constants is very small (of the order
of 10 ' for reasonable values of S) and we henceforth
ignore this correction.

Similarly, the terms involving Bp; and the 6rst term
in Eq. (3.5) represent contributions to Z,„which are
Geld-independent. They give a volume dilatation de-
pendent on the number of conduction electrons. We
write

trarssi tiors probabilities zohich are effective iI eqlitibriues.
Accordingly, we again assume that the steady-state
values of the strain components are those which mini-
mize the nonequilibrium free energy (3.1).

Minimizing F with respect to Z„„

8A"
2~2 g

—1.
2

Bp

( 1 1
3.9

BF;
Z E =".,"'+(e:X)"=o
i=1 j=1 Qqp~.

(3 4)

or inserting Eq. (2.15).

&( ~ )+t((& +& ) ~ )—t(&o+& )("".)
+(c:X)„„=0, (3.5)

l

My@
— my@ (3.6)

where we use the notation ( ) to denote an average
over valleys

This is the basic equation of our theory and it remains
only to evaluate BE/By, . This is a standard problem in
semiconductor theory, which reduces to the numerical
integration of certain Fermi functions. Numerical tables
have been given by J. S. Blakemore. s We have ab-
stracted Table I, recasting it in a form convenient for
our purpose. We there give (1/PÃ)(BE/By) as a func-
tion of (E/t)(res/re, )s ', where m, is the free-electron
mass.

It may be noted that in the nondegenerate limit where

f,'~ expp(p —e~), we have immediately that

TAl3LE II. Constants of silicon.

B1V/By, =PN (nondegenerate) . (3.10)

Constants

Cll
C12

mt
mc
Pd
Qss
T

Values

1.66X10"dyn cm '
O.64X10» dy cm-2
0.91m 0

0.19mp
1100 cm' V ' sec '
1600 cm' V ' sec '
2.1X10 "sec
1.5X10 "ergs

References

b
b
c
c

From Eq. (D4)
d

Finally, we note that the relaxation time v is ambigu-
ous in the sense that measurements of the quantity by
conductivity or Hall experiment give somewhat different
results. The relationship of our relaxation time r to the
conventionally measured values is discussed in Appen-
dix D. In applications we obtain 7 from Hall and con-
ductivity measurements according to Eq. (D4), al-

though this relation is strictly true only in the non-

degenerate case.
a C. Kittel, Introduction to Sohd State Physics (John Wiley Bt Sons, Inc. ,

New York, 1956), 2nd ed. , p. 93.
b G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368 (1955).
e F. J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954).
d I. Balslev, Phys. Rev. 143, 636 (1966).

R. W. Keyes, IBM J. Res. Develop. 5, 266 (1961).
J.S. Blakemore, Semiconductor Statistics (Pergamon Press, Inc. ,

New York, 1962), pp. 351, 352, 353.
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4. APPLICATION TO SKICON ) 012 ,OIO

The simplest case is that of silicon, in which six
vali. eys lie along the cube axes. Each valley has cylin-
drical symmetry, with a large effective mass m& along
the cube axes and with a small effective mass m& trans-
verse to the symmetry axes.

From Eq. (3.3) it follows that for the two valleys
along the ~k, axes

)=HE+K ~~22 * =~wEE(* =~~) (4.1)

and all other components vanish;. similarly for the
valleys along &k„and &k,. Then

)
ply

OI 2C

LLI

I

00 ip I4

)0 Il OI

LIJ

LU

p- IR
40

(s e)t) (a ti+E~te)Be)et

1 1/i 2yE. .E =
~

+
m* 3&m, m, &

(4.2)

(4 3)
)p IS

N, cm

)p IS
ip".

)pRO

(=.„.E

whence

�

+a-".
l

——)E 'e (4 4)
tB~ mg

(="„.E E)—(.„„)(E E)

1 1 (1 2).E =- =. ~~
—+—~+—&2B .

3- ~m1 m&~ md

FIG. 1. The induced strain as a function of the
electron concentration at room temperature.

The various constants necessary for calculating SZ„
for silicon are given in Table II.

In Fig. 1 we plot 8Z„/(EE—3E,2) as a function of E
for silicon. %e note that for fields of the order of 10'
V/cm, at room temperature, the dilatation has the very
small value of =10 ".

S. APPLICATION TO GERMANIUM

=-'=-
(

——[(Z2—3Z2 )b

Inverting the matrix for the elastic constants

C1l+C12

C 11
(Cll C12) (Cll+2C12)

(Cl1 C12) (Cll+ 2C12)

(4.5)

(4.6)

T'

1
~~[1111=~w~]+l~w 1

4 1

1 1
1
1.

(5.1)

In germanium there are eight valleys, lying along

body diagonals. Again each valley has cylindrical sym-

metry, with a large effective mass m& along the body
diagonal and with a small eGective mass m& transverse
to the symmetry axis.

From Eq. (3.3) we find that for the valleys along

t 111)the deformation potential is

(c
—') 44——1/c44.

Finally, we calculate the strain components by in-

serting Eq. (4.5) into (3.9),

and for the valleys along $111j

1
22 [l1li —s „I+1 s

1

—1 —1'
1 1 (5.2)

and similarly for valleys along L111) and L111j.Then1 BE(1 1)
BZ..=—C2.2

18 Bp (md mll

X (Cll C12)
—lgm(g2 3g 2) (4 7)

(5.3)

1 11 2i
K -K =- ——Z2

mt
(5.4)

And similarly for 5Z» and 8Z„. Also

1/1 1
=-I ——-"-&&.(1- ~") (5 5)

9&ml m,

and
BZ „=hZ„=bZ„,=O. (4.8)

1
It follows from (4.7) aod (4.8) that the volume dilate;, „E E —(",„) E E)

tion (=BZ„+BZ»+ ()Z„) vanishes, as do all shear com-
ponents. An applied held simply produces an elongation
along the field direction, with a volume-preserving con-
traction perpendicular to the field direction.
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ALE III. Constants of germanium. state shifts symmetrically with the valley energies:

Constants

C44

'52$

Pet

PH
T

Values

0.6 X10"dyn cm '
1.6mp
0.082mp
3800 cm' V ' sec '
4200 cm' V ' sec '
5.3X10 "sec
3.0X10 "erg

References

a
b
b
c
c

From Eq. (D4)
d

&impurity & impurity &Oi ~

Similarly the density of electrons in all l valleys is

2V=2 g P f';(k)=2+ Q

(A1)

i-1 k (i) k (i)
a C, Kittel, Introductioe to Solid State Physics (John Wiley Bz Sons, Inc. ,

New York, 1956), 2nd ed. , p. 93.
& G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368 (19SS).
e F. J. Morin, Phys. Rev. 93, 62 (1954).
& I. BaIslev, Phys. Rev. 143, 636 (1966).

and of course Eels. (4.6) are again applicable. We now
find that the linear dilatations vanish

8Z,= Sory~= 8Z.,=0. (5.6)

It should be recalled, hov ever, that we have neglected
a small contribution arising from the strain-induced
change in the eGective mass. (") Similarly, we 6nd shear
strains.

1 BiY 1 1 )BZ„= r e — c44 —— IZ EyE„.
18 ojti m& mi~

The various constants necessary for calculating 8Z„„are
given in Table III.

In Fig. 1 we plot 8Z„„/E„E„asa function of tV for
germanium. For fields of the order of 10o V/cm at room
temperature and in the nondegenerate limit, the induced
shear strains are of the order of 10 '.

y [expa( —p+ eo;+ e„)+1j-'. (A2)

Since the several mass tensors are simply rotated rela-
tive to each other, the sum over k(i) is independent of
i, and we can drop the subscript on eii. Then Eq. (A2)
can equally well be written, to first order in the ep;, as

( 1
iV=21 P expPI —p+- Z eo'+oi I+1 (A3)

k

Comparison of Eqs. (A1) and (A3) shows that all ener-
gies in the problem are simply shifted by (1/l)g; ieo;',

these include the energy of the impurity state and the
effective energy of the bottom of the conduction band.
Hence p also shifts by this amount, and the total density
X of electrons in the conduction band stays constant.

If impurity states of syxrnnetry other than s sym-
metry play a role, then E is not invariant. This case
will be treated in a subsequent publication.

APPENDIX 3
Within each valley the electric 6eld changes the dis-

tribution function at the rate

CONCLUSION

We have calculated that fields of 100 Volts/cm.
should produce strains of the order of 10 ' in germanium
with iV~10ro/cm'. This is to be compared with strains
of the order of 10 "to be expected in homopolar crys-
tals. The theory also predicts that the strain should be
100 times smaller in silicon. More detailed predictions
of angular and temperature dependence also emerge
from the theory. Comparison of theory and experiment
is, however, premature. We are now extending the cal-
culations to include the effects of impurities and of p-
type conductivity. These results and detailed compari-
sons will be given in a subsequent publication.

APPENDIX A

Lf'(k)j =—E'& f'(k).
h

The intervalley scattering relaxes f;(k) towards f;(k)

[f'(k)j ter~, net '(1/r )[f'(k) f'(k) j (B2)

where
f;*(k)= [expP(o;(k) —ti;)+1+'

and where pi is determined by

Z f;*(k)= l&'—= Z f'(k)
k(')k(i)

Finally, the intravalley scattering relaxes f;(k) towards
the local distribution function f;*(k)

Lf'(k)j .-- "=—(1/ .)Lf'(k) —f' (k)], (&3)

=-E &~f'(k). (II6)
h

We show that the total number of electrons in the The goltzmann equation is, then,
conduction-band valleys is independent of the ep;, to
first order in the ep;.

We assume a set of donor states of s symmetry. This [fi(k) f' (k)3+ [f~'(k) f'*(k)&

implies that the Wannier functions of the donor states
have equal&j, admixture of the Bloch waves from all
valleys. It then follows that the energy~of the impurity
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We proceed by the standard iteration technique, sub- where ();(k)= (1/A)V), e;(k) is the electron velocity and
stituting f;(k) in the right-hand-member and iterating where z is the net relaxation time
twice, to Gnd

(88)
rBf;* rBf;

f;= f *—+ f —+ex(E v ) —— +—
-Ta B&i

8'f, 1 Bf,
+e'~' (E v;)' +E — .E—

l96 I ' B6 '

(87)

T Ttv Tg

We now sum Eq. (87) over k(i). The second term on
the right vanishes because the square bracket is even
under inversion through the center of the valley,
whereas E v; is odd. Consider the first term arising
from the last bracket on the right of Kq. (87).

Bzg,* ( h )' 8'f
I= 2 (F v~)' -= 2 I E, k* I

)t(o Bev k(() ( mv / Bev k(o v;y

h ( h )8'f;
E,—h;, (E —h;

/

m, & m„ l Bezz

8'f, 1
ei; =-,'E E

Bt' I'
1 q hzh;, ' 8'f, 1'=-;Z E, ElZ—
m„J &(o 2m„Be, v m„ / &(v')

8 fv'

g(e») e»
B6'

( 1 ) Bf;= —
~

E E
~ g(e») de;= —E

m;* ) Be;

1 Bfv'
E Z, (89)I;+ &(~) Be;

T T
2$;(E)= 2—1V;(E)+2—8; (810)

where the transition to the last line is accomplished by
inserting g(e») e»'~ and integrating by parts. The re-
sult (89) ensures that the sum over k(i) of the last term
in (87) vanishes. Hence, the sum over k(i) of Eq. (87)
gives

0

Hz =2 Q hz, ez~+P ' ln
~(') .0

hligli
+2p-' Z

) (') f P(1 —f P)

Tp

1V;(E)=E;, (811)

2f(P 1—
+p ' P hpg»'. (C4)

g(v) f.P2(1 fP)2.
where alt';(E) is the number of electrons in the ith valley However, inserting
in the presence of a Geld.

f"=FxpP(e» —
) p)+13 '

APPENDIX C
(C5)

The square brackets in Eqs. (C2)—(C4) become zip. We
Let f equal f p+z);. Then by a straightforward ex-

pansion of Eq. (2.14) we immediately find

P;=Fp+ Q 2z);e;+2p 'z); ln
I(:{i) .0

2f;P—1
+p ' +pp 'n"

f"(1—f") f'"(1—f")'-

P gz;=0
x(i)

(C6)

whence, Kq. (C2) reduces to (2.16). 8y an analysis ex-
actly paralleling that leading to Eq. (89) (in which f;

(C1) is replaced by 8f;/Be; ) we similarly find

Taking z); to be given in (2.7) we then obtain an equa-
tion of the form (2.15), but Gz' Hp , and Hz; are re-'
placed by G»', II'0, and H2, where

Q hz; ——0
~(')

and Eq. (C4) thereby reduces to (2.18).

(C7)

0

Gz =2 Z gz' ei'+p '» +Gz,
~(;)

p

Hp =2 Q hp; ei;+P ' ln
x () f.p

(C2)

(C3)

APPENDIX D

The relaxation time T requires some comment, as
there are two distinctly diBerent values in common use,
one associated with the drift mobility p, &, and the other
associated with the Hall mobility p,~. The conductivity
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re'"f'de es/sfode

relaxation time r, is related to the drift mobility by'0 " If we now re-examine our formalism, we note that in
the nondegenerate limit, IIs; of Eq. (2.21) is propor-
tional to

/1 1 iq=t./se~ + -+
&mr* m, ' m, *) (D1)

e'"f'de

Similarly, the Hall relaxation time r~ is related to the
Hall mobility test(=Eo.o) by

Thus, our 7. should be de6ned as

r sea/sf ode r e'/'f'de
2 rse s/2f. ode. . e "f'de; (D3)

/sir( 1 1 1
+ +

e (mt* ms* ms*1

1 1 1
+ +-

I (D2)
(mt*mon ms*ms* mt*men)

"C.Herring, Bell System Tech. J. 34, 237 (1955); C. Herring
and E. Vogt, Phys. Rev. 101, 944 (1956)."J.C. Hensel, Phys. Rev. 129, 1041 (1963).

which can also be obtained from (D1) and (D2) by

3p&pg
72 7c7

2

I
+ + . (D4)

(mr*ms* ms*ms* mt*ms
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Hall Mobility in SrTiOst
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Electron mobilities in reduced and doped SrTi03 have been deduced from measurements of the con-
ductivity and Hall coefBcient between 1 and 1000'K. Above room temperature, scattering by the highest
two longitudinal optical modes determines the mobility. Expressions based on intermediate electron-phonon
coupling yield good agreement with experimental results. Below 10'K experiments indicate that ionized
impurity scattering is the dominant collision process. Using a screened Coulomb potential, one obtains
mobility values of the right order of magnitude.

INTRODUCTION

HE quantitative understanding of electron scat-
tering' in polar semiconductors has progressed

somewhat less than that of scattering in covalent semi-
conductors. ' This lag is caused by a number of inherent
diKculties. At high temperatures, the mobility of elec-
trons in polar semiconductors is often limited by optical
mode scattering, which is governed by an electron-

t Research supported in part by the National Aeronautics
and Space Administration.' It is noteworthy that the Proceedings of the International Con
ference on the Physics of Semicondnctors, Kyoto, 1966 t J. Phys.
Soc. Japan Suppl. 21 (1966)g do not contain a single paper (ex-
perimental or theoretical) dealing with phonon- or impurity-
limited Hall mobilities in semiconductors.' F. J. Blatt, Solid State Phys. 4, 199 (1957).

phonon coupling constant n.' 4 The parameters that ap-
pear in 0, are the eGective mass of the electron m~, the
energy of the phonon Aou~l„and the high- and low-fre-
quency dielectric constants of the medium, ~,~ and e,&,t,.
So far, very little has been done theoretically to take
into account the energy and wave-vector dependence of
these quantities. Moreover, the electrons in a polar
material have an e6ective mass diGerent from that cal-
culated on the basis of a rigid lattice. In a polar crystal
an electron will cause a local polarization, which will
"dress" the electron. Hence the electron —when Inov-
ing—wiQ take this "polarization-dressing" along. The

' H. Frohlich and N. F. Mott, Proc. Roy. Soc. (London) A171,
496 (1939).' F. E. Low and D. Pines, Phys. Rev. 98, 414 (1955).


