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Tunneling Spectroscopy in GaAs
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Observations of tunneling in Schottky barriers made from n- and p-type GaAs with Au as the metallic
element are presented in detail. The characteristics are expressed in terms of the dependence of incremental
resistance dV/di on applied voltage V. These are interpreted in terms of a theory which uses the WKBJ
approximations and a two-band formulation for the dispersion of states of the forbidden gap. An experi-
mental determination of this dispersion is made which proves to be consistent with the theory. In this deter-
mination, a technique is introduced in which the characteristics are measured directly as dlnI/dV. Fine
structure is observed superposed on the background characteristic at ~Acro and is interpreted as a many-
body polar (polaron) interaction. Some new aspects of the problem of zero-bias anomalies are presented.

I. INTRODUCTION

UNNEI. ING experiments are capable of providing
useful information about the properties of semi-

conductors. The Schottky barrier formed at a metal-
semiconductor interface constitutes a junction with a
simple and well-understood space-charge region. "
Tunneling experiments in this system can be analyzed
relatively easily. ' ' This allows one to determine the
important physical processes involved in tunneling,
and also to deduce information on the properties of the
semiconductor. This is in contrast with p-n junctions
which have a more complicated space-charge region,
and are more dificult to analyze. Another advantage
of Schottky barriers is that rt- and p-type sernicon-
ductors can be studied separately.

The present article reports Schottky tunneling mea-
surements of the metal Au on both rt- and p-type GaAs.
GaAs was selected for the present study because its
properties are relatively well known and metal-semi-
conductor contacts can be formed easily. A description
of the junction fabrication and electrical measurements
are given in Sec. IV. Previous information already exists
for the values of the conduction band mass' m, =0.072,
dielectric constant so

——13, low-temperature gap'
E,=1.52 eV, and barrier heights V~ ——0.92 eV for
n-type and V&=0.46 eV for p-type. Our dispersion
measurements on p-type GaAs show that light holes
do the tunneling, and provide a measurement of the
light-hole mass.
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The previous calculations of Conley, Duke, Mahan,
and Tiemann' (CDMT) showed that the incremental
resistance measurements (dV/dI) of n typ-e Ge would
have maxima at biases equal to the Fermi degeneracy
of the conduction band. This has been veri&ed experi-
mentally by Conley and Tiemann. ' This behavior arises
because the Fermi energy is small due to the many-
valley structure of n-type Ge, and electrons from the
bottom of the band can tunnel nearly as readily as
those at the Fermi energy. The maximum occurs at
biases equal to the Fermi energy because of the dis-
continuity in the density of states at the bottom of the
band. Band tailing is thought to be observed in the
smearing of this maximum.

Degenerate p-type semiconductors also have small
Fermi energies because the heavy hole dominates the
density-of-states mass. The tunneling characteristics
of p-type GaAs are quite similar to those for rt-type
Ge. The theory of CDMT also describes the incremental
resistance data for this material. It is not possible to
deduce the Fermi degeneracy from the position of the
resistance maximum because band tailing is particularly
severe. The heavy hole causes the impurity band to be
much deeper into the forbidden gap in p-type materials.
In another communication, we have shown how the
p-type GaAs data can be reduced to provide a mea-
surement of the impurity band.

In n-type GaAs, the Fermi energies are large since
the density-of-states mass is small. Electrons at the
bottom of the band are shown to be unimportant in
the tunneling process. Thus, the incremental resistance
does not peak at a bias equal to the Fermi degeneracy,
but at a much smaller value. Here the most important
effect for determining the junction resistance character-
istics is the band mixing in the forbidden gap. Since
Vrs/FG=-a, ' the electron tunneling in the forbidden
energy gap has acquired a considerable valence-band
character before encountering the metallic surface. 4
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J. Appl. Phys. 37, 2458 (1966).
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This behavior can be calculated by adopting a two-band
modeL"" The WKBJ trajectory we use to evaluate
the current in the metal-semiconductor junction is a
simple extension of that used for p-st diodes by Butcher,
Hulbert, and Hulme. " The incremental resistance
calculated using these WKBJ integrals agree satis-
factorily with experiment. Band-mixing efFects are
unimportant in n-type Ge or p-type GaAs since
V/3/+g ( ', and the amount of mixing which occurs is
negligible.

Padovani and Stratton4 have also recently described
metal-semiconductor tunneling in I-type GaAs in terms
of a two-band model. They suggested a method which
expresses the dispersion k'(E) (0 for electron states in
the forbidden gap in terms of dlnI/dU. Their results,
obtained by numerical differentiation of the V (I)
characterization, disagree with the prediction of k p
perturbation theory for the two-band model. Our results
obtained through direct measurement of dlnI/d V are
given in Sec. VI. We End agreement with the k p theory
for both tt- and p-type GaAs. Further, this demon-
strates that the light holes are responsible for the
tunneling in p-type GaAs, and verifies the prediction
of their effective mass from k p theory. p

Mathematical aspects of several features of the
potential barrier are discussed in Sec. II. The efFect of
a random distribution of impurities in the depletion
region is discussed in Appendix A. This leads to Quc-
tuations in the barrier potential which are as large as
0.1 eV. The efFect on the tunneling characteristics of
the departure from the parabolic dependence of a
uniformly doped semiconductor in the reverse region is
demonstrated in Appendix B.

Besides these one-electron efFects, many-body efFects
are also observed in the resistance measurements. Zero-
bias anomalies" " are much stronger in p-type data
than in e-type data. Other structure" occurs at biases
~ heep, where cop is the LO phonon frequency. These are
due to polaron efFects, and are discussed extensively in
Sec. VII. It is shown that the observed anomalies are
caused by polaron alterations of the WKBJ exponents
rather than density-of-states efFects. The magnitude of
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the observed anomalies agrees with recent predictions
of many-body theory. "'

V(s) =
as2 6p

which gives the solution

2%8 Rp

V( )= ( — )'+V .
6p

(2 &)

The constant 2~, the bottom of the parabola, is a
constant of integration. The other constant V~ will be
chosen to make the potential zero at the bottom of the
conduction band. The potential V(s) ceases to be
parabolic in the region where the conduction-electron
density n, becomes appreciable. This efFect can be
estimated by assuming that the conduction electrons
are a classical charge distribution of density

k p(s)' (2nt)s"
N, (s)= = Qp —V(s)j'".

3%2 3x'
(2.2)

In the region where n, (s) is nonzero, Poisson's equation

a2 4xe'
(2 3)

These equations have already been solved for p-rt
junctions. ""The solution for the Schottky barrier is
even simpler. At zero temperature, the result is ex-
pressed as a single quadrature

2F'8 sp
V, (s) = (s st)s+-'stt t—sp&z&0,

6p

&-V(z)/or

&,(s-so) =
2 p Ll —(5/3))t+ s),»sJts

S)2'p )

(2.4a)

6p
—1/2

(Vn —V+3tt t /5)
2' 8 sp

sp ——s,—(3/+5) k,—',
(2.4b)
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II. BARRIER POTENTIALS

When an electron in the semiconductor enters the
depletion region, the potential is, on the average,
parabolic. The parabolicity is obtained by assuming
that the impurity charge density np is spread uniformly
throughout the semiconductor. Then Poisson's equation
ls

a2
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where k, in the Fermi-Thomas screening wave vector

Jr,'= 67rrspe'/spy, F .

These solutions are plotted in Fig. 1. By measuring
distances in k, , and energies in p p, this is a universal
curve applicable to all junctions. The parabolic solu-

tion, valid for s(20, has its minimum ~pp above the
bottom of the conduction band. Also plotted in Fig. 1
is the exponential potential

V, (z) =pp exp[—k, (z—sp)] S&Sp.

It is easy to show that the potential V(s) has the
asymptotic form U, (s) as s —+ ao. Further, the potential
V, (s) approximates the exact solution reasonably well

for all values 2'&op.

In the WKBJ calculations for the tunneling current,
two types of potentials were used. The first is the
exponential-parabolic form given above:

V.„(s)= V, (s),
= V, (s), so&»0. (2.5)

=0, Z& S2 (2 6)

(Va —V+vF)
2% sp8

The tunneling current predicted by these potentials
are discussed in Appendix II. The differences are often
slight, and then it is adequate to employ the simpler

potential V„'.
For the same set of parameters, the potential V,„

always predicts a slightly wider space-charge region
than V„'. As shown below, this is the primary con-

sequence of using the more accurate potential V,„.
While in the junction, the electron feels its image

force from the surface of the metal. Near the metal,
this potential can be approximated as es/4eps. This-
is a small and negligible effect. At one lattice constant
(s~4 A) from the metal, the resulting 50 meV is small

compared to the 1.0 eV of the surface barrier. The
image potential was included in calculations using a
WKBJ formalism. The integrals were evaluated using

expansions similar to those of Stratton. '4 It was thereby
determined that the small effect of the image potential
on the tunneling current is nearly independent of
voltage.

"R.Stratton, J. Phys. Chem. Solids 23, 1177 (1962).

The use of V, (s), rather than the exact solution (2.4b),
allows the WKBJ integrals to be done analytically.
The other potential is even a cruder approximation.
Here it is assumed that the parabolic solution applies
for all s, and the exponential character is ignored. Then
the potential is

2''8 Qp

V,'(s) = (s—zs)', ss) s)0
6p

OQ
-l 0

I

0.0 I.O

ks( Z-Zo L

2.0

Fro. 1. The solid line is the potential V(s) of an electron in the
junction region. V(s) is zero in the bulk semiconductor. The line
V=pp indicates the Fermi degeneracy. For s(s0, the conduction
band is empty, and the potential is the parabolic form given in
(2.4a). The minimum of this parabola is shown at the point A.
For s)so, the solid line indicates the solution of (2.4b). Also
shown is the exponential potential V, (s) which closely approxi-
mates the exact solution. By scaling energies to pp and distances
to k.„ this is a universal curve applicable to all junctions. The
parabolic solutions V„(s) ends at the surface s= 0, and the value
of s0 is determined by the barrier height. The same curve applies
to the .valence band except that it is inverted.

The actual potential that an electron sees when
entering a junction is not smooth as shown. If the
impurity density is 10" cm ', the impurity ions are,
on the average, about 50 A apart. The width of the
depletion region is 100 A. Thus, fiuctuations in the
density of the randomly located impurity ions will lead
to appreciable effects. It is well known that this is the
cause of band tailing. ""In the tunneling problem, an
additional consequence is that the barrier height an
electron sees will effectively vary. " In Appendix A, it
is estimated that these fIuctuations in V~ are as large
as 0.1 eV in GaAs for mp 10" cm '. However, no
attempt has yet been made to include these fIuctuations
in calculations of tunneling currents.

~' E. O. Kane, Phys. Rev. 131, 79 (1963).
ss B. I. Halperin and M. Lax, Phys. Rev. 148, 722 (1966); J.

Zittartz and J. S. Langer, ibid. 148 741 (1966).
sr D. G. Dow, Proc. IRE 49, 83/ (1961);R. L. Longini, IRE

Trans. ED-9, 88 (1962).

III. THEORY OF TUNNELING

The calculations of the tunneling currents presented
in CDMT were done by some elaborate computer
programs. This was necessary because rather exact
expressions for the tunneling current were derived and
evaluated. The exact asymptotic solutions of the
electron's wave function in a parabolic potential were
used in the tunneling probabilities, and the angular
integrals over perpendicular wave vector were included.
This method is cumbersome and cannot be applied to
the variety of potentials and effects which will be dis-
cussed below. The WKBJ method, however, provides
approximate solutions of sufhcient accuracy when
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applied in the form

dE E'" exp —2
1

dsk(s, E) . (3.1)

In this expression, E is the energy of the electron in the
semiconductor as measured from the bottom of the
conduction band. The integrand contains a density-of-
states term E"'. The existence of this factor can be
deduced directly from (1) and (9) of CDMT; it is
required in order to obtain analytic and numerical
correspondence between the WKBJ method and the
exact solution of CDMT. We note that tunneling
currents evaluated by matching wave functions always
show a tunneling probability, proportional to the
density of states at low wave vector."""The failure
of the WKBJ solution to have this feature implies that
WKBJ matching is incorrect for low wave vector.
Calculations of the tunneling current and incremental
resistance were made for the case of e-type Ge. The
results from the exact solution of CDMT and the
approximate solutions of the WKBJ method using
(3.1) were in agreement. To provide an additional
justification for our use of the term, we present in
Appendix C a discussion of the range of validity of
(3.1). The value of P varies little with applied voltage,
and may be regarded as a constant for the calculations
of present interest.

Theory and experiment are compared by plotting
the calculated and measured dependence of the incre-
rnental resistance dU/dI on applied voltage V in semi-
logarithmic coordinates. In this way comparisons are
made on a relative basis over several orders of mag-
nitude in range of resistance.

We now consider the evaluation of the WKBJ
exponent (3.1). For an electron tunneling through a
simple potential, one uses

&(s) = [V(s)—EjLEO+E—U(s) j
Ig'Eg

. (3.3)

In this expression, the classical turning points of the
electron in the conduction and valence band are V(s)
and V(s) —E&, respectively.

The WKBJ integrals for the two-band expression
(3.3) will be discussed for the parabolic potential V„'
in (2.6). The integrals for the one-band model (3.1),
and with the potentials discussed above, are given in
Appendix B. It is convenient to introduce

because this factor arises at large forward biases where
the current is exponential in voltage, i.e. , I exp(V/Es)
for V))0. The tunneling mass, rather than the density-
of-state mass, should be used in calculating Eo. Energies
are normalized with respect to the Fermi energy, viz. ,

n= (V,—V+»)/»,
6= E/pp i

C=pl/Ep,
) =Eg/Isp.

mixing of conduction and valence-band states in the
energy gap is important.

The trajectory through the forbidden gap can be
calculated easily by assuming a two-band model. Since
the efI'ective mass is small, we use Franz's"" expression
for the kinetic energy

EK.E. [EG2/4+E &$2/2/2~71/s Ep/2

rather than Kane's" more accurate form. This gives
for the k trajectory

j./2

2m
[U(s) —Ej (3 2)

Then, using (3.3) and the parabolic potential V„' in
(2.6), twice the WKBJ integral is

The potentials V(s) are those described in the previous
section. This form is often quite inaccurate for electrons
which tunnel into the forbidden gap of a semiconductor.
An electron in the forbidden energy gap is a mixture of
valence and conduction-electron states. In a p-I junc-
tion, the electron tunnels completely from a conduction
to a valence band. In a WKBJ classical approximation,
this transition takes place smoothly along a trajectory
in k space which can be calculated in the eGective-mass
approximation. These considerations are important in
metal-semiconductor tunneling if the electron must
penetrate significantly through the forbidden gap. The
important ratio is V~/Er;, where Ug is the barrier
height, and EG is the energy gap. For Vz/EG) s, the

's W. A. Harrison, Phys. Rev. 123, 85 (1961).
s' R. T. Shuey, Phys. Rev. 137, A1268 (1965).

2C
W= ——() +2e)E(X,P)—2eP(X, P)

3p
n—e (X+e—n)

!+ (n —) —2.)
n 4 )+e ) (3.4)

p= [X/(X+ e)]'"

X+e(n —e)
sinX= (ni
where E and P are incomplete elliptic integrals. This
expression is related to the results of Butcher, Hulbert,
and Hulme" for asymmetric p-e diodes of InSb. They
also assumed a parabolic potential and used a two-band
model to evaluate their trajectory through the forbidden
gap. Since their electrons were tunneling entirely
through the gap, from the conduction to the valence
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band, their limits of integration were the two turning
points and the results were expressed in terms of com-
plete elliptic integrals. This corresponds to setting
n =X+& and x=n./2 in the above expression. In metal-
semiconductor junctions, the incomplete elliptic inte-

grals are obtained since the electron encounters the
metallic surface before being allowed to complete its
trajectory through the forbidden gap.

The current integral (3.1), with the WKBJ ex-

ponent (3.4), describes quite well the tunneling in

n-type Ge and e-type GaAs. The incremental resistance
characteristics of these two materials are quite different.

In n-type Ge, CDMT showed that the incremental
resistance should peak at a bias equal to the Fermi
degeneracy, and this observation agrees with the experi-
mental measurements. The maximum in the back-
ground resistance, which occurs at biases equal to the
Fermi degeneracy, merely rejects the critical point in
the density of states which occurs at bottom of the
parabolic conduction band. Since y~/ED&1, electrons
at the bottom of the band can tunnel nearly as easily
as those at the Fermi energy, and hence the critical
point is observed. These features are also predicted by
the above current integral (3.1) with (3.4). It is not
really necessary to use the two band model for e-type
Ge: since Vz/Eg 0.25, very litt——le band mixing occurs
in the forbidden-gap trajectory, and it is equally valid
to use the one-band model of CDMT. An extended
comparison of the one-band and two-band results for
m-type Ge is provided in Appendix II. There it is also
demonstrated that it is not necessary to include the ex-

ponential nature of the band edge (2.5)—the simple
parabolic potential (2.6) is adequate for most analyses.

In e-type GaAs, as is shown below, the incremental
resistance characteristics are quite different than in

m-type Ge. Yet this case is also well described by the
above current integrals. The differences between these
two materials are twofold. First of all, in e-type GaAs
the ratio pq/ED) 1, and the electrons at the bottom of
the conduction band have a negligible tunneling prob-
ability compared to those at the Fermi energy. Hence,
one does not see the density-of-sates critical point at
the bottom of the band, and the incremental resistance
does not peak at a bias equal to the Fermi degeneracy.
Secondly, Vz/Eg 0.6, and band m——ixing is important
in the forbidden gap. Here it is essential to use the
two-band model WKBJ integral (3.4) to predict the
tunneling characteristics.

Thus, the above current integral successfully predicts
the quite different incremental resistance measurements
of e-type Ge and e-type GaAs. The difference between
the tunneling characteristics for these two materials

simply arises from the diGerent parameters specifying
each case.

IV. EXPERIMENTAL CONSIDERATIONS

The samples employed in this investigation are, in
general terms, diodes. Of primary interest are their
electrical characteristics expressed in terms of the
dependence of incremental resistance dV/dI on applied
voltage V. To provide a sufhcient description of these
samples it is necessary to provide measurement of
impurity type and concentration, and to describe the
fabrication procedure. Further, it is necessary to show
that the measured dependence of capacitance on applied
voltage is consistent with assumed features of the model.

BrieAy, the fabrication procedure consists of mount-
ing the semiconductor on a header, preparing the
surface, and applying the metallic element. The parent
crystals were oriented and sawed on {100}planes to
produce slices. These were subsequently lapped,
multiply ruled with a diamond stylus and broken. In
this manner cubes with two lapped and four cleaved
faces were fashioned. These were mounted on Au alloy
plated TO-18 headers by eutectic solution at 500 C.
In the mounting, a cleaved {100}face was positioned
to receive the metallic contact. The Au plating con-
tained Sn or Zn in the cases of e- and P-type GaAs,
respectively. The quality of the alloyed contacts was
assessed electrically on control devices possessing two
such contacts. They proved to be entirely satisfactory.
The GaAs was chemically polished in 3:1HNO3. HC1
during which damage from the cleaving was removed
and a brightly polished surface was developed. The
entire assembly was then electroplated with Au from
a cyanide bath to form the Schottky barrier. A contact
wire was attached to this surface. Thermocompression
bonding with a Au wire of small diameter proved to be
most convenient. In this, a temperature below 200'C
was used. The plated gold not protected by the masking
of the bond was anodically removed in H2SO4.

The inherently low values of resistance obtained
initially were adjusted upward over a limited range by
reducing the area with chemical or anodic etching.
However, as the useful upper limit is approached,
geometry favors a more rapid increase in parasitic
series resistance than decrease in barrier resistance.
The upper limit of impurity density for which meaning-
ful data can be measured on samples fabricated by the
method described was limited by this eGect. Anodic
etching in 25% NaOH was employed except for the
most pure e-type GaAs which was chemically etched
in 25% NaOH:HgOg 5:1.

The technique for obtaining the electrical character-
istic is a fami1iar one and need be described only in
brief detail. The incremental resistance dV/dI was
measured by applying a small alternating current to
the diode and detecting the voltage developed syn-
chronously. Bias was applied by quasistatically
sweeping an added current component. The voltages
developed were recorded continuously on an X-F plot.

As a matter of secondary importance, the depen-
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dences of diode capacitance on applied voltage at 77'K
were measured. In principle, the barrier height Vg,
corroboration of the assumption of uniform impurity
distribution, and the density of impurities eo, can be
obtained from analysis of these measurements. Practical
difhculties, however, reduce the effectiveness of the
method.

A Gtting of the measured dependence of the capaci-
tance to

Sample
number

Impurity
Type mo(cm ')

Number
Fermi Bias at of

degeneracy maxima samples
yy (eV) V, (V)

TABLE I. Impurity type, density, and estimated Fermi de-
generacy for the Au-GaAs samples for which results are presented.
Also shown are the number of samples N of like construction and
similar characteristics. The bias at which the maxima occur in
the dependence of dU/dI on applied voltage V is shown as V,
for the p-type samples.

C esp

2~re(Va V—y ospo)
(4.1)

B2312
B2313

2332
2341
2342

79X1p 0.0712

over the accessible range of applied bias V resulted
typically in errors less than 1%.The scatter in values
determined for height Vz and impurity density ~0 was
on the order of &5 and &10%, respectively. In the
case of Vg, this can be understood on the basis of the
extrapolation

lim V= Vii+sspp.
C &~0

(4.2)

For eo, errors in determining the area A are most

significant. To measure this, the diodes were destroyed,
micrographs were made, and the area taken with a
planimeter.

This method is not regarded as being capable of
yielding accurate values for V& and eo directly. How-
ever, the results are important in corroborating essen-
tial features in the assumed model. It was consistently
observed that:

(1) The measured dependence is that which would
result from a uniform distribution of impurities.

(2) The values of eo measured scatter about the value
deduced from Hall-effect data.

(3) The measured values of Vii scatter about the
accepted values. ~

Impurity type and density on samples for which
characteristic dependences are presented in subsequent
sections can be found in Table I. Corresponding values
for the Fermi energy p p are also shown. In calculating
these the density-of-states effective mass values of
0.072 for e-type GaAs was used. The effect of departure
from parabolicity for m-type GaAs was approximated by

and
p po = Ii'(3s'no) "/2mo (4.3a)

Is» = IJ so(1 @so/@a) . —(4.3b)

V. EXPERIMENTAL RESULTS

A. p-Type GaAs

Typical measurements of incremental resistance is
given in Fig. 2 for three concentrations of p-type GaAs

The accepted value Eg——1.52 eV was employed. ~ It is
evident, however, that the sum of the barrier heights
taken is not equal to this value.

2351
2352

2003

2020
2021
2022
2023

B2491
B2493
E2493

2035

B2562

X1P

7 X1p

n 1.0 X 1019

p 5.4 X1018

p 99 X1p

p 3.6 X10"

0.12

0.129

0.199

—0.03

—0.04

—0.06

on an approximately linear scale. This allows the
structure at zero bias and —36.4 meV to be observed
on the scale which is customary. The structure at
—36.4 meV is related to the LO phonon at this en-

ergy. ' " Since GaAs is weakly polar, this is unques-
tionably a polaron effect, similar to those observed by
Hall e1 al "in P ri di.odes. These p-olaron effects will be
discussed in Sec. VII.

Figure 3 shows the data for eo——5.4)& 10" and
9.9&&10" cm-' on a ln(d V/dI) scale. The data at both
concentrations Gt very well the theory of CDMT
which was developed for e-type Ge. This theory is
valid for Vii/Ea( ', and pp/Eo(1, and-both of these
conditions are satisfied for p-type GaAs. The three
characteristics predicted by this theory are (1) the
background peak in dV/dI occurs at the biases equal
to Fermi degeneracy, (2) the curve of lndV/dI is linear
in V above this maximum, and (3) the plot of lnd V/dI
is concave upward for biases below the maximum. The
p-type GaAs data have the last two characteristics if
one recalls that the sign of the bias is reversed in listing
these characteristics for p-type data. Indeed, the data
in Fig. 3 agree with the theoretical calculations of
CDMT even better than the data for e-type Ge.

At first it was thought that characteristic (1) could
be applied to obtain an estimate of the Fermi de-
generacy of p-type GaAs. This would provide a direct
measurement of the density-of-states mass. This inter-
pretation is incorrect because of the important effect

Io S.J.Fray, F.A. Johnson, J.E.Quarrington, and N. Williams,
Proc. Phys. Soc. (Loirdon) 77, 215 (1961).
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of impurity bands in p-type materials. This band
penetrates significantly into the forbidden gap because
of the heavy-hole mass. The acceptor binding energy in
GaAs is about 0.030 eU.""The incremental resistance

P —Ga As /Zn
Au

T= 4.2oK

20
B2

IO

UJ

CfJ

CA
Lal
IÃ

Pd
I— ra

~ 10—
lX

—.25
0

I.5xIO'

I
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V (VOLTS)

+.25

IO -0.2
I
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v(ev)

I

0.0 0.1

FIG. 3. The incremental resistance for p-type GaAs at two
different concentrations. This semilogarithmic plot shows that
the resistance has the form exp(V+Vs)/10 for negative V, in
agreement with the predictions of Ref. 3.

-25

I
200

0
V (VOLTSj

8249I

+.25

measurements between V =0 and t/'= 0.10 eU are
affected by the presence of the impurity band. The
theory of CDMT, and also the formalism of Sec. III,
only describe the measurement outside of this voltage
range.

A method is presented in Ref. 8 whereby this p-type
GaAs data can be analyzed to provide a measurement
of the density of states. These results show the presence
of the impurity band. An estimate of the impurity
band width may be obtained from Fig. 3. In Ref. 8,
it is shown that the impurity band meets the parabolic
conduction band near the point V=O. The lower limit
of the impurity band is where the linear behavior for
V(0 begins, logtsdI/d V ~ V/Es. These bandwidths

appear consistent with those observed by Cusano'4 and
Pankove" in radiative recombination experiments in

p-type GaAs.

3. n-Type GaAs

OI 0
V(VOLTS)

+.I

FIG. 2. Examples of the observed dependence of incremental
resistance d V/dI on applied voltage U for three samples of p-type
GaAs. Of interest is the structure at —0.0364 eV and at zero bias.
There is a systematic shift of the broad maxima in the background
dependence toward more negative values with increasing impurity
density.

"G. Lucovsky and C. J. Repper, Appl. Phys. Letters 3, 71
(1963).

3~ M. I.Nathan and G. Burns, Appl. Phys. Letters 1, 89 (1962).
"J.I. Pankove, Phys. Rev. 140, A2059 (1965); Proceedings of

It was remarked above that e-GaAs is expected to
behave differently than the cases previously considered.
The background resistance should no longer peak at
biases equal to the Fermi energy because electrons at
the bottom of the band have too small a tunneling

the International Conference on Semiconductors, Kyoto, 1966,
J. Phys. Soc. Japan Su~pl. 21 (1966).

'4D. A. Cusano, Solid State Commun. 2, 333 (1964); Appl.
Phys. Letters 7, 151 (1965).

'~ This result differs from Padovani and Stratton by the 3/Spa
factor, which is obtained by including the correct exponential
character of the band edge. Since p,z is very small compared to
Vg —V, this factor makes little difference in practice.
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FIG. 4. A comparison of the experimental (solid line) and
theoretical (dashed line) incremental resistance of n-type GaAs
with n=4.7)&10" cm 3. The theoretical curve was calculated
using the WKBJ integral 5" in (3.4) for the two-band model. The
magnitude of the calculated resistance was adjusted to the experi-
mental value. The shape of the theoretical curve agrees quite well
with the experimental result for reverse bias, but the theoretical
resistance falls more steeply at forward bias. There are no ad-
justable parameters in the calculation, since m=0.072, F0=13,
Vg=0.92 eV, and Eg=1.52 eV have all been measured previously.

Figure 5(a) shows data from four experimental samples
plotted on a semilogarithmic scale. They all have the
same voltage dependence, differing only in magnitude.
In the design of this experiment, a varying set of areas,
hence magnitudes, was deliberate. The scatter among
the measured incremental resistance, however, for
nominally equal areas, occurs at every concentration
measured, and is on the order of a factor of 2. Also
included in Fig. 5(a) is the theoretical incremental
resistance calculated using (3.1) and (3.4). The theo-
retical curve agrees with experimental data in shape
at reverse but not at forward biases. There are no
adjustable parameters in the theoretical calculations.
Note that here the resistance maxima occur at biases
much less than the estimated Fermi energy of 0.20 eV.

The agreement between theory and experiment is
better in the more lightly doped samples, as is shown in
Fig. 4. Again the disagreement occurs at forward bias
but not at reverse bias. If one did not include band
mixing in the theoretical calculation, but used the
one-band models of Appendix Il for the WKBI ex-
ponents, the calculated curve would have a smooth
maximum at zero bias. Thus, the maximum in the
incremental resistance appears at forward biases
because of the voltage dependence of the band mixing
in the forbidden gap. The data for e-type GaAs is
characterized in an entirely different way than p-type
GaAs or n-type Ge.

probability. And since V&/E& 0.6, the band —m—ixing
in the forbidden gap is important.

Incremental resistance measurements for &z-GaAs

are shown in Figs. 4 and 5. ln Fig. 5(b), the data are
plotted on an expanded linear scale, so that the weak
anomalies at zero bias and ~AMo can be observed.

VI. THE BISPERSION RELATION

The effect of dispersion in states of the forbidden gap
on the tunneling characteristics in e-type GaAs has
been demonstrated in Sec. V. Conversely, a relation
can be obtained for this dispersion in terms of the

to) n-GaAs
lo" cm-'

12-
(bj o - GaAs

10 cm

IJJ

~ IO

C/l
4J

4J

2023

2022

2021

THEORY

0

au IP

l

—.I 5 —.10 —.05 0.0
V(eV)

I

.05

I

.10 .15
8 I I I I

—.04 —.03 —,02 -.01 0.0 .OI

Y (eV)

I I I I

.02 .03 .04 .05

Fro. 5. A comparison of the experimental (solid lines) and theoretical (dashed lines) incremental resistance of n-type GaAs with
n=1.0)&10"cm '. The four experimental samples in (a) have different magnitudes of resistance because of deliberate differences in
junction area. The theoretical curve has the correct shape at reverse but not at forward bias. The same data are shown in (b) on a
larger scale, where the weak zero bias and polaron anomalies are apparent. The background conductance (dotted line) is sketched in
at the polaron anomalies at V= ~kerf). The theoretical shows the calculated polaron anomalies described in Sec. VII. Introducing
broadening into the theoretical shapes would round oB the logarithmic singularities into better agreement with the observed structure.
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observed dependences. At large forward biases in e-type
GaAs junctions, the limits of integration on the current
integral (3.1) are Et——0, Es p——s. The electrons at the
Fermi energy E=pp have the highest tunneling proba-
bility. The tunneling characteristics can be estimated
by just considering the electrons at the Fermi energy:

-I.0 X lo
I

k (El, (a-~) -0.5 X io-~

0.5
~e
m

I=P' exp —2
zo

dsk(s, p p)
0

(6.1) lo cm~
5XIO' cm

lo" cm '
gTWO BAND MODEL

:-VB

l.0

Rearranging this result gives the formula of Padovani
and Stratton4 ":

k'(Vs —V) =
27/ Bp8

(Vs—U+ ss p F) lnI . (6.2)
dvEp

This shows that the dispersion relation k'(E(0) can
be obtained in the forbidden gap by experimentally
measuring dlnI/d V.

The resulting expression for /P(E), which is valid
for both e- and p-type GaAs, must be regarded as
approximate. The main error in the derivations is from
the use of (6.1) instead of the integral (3.1).The extent
of this error can be seen by inspection of Fig. 6. Values
for dlnI/dV were calculated numerically from (3.1)
for several values of ~p. Then, this is related to the
dispersion by (6.2) in the same manner as indicated
for the reduction of experimental measurements. The
dispersion (3.3) employed in the integral (3.1) is also
shown for purposes of comparison. An error of about
10% in the value of ks is seen to result. Padovani and
Stratton indicate that the image charge forces will

tend to raise the value of k'.
The technique of measuring the dependence of

dlnI/dV on applied voltage is particularly valuable
and deserves a brief description. A small alternating
voltage and a quasistatically swept voltage are applied

Electrons tunneling from the Fermi energy see the
parabolic potential V„ in (2.4a).

From the relation

E=EE.g.+V(s),

we see that k (s,E) depends just on s and E through the
form k(V(s) —E). Thus set

ti= V(s) —E

and at I'= pp, the above integral becomes

n . vs v d&ie(ri)
lnI = inP'—

2stsse'/ s (r)+sspp)'"

The factor of —', came from using the correct potential
(2.4). If we ignore the weak voltage dependence of P',
then U only appears in the integration limit. Thus,

1/2

lnI= — k(Vs —V)(Vn —V+sspp) '".
d V 2zepe2

to the diode by an operational amplifier of low output
impedance. The resulting output current is directly
coupled into an operational amplifier which has both
a low input impedance and a logarithmic transim-
pedance. Synchronous detection of the alternating
component of the output produces the desired function.
The useful range of currents in the particular instru-
ment employed was 30 nA to 3 mA for a precision
better than 4%. The lower limit was set by offset
current and the upper limit was set by departure from
logarithmic response due to series resistance in the
feedback element, i.e., a 2N930 transistor. The im-
plementation follows standard practices. A complete
description of the equipment and a discussion of the
general aspects of the measurement, much of which is
of temporal nature, is to be published separately.

Examples of the logarithmic characteristics obtained
in this manner are shown in Fig. 7 for n- and p-type

25-

235I

352

255 I 1 n- TYPE
2352J Ga As

E2eeq p-TYPE
82493I Ga As

0-
0 .I

)v) (voLTs)

Fto. 7. Examples of forward bias characteristics measured
directly as dlnI/d V for e- and p-type GaAs.

Fzo. 6. Calculated k'(E) curves for different concentrations ns
of impurities. The tunneling current was evaluated using (3.4) in
(3.1), and the calculated current was reduced using (6.2). The
resulting value for 0' is shown to depend upon concentration.
This apparent dependence arises from just taking electrons at the
Fermi energy in (6.1) rather than using the integral (3.1) over
the electronic states.
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The values for the dispersion as measured are con-
sistent with the dependence predicted by (3.3) from
the effective mass formalism. In no sample were values
of k' observed as large in magnitude as those reported
by Padovani and Stratton. 4

v
44 V&4 VV4 V+4

4

o 234l

-I,O

GaAs, respectively. The singular behavior at small

applied voltage occurs for currents well above the
lower limit set by the instrumentation and is expected
on the basis of the preceding discussion of errors in the
theoretical treatment. The upper boundary is hxed
either by the limitations in the instrumentation or by
the effect of parasitic series resistance in the sample.

Results for several samples from a range of impurity
concentrations of both tt- and p-type GaAs are shown

in Fig. 8. The values for barrier height Vg and impurity
density eo employed in the reduction were discussed in
Sec. IV and presented in Table I, respectively. The
scatter observed can be attributed both to uncertainties
in specifIcation of these parameters and also to vari-
ations in the fabrication. Since the p-type data fall

consistently above the effective-mass curves, this
suggests that the light hole mass may even be smaller
than predicted from the two-band model.

The effect of excess heating in the fabrication proved
detrimental. Successively higher temperatures produces
correspondingly lower values of k2. Further, pronounced
structure was observed in these data (not shown). No
change other than occasional loss of mechanical in-

tegrity was observed below a fabrication temperature
of 200'C.

-l.5
Fro. 8. Experimental determination of dispersion in states of

the forbidden energy gap in GaAs. Data for both n- and p-type
GaAs are shown. Also shown is the dispersion predicted by
effective-mass theory in the two-band model (Ref. 10).

VII. POLARON SINGULARITIES

The incremental resistance measurements show
structure at V= ~5~0——~36.4 meV. This is caused by
the electron's interaction with Lo phonons at that
frequency. ""In e-type GaAs, the structure is observed
at both forward and reverse bias, although it appears
less broadened at forward bias, as in Fig. 5(b). For
p-type GaAs, strong structure is observed at reverse
bias V= —AM 0, at forward bias the observed structure
is so slight that it is not even apparent on Fig. 2. Thus,
the anomaly appears with a strength which is asym-
metric across the Fermi energy. The strong side corre-
sponds to effects which occur below the Fermi energy
of the respective electron or hole plasma. Polaron
effects, corresponding to tunneling thresholds, were
first observed in GaAs p-e junctions by Hall et al."
There they also corresponded to effects which were
Acro beneath the Fermi energy of the electron and hole
plasma.

Calculations on polaron effects in degenerate semi-
conductors predicted that such anomalies should
exist.""In polar semiconductors, the low-temperature
electronic dispersion relations are altered for energies
+Acro away from the Fermi energy. This causes the
density of states to have a logarithmic singularity at
energies E=pp~kcoo. These calculations predict that
the logarithmic singularity should have nearly equal
strength above and below the Fermi energy, especially
when p, p&)keno. This agrees with the m-type data, al-

though it is not understood why the structure above
the Fermi energy (appearing at V= —A&os) is broadened
more. The p-type data are even more inexplicable
since the polaron structure appears very strongly at
V= —A~s and very weakly at +Are&. The calculations

predict only a slight asymmetry in the strength of the
logarithmic singularity below and above the Fermi en-

ergy even for p~&Lro. A possible explanation is to note
that the mean free path is longer for electrons near the
top of the valence band. This is because the energy
width I' is proportional to the density of states F E"'
for the dominant damping mechanism of impurity
scattering. This makes F smaller for the singularity at
E=IJ,r hers, than at E=pp+h—~s (when pp —AMp),

which may explain why the structure is more easily
observed at V= —Picoo.

Some calculations were made in order to compare
the predicted polaron anomalies with those observed

experimentally. It was shown previously" that the

important structure qrises from the term iq. the elec-



TUNNELING SPECTROSCOP Y I N GaAs 691

tronic self-energy denoted Z p.

4~~~o'"
ReZ p(p, E)=

(2m)'"

dpq ppp(p+q)

(2pr)' q'e(q)'

The function g, always positive, depends only weakly
upon p for e„&4p&. Thus, it can be conveniently
approximated by its value at p=0:

n (4)p)'" 1
go=—

~ (~~)'" (1+&'/p~')'

Also, when solving the electron's dispersion relation

E(p),
E= e~+ReZg(p, E),

the easiest way to proceed is to solve for p(E):

go ln
E+&p lj s'

&(E)—
For the WKBJ calculations, this expression can be
generalized to include potentials V(s) and band mixing

by using the form

EK.F.(k)+ V(s) = S(E),

where EK E is given in (3.3). This shows that polaron
effects can be included in tunneling by replacing E in
the tunneling integrals by 8(E). This approach can
also be justi6ed by using the formalism of Cohen,
Falicov, and Phillips" and invoking the quasiparticle
approximation. Actually, one should add to the density
of states a factor of

~1+ (8/Be„) ReZp(p, E)
~

—'.
This factor can be ignored since the structure in the
tunneling data is not caused by density-of-states
perturbation in the semiconductor. Resistance anoma-

X
E+Mp —

ep+& E cdp e—p+&—

The Fermi-Thomas approximation is used for the
dielectric function e=1+k,s/qs. This self-energy pre-
dicts a logarithmic singularity and this part of ReZp
is given by

E—
COp

—P, p
ReZg(p, E)=g(p) ln

E+M p pp—
(l'g~ )p/2 (p+ p )s+.p s

g(p) =— ln
4 (~~)'" (p p~)'+& '—

k,'

(p+p p)'+Ip, s (p+ p p)'+k, s

lies due to density-of-states eRects would have the
logarithmic singularities occurring with the opposite
sign as those observed. The anomalies observed in the
resistance are caused by changes in the tunneling
probability, or WKBJ exponent, wrought by the
polaron singularities.

In the conduction band the pola, ron constant is
0.,=0.06" For np ——10" cm ', GaAs has pp=0. 2 eV
and go

——0.2 meV. The constant go is very small, yet
it is large enough to explain the observed anomalies.
Figure 5(b) shows a comparison of the theoretical and
experimental incremental resistance for no=10" cm '.
The calculated anomalies are of the same size as those
observed in the data. No theoretical calculations were
made for comparison with the p-type data. Since

p, p=A, coo for these samples, the polaron singularities
occur in the region of band tailing. Several features of
the polaron effects in valence bands should be
mentioned.

Since the polaron scattering mixes the light- and
heavy-hole bands, the effective constant o. for the
valence band is the average of the n's for the light- and
heavy-hole band, '7; roughly u=ssu, . For P-type data,
when p~ ——A&o, then g= 0.7 meV which is larger than for

n-type data. This ea,sily explains why the polaron
anomaly observed in p-type data is significantly larger
than that for e-type; the important ratio g/pp is 20
times larger here. These estimates are approximate since
calculations on p-type data are unreliable because the
hole plasma is not a high-d. ensity electron gas and
Fermi-Thomas screening is not really appropriate.

The analysis of polaron effects is simpler in metal-
semiconductor junctions than in p-e junctions. As

shown above, the polaron effects were properly in-

cluded as alterations in the electron's dispersion rela-

tions. In p-I junctions, three different polaron effects

must be included. I et o,, and a., refer to the polaron
constants for the rl, and p side of the junction. Then
one term is proportional to o., and represents changes
in the conduction-electrons dispersion relation. The
second term is o., and represents changes in the va1.ence-

electron's dispersion relation. The third term (u,o.„)"'
and represents interactions in the junction region. If
one views tunneling as the spontaneous creation of

electron-hole pairs in the junction, which is an equiva-

lent way of viewing previous formulations, " then the
third term (ep,n„)'~' represents electron-hole final-state

interactions (via phonons) in the junction. A complete

analysis of p-n polaron effects would need to include

aH three of these effects. Also, in p-e junction tunneling,

the phonon scattering is often necessary to conserve

electronic wave vector, which is not needed in the

Schottky barrier. Polaron effects in a metal-semicon-

ductor junction are obviously simpler to understand.

'6 M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev.
Letters 8, 316 (1962}. '7 G. D. Mshsn, J. Phys. Chem. Solids 26, 751 (1965).
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VIII. DISCUSSION

In classifying the characteristics of Schottky barriers
there are two important parameters. The first is 1J,~/Ee,
and the resistance peaks at biases equal to pp for values
pr/Es&1. The second parameter is Us/Eg, and band
mixing becomes important for Vii/Eg) ', . The—se two
parameters define four classes of behavior, of which
two have been observed experimentally. The first was
ps/Ee&1, V&/Eg&s (e-type Ge and p-type GaAs),
and the incremental resistance peaks at V= pp except
when impurity bands are important. The second case
is pr/Es))1, U&/Eg& ', (m-type -GaAs), and the re-
sistance peaks smoothly at a forward bias independent
of pp. Calculations have also been done for the other
two cases, although they have not been encountered
experimentally. The case 1l, r/Ee& 1, Vs/Eg& ', still—
peaks at V=p, i, while the case pr/Ee&)1, Vs/Eg&s
has a broad maximum at zero bias. In degenerate e-
type semiconductors which have Is&/Es&1, one can
thereby directly measure the Fermi energy by the
position of the resistance maximum.

It was shown in Sec. III that a theory of tunneling,
employing the two-band model, was able to explain all
of the observed behavior in these systems. Furthermore,
it was shown in Sec. VI that the electrons trajectory in
the forbidden gap could be measured. These results
were consistent with the two-band model. Thus a
self-consistent tunneling theory has been attained
which describes these GaAs junctions.

An analysis of the polaron singularities occurring at
V=kcop demonstrates that they are explained by the
usual precepts of many-body theory. Good agreement
between theory and experiment in e-type GaAs is
obtained by describing the anomalies as alterations in
the electron's dispersion relation which affect the
tunneling probability via the WKBJ exponents. No
anomalies due to plasmon effects were observed, al-

though they are in a suitable frequency range for the
lighter doped samples. Raman scattering'8 has shown
that this excitation is quite broadened compared to
LO phonons, which probably explains why it does not
show up in tunneling.

Zero-bias anomalies" " are observed in both e- and
p-type GaAs, although they are much stronger in
p-type. In the p-type data they appear larger in the
lower concentration samples. Phenomena similar in
appearance have been observed by Wyatt" and by
Rowell and Chen" in metal-oxide junctions. A basic
difference is that they observe a conductance maximum
while Schottky barriers have a resistance maximum.
Logan and Rowell" have also observed conductance
maxima in heavily doped Si and Ge p-e junctions. The
conductance maxima have a logarithmic form, and have
been explained in terms of Kondo scattering by Appel-
baum" and Anderson. " The resistance maxima ob-

38 A. Mooradian and G. B. Wright, Phys. Rev. Letters I6, 999
(1966).

served here are caused by a diferent mechanism. In
Ref. 8 it is shown that the resistance maximum is
probably due to structure in the density of states. This
structure arises from the details of how the impurity
band merges with the parabolic valence band. Since
the impurity band is much deeper in p-type than in
e-type GaAs, this explains why the observed anomaly
is so much larger in the former material.

APPENDIX A: FLUCTUATIONS IN
BARRIER HEIGHT

The Quctuation in the barrier height can be estimated
using Klauder's39 formula for the Markov average of
the impurity potential. While in the junction, an
electron sees a potential which is the sum of the un-
screened Coulomb interactions from the positive
impurities and the surface charges. It is convenient
to view the surface charges as the image charges of the
ions. ' This model maintains long-range charge neu-
trality regardless of the fluctuations of the impurity
positions, but it provides no insight as to how the
surface charges were formed originally. " Since the
barrier is large at the metals surface, for simplicity
only the images on the metal are considered. For an
impurity at R;, and an electron at s, the potential is

e 1 1
V(R s)= ——.e IR;—sl IR;+sl

We also make the approximation that the thickness of
the junction sp is independent of the local concentration
of impurities. Then Klauder's distribution function
can be approximated by a Gaussian

P(Vs) = exp
s(2s)'"

(Vs—V)

where the first two moments are, for 0&s&zp,

V=ep
0& Rs& So

2me'ep
de V(R,s) = L(s—s,)'—sp'j,

2' g 'lpsp
de V(R,s)'= f(s/se),

&R &so 6p
2

and for 0&x& 1

f(x) =2x—(1+x) ln(1+x) —(1—x) ln(1 —x).
'~ J. R. Klauder (unpublished), mentioned in Ref. 25.
40 V. Heine, Phys. Rev. 138, A1689 (1965).
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The function f(z/zs) has an average value of f 0 S.in
the junction. For e-type GaAs with 10" cm~ impuri-
ties, then zp 100A and 2/ 0.1 eV. A variation in
potential barrier of 0.1 eV changes the tunneling
characteristics a signiacant amount, so that these
fluctuations are large. Electrons can tunnel more
readily at the lower barrier height. Reducing the
barrier height makes the junction look more ohmic;
so the eGect of the Quctuations is to make the resistance
less voltage-dependent. This may explain why calcu-
lations of the incremental resistance always predict a
faster decline of dV/dI with V than observed experi-
mentally. Excessive simplification in this Quctuation
model precludes a detailed comparison experiment,
e.g., the junction width so really depends upon Vo and
V. Further, it is not clear that band-tailing phenomena
can be separated from Quctuations in barrier potentials.

—
(12)1/2+ (rr e)1/2-

W1——C (n(rr —e))'"—e ln
(e)1/2

(B1)

APPENDIX 3: W&&J INTEGRALS

The WKBJ integrals for the one band model are
presented in this Appendix. The WKBJ integrals, and
the predicted dI/d V curves for 22 type G-e, are evaluated
for the two junction potentials of Sec. II. These results
are compared with similar calculations using the two-
band model (3.4). It is shown that all of these methods
predict similar eGects in e-type Ge. Therefore, we reach
two conclusions: (1) The one-band model is adequate
for describing n-type Ge, and it is unnecessary to employ
the two-band formalism. This justifies the one-band
calculations of CDMT. (2) Including the exponential
behavior of the barrier potentials appears to be an un-

necessary sophistication. The simple parabolic potential
V~' in (2.6) is adequate for most treatments.

The WKBJ integrals will now be presented for the
one-band model (3.2). For the parabolic potential V„'
in (2.6), twice the WKBJ integral is

two parts ran be added:

W2 ——W2„+W2, .
The parabolic part is

(rr'(rr —e) )1/2 —(().6 (1—e) )»2

- (~~)1/2+ (~ e)1/2—
—e' ln

(() 6)1/2+ (] e) 1/2

and the exponential part is

4,C— e) 1/2-

W2 —— (1—e)'"—(e)'" tan.—'
V3 e)

At the bottom of the conduction band, e —+0, these
integrals are finite, although the exponential barrier
becomes infinitely thick in this limit.

The WKBJ integrals for the parabolic potential V„'
(2.6) and the two band model is given in (3.4). Analytic
expressions have also been obtained for the WKBJ
integrals using the exponential-parabolic potential for
the two-band model. Because they are lengthy and
because the exponential behavior does not seem to be
an important effect, these expressions are omitted.

The different methods of calculation are compared
now for e-type Ge with m=10" cm '. Figure 9 shows

2
I I I I I I i I I I I

Ge.
'

n = 10 cm

I—

~ IO

CL

4Z
UJ

4J

The notation is defined in Sec. III.
When evaluating the expressions for the parabolic-

exponential barrier (2.5), one must distinguish between
forward and reverse bias. For reverse bias (V(0), the
tunneling electrons see just the parabolic part of the
potential. Then the WKBJ integral W2 has the same
form as (81), except that n and e are replaced by

The extra factors of 5 occur because the parabola for
this potential ends ~pp above the bottom of the con-
duction band. At forward biases (V)0), the tunneling
electrons see the combination of parabolic and ex-
ponential dependence. The WKBJ integrals for the

I I I I I I I I I I I

—.04 —.02 0.0 .02 .04 .06

V(eY)

FIG. 9. The incremental resistance calculated for m-type Ge
using the V/KSJ integrals of Sec. III. Curve (1) uses 8'I in
(81) for the parabolic potential U2' in (2.6) and one-band model
(3.2); curve (2) uses IU2 in (B2) for the parabolic-exponential
potential 1/".„ in (2.5) and the one-band model (3.2); curve
(3) uses 5' in (3.4) with the parabolic potential V2,

' and the
two-band model (3.3). The results are all similar with all curves
peaking at biases equal to the Fermi energy hz=0.03 eV. This
shows that including the exponential character of the electron's
potential is an unnecessary sophistication in evaluating the
tunneling characteristics. The parameters used in the calculation
were m=0. 12, e0 ——16, N0=1019 cm ', Vg=0.52 eV, and Eg=2.2
eV, where 2.2 is the band gap at the zone edge.
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the incremental resistance calculated from the three
WKBJ forms Wr, W2, and W in (3.4). Curve (1) is the
parabolic potential using Wt, (2) is the exponential-
parabolic potential V,„result W&, and (3) employs
the parabolic potential with the two band model 5'.
There is remarkably little difference in the shapes of
these three curves. Curve (2) is higher because the
potential V.„has a thicker junction than V„which
raises the resistance. Curve (3) is lower because the
magnitude of the decaying wave vector (3.3) always
is less than (3.2), so the resistance is less. Since Vrs/Eg
=0.52/2. 2=0.25 is small, the shape of curve (3) is
similar to the others. This shows that it is unnecessary
to use the two band model (3.3) in rt-type Ge, which
justi6es the simpler model used in CDMT.

All three curves of Fig. 2 peak at positive biases
equal to the Fermi degeneracy pp=0.030 eV. The
experimental curves have a smoother maximum at the
Fermi energy. ' The experimental smoothness is prob-
ably due to the effect of band tailing, which smooths
out the discontinuity in the density of states which
occurs at the bottom of the conduction band.

The peak in the resistance occurs at the Fermi
energy because electrons at the bottom of the band
can tunnel almost as readily as those at the Fermi
energy. It is in this case when one would expect that
it would be important to include the exponential
character of the electronic potential. However, the
calculations show that, except for increasing the junc-
tion thickness, this refinement changes the theoretical
predictions little and is unnecessary.

APPENDIX C: THE DENSITY OF
STATES IN TUNNELING

A feature of a WKBJ solution is that, as shown by
Harrison, " the tunneling probability is independent of
the density of states. The WKBJ method is essentially
a high-energy approximation and fails near the bottom
of the band. The dependence of the tunneling proba-
bility on the density of states has been shown quite
generally by Shuey" for the electrons near the bottom
of the band. Further, in the particular case of the
Schottky barrier, it will be shown below that the exact
solution of CDMT exhibits this dependence. Equation
(3.1) is a method devised to extend the validity of the
WKBJ solution. To justify this procedure, the de-
Sciencies in the WKBJ approximation are discussed
and the form of Eq. (3.1) is deduced from the exact
solution of CDMT. As a result of this discussion, the
limitations in the range of validity for Eq. (3.1) are
obtained in explicit form.

The WKBJ solutions are never correct as k ~ 0. As
an example, in the particular case of an exponential
barrier the criterion for validity is readily established.
Consider the potential

V(*)= (k'kos/2m). "*,

where ko and k, are parameters which characterize the
dependence. Schrodinger's equation for this potential
can be solved exactly and the WKBJ solution can be
obtained following the procedure described by
Heading. 4' If we choose the normalization" for the
wave function iP(x) for x&(0,

it (x)= (2//I)'" cos(kx+8),

then in the barrier x))0 the exact and WKBJ solutions
are

(k sinh(2n. k/k ))'" k,x 2ke
P(x)exact=

~
exp

Xexp(k, x/2)

t' k )'" mk k.x 2kp
f(x)wzsJ=

( (
exp-

&2k,l.i
exp(k.x/2)

I=C(V) dE dEt(E—E
E1

&& exp((E —E,)/Es). (C1)

These variables are related to those of CDMT by

E,= ( e'n, k'/nteo)'t'

Ee 2Ee/In(pcs/2) = 2Eo/ln——E(V&+tt,—V)/Eel,

E,=Ev'/v

E—E~= 2EpK„,'.
Factors in the integrand (9) of CDMT which vary
slowly with respect to energy are ignored, while the
additional V dependence of the WKBJ integrals are
indicated in the factor C( V). For E/Es))1, the
integrand is largest at small Et. Hence, Eq. (C1)

et J. Heading, An Introducteon ot Phase Integral Methods (John-
Wi1ey tk Sons, Inc. , New York, 1962).

In the limit of k/k. ))1 the two solutions are equal.
However, for k/k. &(1 the exact solution has P(x) k
which results in a tunneling probability which is pro-
portional to the density of states. The WKBJ result is
explicitly incorrect in this limit.

Examination of the exact solution of CDMT shows
that, for the problem of interest, tunneling is propor-
tional to the density of states for electrons with small
wave vectors. To justify the use of Eq. (3.1) it is
necessary to show equivalence to the exact solutions
and further to establish the range of validity for the
approximation involved. Let E be the energy of the
electron measured with respect to edge of the con-
duction band. The essential features in the solution
of CDMT Eqs. (1) and (9) are retained by letting
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becomes

I=EsC(V) dE +1/2gE/EI (C2)

The restriction E/Es) 1 can be written equivalently as

E/Ep& 2/in(Vn/Ep) . (C3)

If electrons of energy E less than set by this inequality
are important in the tunneling process then the angular
integrals must be included and a E"' rather than E'I'
dependence then applies.

The WKBJ solution for the parabolic barrier is
equal to the exact solution of CDMT for

E&4Ep.

0.28 eV&E) 0.07 eV. (C6)

This is the range which is significant in the tunneling
processes of interest.

This can be seen by rewriting Eq. (9) of CDMT in a
form appropriate to this limit and comparing terms
with the integral form of Appendix B. For E&4Ep the
tunneling is not proportional to the density of states,
and the conclusions of Harrison" pertain.

The range in energy over which the integrand in the
expression for tunneling must include the density of
states factor E'~' is from Eqs. (C3) and (C4)

4&E/E, &2/ln(V /E,). (C5)

For rs-type GaAs at np=10" cm ', Ep 0.07 eV and
V&=0.92 eV the range in energy becomes
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Stress Dependence of Photolurninescence in GaAs
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Photoluminescence in GaAs at k =0 under uniaxial stress up to 14 000 kg/cm' is studied at 2'K. The stress
dependence of the coupling between J= ~, m;=%~ and J=q, m, =&-,' valence bands is observed. The
deformation-potential constants for the valence band and for the acceptor ground state are determined, and
the values for the valence band are a= —8.9 eV, b= —1.96 eV, and d = —5.4 eV.

I. INTRODUCTION

HK application of uniaxial stress to a semi-
conductor shifts the energy extrema. The top of

the valence band in GaAs, which is fourfold degenerate
at 0=0 at zero stress, splits into two doubly degenerate
components. There will also be changes in the ionization
energy of impurity levels. Since the conduction band is
nondegenerate, these changes for shallow donor levels
are expected to be small compared to energy-gap
changes. In contrast, since the valence-band degeneracy
is removed, changes in shallow acceptor ionization
energies are expected to be comparable to energy-gap
changes. '

Studies of the stress dependence of the photolumines-
cent spectra near the energy gap can be used to deter-
mine deformation-potential constants. Because of the
large stress eGect on acceptor levels, the stress depen-
dence of the spectrum can also be used to determine
whether or not an acceptor level is involved in a parti-
cular transition. Such studies have been carried out
on GaAs photoluminescent spectra for stress x applied
in the (100), (110), and (111)directions at 2'K. Two
lines have been studied: line A at 1.511 eV and line

3 at 1.490 eV. Our results support the hypothesis that
' P. J. Price, Phys. Rev. 124, 713 (1961).

line A does not involve an acceptor level but line 3
does. This is consistent with the results of Leite and
Di Giovanni' who attributed line B to a donor-acceptor
pair transition. At low stresses, the variation in band-
gap energy E, is linear in X.' However, at high stresses,
a quadratic dependence of E, on z is expected' ' from
a stress-induced coupling between the top of the valence
band and the deep lying spin-orbit split-off band. Both
linear and quadratic terms are then used to obtain
the deformation potential constants.

II. EXPERIMENTAL METHODS AND RESULTS

The arrangement for the photoluminescent measure-
ments has already been described elsewhere. 7 A com-
pressive stress up to 14000 kg/cm' on the sample was
applied with an apparatus similar to one described by

R. C. C. Leite and A. K. Di Giovanni, Phys. Rev. 153, 841
(1967).' G. E. Pikus and G. L. Sir, Fiz. Tver. Tela 1, 1642 (1959)
)English transl. : Soviet Phys. —Solid State I, 1502 (1959)g.

4 H. Hasegawa, Phys. Rev. 129, 1029 (1963).' J. C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963).
~ A. P. Smith, M. Cardona, and F. H. Pollak, Bull. Am. Phys'.

Soc. 12, 101 (1967).
r M. I. Nathan and G. Burns, Phys. Rev. 129, 125 (1963). A

He-Ne laser was used for excitation of the spectra.


