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Calculation of Constant-Energy Surfaces for Copper by the
Korringa-Kohn-Rostoker Method*
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Constant-energy surfaces are calculated for a number of different energies using three different potential
functions for copper. Each surface is specified by values for 26 066 radii in k space, the radii being calculated
with the Korringa-Kohn-Rostoker band-theory method. The Fermi surfaces obtained are used to discuss
the available experimental results. Values for the electronic contribution to the low-temperature specific
heat that are not clouded by statistical errors or interpolation difhculties are calculated. The density-of-states
curve for a range of energies above the d bands is calculated using the Chodorow potential. Questions con-
cerning the convergence of the calculation are treated in detail ~

I. INTRODUCTION

HE method for investigating electron energy bands
that has come to be called the Korringa-Kohn-

Rostoker method" (also the KKR or Green's-function
method) has many desirable features, one of these
being that it seems to work as well for solids that have
complicated band structures as it does for simpler ones.
Previous calculations with this method' 4 have demon-
strated its reliability and usefulness, but did not give
the detailed information for regions of low symmetry
in the Brillouin zone that is desirable for many applica-
tions. By a careful treatment of the computational
problems that are involved and the use of more modern
computers we have developed a technique for obtaining
very accurate results by the KKR method in all regions
of the Brillouin zone with an expenditure of computer
time that is quite modest by band-theory standards.
The results of our calculations take the form of numeri-
cal representations of constant energy surfaces. Many
quantities of interest in solid-state theory are expressed
in terms of constant energy surfaces, particularly the
Fermi surface.

The KKR method makes use of certain functions,
called structure constants, that depend on the crystal
structure of the solid under consideration but not on
the crystal potential. It has been thought that the
calculation of these functions is so difficult that it
forms a stumbling block for the application of this
method, necessitating the use of tabulated values. We
have found, on the contrary, that very fast band-theory
calculations can be done which include the generation
of structure constants as an integral part of the over-all
calculation. This point is discussed further in the follow-

ing section.
Several band-theory calculations on copper have been

published. Our original interest in this material was to
test our results against the published values. We soon
found, however, that the degree of detail that we obtain

* Research sponsored by the U. S. Atomic Energy Commission
under contract with the Union Carbide Corporation.' J. Korringa, Physica 33, 392 (1947).

~ W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).' F. S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961).' B. Segall, Phys. Rev. 125, 109 (1962).
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for a given potential allows us to clear up a number of
questions that remained open concerning the band-
theory predictions for quantities of physical interest.
In addition, the relative ease with which the results
are obtained allows us to investigate the potential
dependence of the results by repeating the calculation
for several different potentials, and to investigate the
convergence of the results in detail.

II. THE KKR METHOD

In most treatments of band theory the electronic
states are found by applying the Rayleigh-Ritz varia-
tional principle to the one-electron Hamiltonian for the
crystal. These treatments differ among themselves in
their choice of basis functions. Korringa, on the other
hand, considered the scattering relations that must be
satisfied for an electron propagating through the crystal
as a Bloch wave and showed that they can be made
consistent only if the electron's energy E and wave
vector k satisfy a definite relation. This relation was

put in the form of a mathematical expression by apply-
ing to the electronic problem the dynamical theory of
lattice interferences that Ewald used to investigate
electromagnetic waves in solids. 5 Kohn and Rostoker, '
in an independent treatment, set up the scattering
problem as an integral equation which was solved by
means of a variational theorem. They showed that the
expression relating E and k they obtained is the same
as Korringa's.

The derivation of the fundamental equations is ex-
plained very clearly in the original papers on this
method, and those discussions will not be repeated here.
It is necessary to review certain of the ideas involved,
however, in order to describe the nature of the present
calculations. For simplicity in the discussion, we re-
strict our attention to systems that have one atom in a
unit cell.

Kohn and Rostoker performed some calculations
with this method, as did Morse, ' but the most extensive
calculations thus far were done by Ham and Segall, who
also discuss certain practical questions concerning the

s P. P. Ewald, Ann. Physik 64, 253 (1921).
6 P. M. Morse, Proc. Natl. Acad. Sci. (U. S.) 42, 2l'6 (1956).
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method. ' All of these calculations assume a muon-tin
potential, i.e., a spherically symmetric potential. within
nonoverlapping spheres of radius E surrounding each
atom and zero potential outside the spheres. Calcula-
tions on models and real systems indicate that forcing
the crystal potential into this form does not harm the
reliability of the results.

Within the muon-tin approximation the wave func-
tion inside an atomic sphere can be expanded, for any
Gxed value of E, in the form

4naa l

l-o ~l
where F'l (8,&) is a spherical harmonic and Rl(r) is a
nonsingular solution of the radial equation

where jl(/lR) and 22l(/lR) are spherical Bessel and Neu-
mann functions, and Ll (R) is the logarithmic derivative
of the function Rl(r) introduced in Eq. (1), all of these
functions being evaluated at the sphere radius R For
a given potential, E& depends only on the l value and
the energy E. lt is the cotangent of the phase shift for
scattering from the atomic sphere. The functions

gl =jl'(/lR) —jl (/lR)Ll (R)

can be absorbed into the coe%cients C~, although the
determinant is numerically smaller if they are left in it.

The B~~., ~.~. are

realm; Pm' 42r P +lm; l'm' DLM q

LM

where C~ ,.~. ~~ is an integral over spherical harmonics,

1 d d l(l+1)———r' +—+V (r) ERl (r) = 0—, (2)
r' dr dr r' ,IM d8 sin8YLM(8, $)F'l (8,p) Yl. (8,p),

with V(r) the potential in the sphere. This expansion
becomes exact in the limit as l,„approaches inhnity.

References 1 and 2 show that an electron can pro-
pagate through the crystal as a Bloch wave with wave
vector k only if the coeKcients in Eq. (1), «, satisfy
a set of simultaneous equations

and the DLM are functions of E and k that depend on
the crystal structure but not on the potential inside the
atomic spheres. These functions, called structure con-
stants, were studied by Ewald' who developed a tech-
nique for calculating them. The form of the functions
used by Ham and SegalP is

&max

A/m. , l m Cl m =0,
z'=o ~'=l' (3)

with
DLM DLM +DLM +DOO 8L08M0

where the elements Al,.l. ~ are functions of E and k.
Denoting the determinant of these elements by F(E,k),
it follows that the desired relation between E and k for
propagating electrons is obtained from the equation

F(E,k) =0. (4)

where /l=+E. In this equation

22/'(/lR) —22l (/lR) Ll (R)
E$

jl'(sR) —jl (/lR) L l (R)

This equation cannot be solved analytically, so nu-
merical methods must be used. Two obvious possi-
bilities for searching for the zeros of F(E,k) are to
choose particular values of k and vary E, or to take E
constant and search k. We have chosen the latter
scheme because we feel that it leads to the most useful
form for the band-theory results and also because the
equations of the KKR method lend themselves to such
a treatment.

For values of E and k such that Eq. (4) is satisfied
the wave function inside the atomic sphere can be
found from Eqs. (1) and (3).Outside it can be expanded
by matching to the solution at the sphere boundary.

In more detail, the elements defined in Eq. (3) are

+lm;l'm' gl[I3lm; l'm'+&8ll'8mm'+l]gl' q

~1/ 2 (E/~) ~

D00( )=
22. .=0 v!(2l —1)

(2L exp $2r 2+
4/2

In these expressions, r is the volume of a unit cell, K„
is a reciprocal lattice vector, r, is a lattice vector in
real space, and the other variables were defined above.
The parameter g controls the contribution to the struc-
ture constant from the sums in real space and reciprocal
space, and Ewald pointed out that a suitable balancing
of these contributions leads to the most eKcient calcula-
tion. Segall and Ham published tables of these structure
constants for symmetry directions in the Brillouin zone
of bcc and fcc crystals. ~

' B.Segall and P. S. Ham, General Flec&ric Report go, 6I-II'L-
2876G, 1961 (unpublished),

DLM &"= —(4m-/r)/l
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The heart of a fully automated band-theory calcula-
tion using the KKR method is the development of fast
and accurate computer programs for calculating the
structure constants and phase shifts that make up the
determinant F(E,k). This eliminates the necessity for
explicitly tabulated functions and makes the calculation
much more flexible. The details of how this is done are
too involved to go into here, but it can be seen from the
above formulas that the problem is simplified if E is
held fixed and k is varied. For cubic crystals we choose
a number of evenly distributed directions in k space and
vary k along each of these directions from the center
of the Brillouin zone to its surface. The zeros of F(E,k)
represent the points at which a line drawn in the direc-
tion of search intersects the constant-energy surfaces.

For the copper calculations in this paper we searched
561 directions in 1/48 of the Brillouin zone for each
energy, which determines 26066 separate points on
each constant-energy surface. The number of directions
searched for a particular E is completely at our disposal,
although proportionately more time is required to
search more directions. The choice of a particular
scheme for defining the directions of search is not
critical if a suSciently large number of directions are
used. In an Appendix we describe the scheme used in
this work for clarity.

For a particular value of E and direction of k, F(E,k)
can be treated as a function of a single variable, the
magnitude of k. Our searching pattern for the roots of
this function is a parabolic interpolation procedure that
registers convergence when the separation between two
values of k that bracket a zero of F(F,k) is less than
some e, and then performs a last linear interpolation for
the root. In the calculations reported here we chose ~

to be 10 ' except in the neighborhood of points where
the line of search crosses a free-electron energy surface
and the structure constants are singular. In those re-
gions F(E,k) varies rapidly and we used s= 10 '. These
choices assure that, as far as the search procedure is
concerned, the roots are correct to at least four figures.

There are two separate convergence problems in the
KKR method, the truncation of the structure-constant
series and the choice of /, „.We have included enough
terms in the structure constants to insure that in-
accuracies from that source cannot be detected by our
search procedure. Our experience corroborates the evi-
dence of Ham and Segall that the KKR method con-
verges very rapidly with increasing /, . Calculations
carried out on copper for /, „equal to two and four are
discussed in Sec. III. It is found that results for /,„, = 2
are sufBciently accurate for all applications.

The practical advantage obtained from focusing
attention on high-symmetry points in the Brillouin
zone and using group theory, as is often done in band-
theory calculations, is the reduction in the size of the
determinant that must be evaluated. This is desired
not only because the number of elements that must be
calculated is reduced but also because the evaluation of

a large determinant is a time-consuming process even
after its elements are known. The most important conse-
quence of the good convergence of the KKR method
for small values of /, arises from the fact that the order
of the determinant F(E,k) is (l„„„+1)sas can be seen
from Eq. (3). Since the KKR method automatically
leads to relatively small determinants and the tech-
nique we have developed for calculating the elements is
very fast, we have found no necessity for group theory
to speed up calculations. We can thus search the direc-
tions of k space that we need for the proper specifica-
tion of constant energy surfaces without over-empha-
sizing the lines of high symmetry.

Another method for band-theory calculations that
shares many of the advantages of the KKR method is
the augmented-plane-wave (APW) method suggested
by Slater' and developed by him and his students. A
comparison of certain formal aspects of these two
methods has been made by Johnson and by Slater. '
An interesting point that they discuss is the fact that
although both methods normally make use of the
muffin-tin potential and the radial functions defined
in Eq. (2), the (APW) method requires very much
larger values of /,„, for convergence. The order of the
determinants that occur in the APW method is not
determined by /, , but instead is given by the number
of basis functions that must be used. This leads to
rather large determinants and necessitates the use of
group theory to obtain convergent results with a reason-
able expenditure of computer time. Some constant-
energy calculations with the APW method were carried
out by I.oucks, "but most of the calculations with this
method have used constant-k searches. The calculations
with the APW method on copper by Burdick" and
those done by Segall' using the KKR method show that
the two methods give the same results for specific eigen-
values when they are carried out to convergence. The
differences between the values for certain quantities
that we give below and the ones that Burdick and
Segall obtained using essentially the same potential
arise because we make use of the constant energy sur-
faces that we are able to calculate.

III. CALCULATIONS ON COPPER

There is nothing novel about the idea of focusing
attention on constant-energy surfaces in the calculation
of quantities of interest from band theory. In simple
cases, such as the free-electron model, it is done auto-
matically. For more realistic band theories, however,
the practical difhculties involved with obtaining sufh-
cient detail in nonsymmetry directions has led to the
development of alternative methods for calculating
these quantities. In the preceding section we discussed

8 J. C. Slater, Phys. Rev. 51, 846 (1937).
~ K. H. Johnson, Phys. Rev. ~ 50, 429 (1966).
'0 J. C. Slater, Phys. Rev. 145, 599 (1966)."T.L. Loucks, Phys. Rev. 139, A1181 (1965).
"G.A. Burdick, Phys. Rev. 129, 138 (1962l.
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how' the KKR method can be used for calculating con-
stant-energy surfaces, and in this section we show how
these surfaces are used to obtain information about
copper.

One of the potential functions that we use, which we
call Vr, was obtained by 6tting to the values for the
potential function proposed for copper by Chodorow in
1939 that are given in Ref. 12. Some small differences
may have been introduced in this process, but we
believe that Vr is essentially the Chodorow potential. "
Two other potential functions were generated from
atomic Hartree-Fock wave functions by a method that
has been widely used in band-theory calculations. " In
one of these, which we call Vrr, the copper wave func-
tions were calculated by Watson. " This potential
should be about the same as one used by Mattheiss"
in a calculation along one symmetry axis that was done
in connection with some other work. In the other,
called Vrrr, the wave functions were obtained from
Herman and Skillman's tabulations. "

The Grst step in the calculations with a particular
potential function is to survey the bands of interest by
calculating E(k) curves along symmetry directions for
a wide range of energies. This makes it possible to obtain
an orientation with respect to the general features of
the bands.

The energy bands of transition metals are frequently
described by grouping together those portions of the
bands that behave like the sp band of simple metals,
and then referring to the Qat bands that lie across the
sp band and hybridize with it as d bands. Surveys along
the symmetry axes with the potentials described above
show that the shapes of the sp bands are not sensitive
to the potential used, but the positions of the d bands
relative to the sp bands do vary with potentiaL The d
bands appear highest relative to the sp band when Vrr
is used in the calculation, they are lower when Vr is
used, and they are lowest when Vr» is used.

In Table I we show the values that we have calcu-
lated with these potentials for the energy of the lowest
band state above the rare-gas core E(I' t), the energy
at which the conduction band makes contact with the
hexagonal faces of the Brillouin zone E(I.s ), and the
energy at which the conduction band makes contact
with the square faces, E(X4). Values for the Fermi
energy calculated by the method described below are
also shown. In this table, and throughout the following,
all other energies are measured from the lowest band
energy E(I'&) calculated with the potential under con-
sideration. Energies as calculated can be obtained by
adding E(l'&) to the quoted values.

"Throughout this paper we use the value for the lattice con-
stant of copper that is quoted in Ref. 12, a=6.83087 a.u."L.F. Mattheiss, Phys. Rev. 133, A1399 (1964).

'~ R. E. Watson, Phys. Rev. 119, 1934 (1960).
~ L. F. Mattheiss, Phys. Rev. 134, A970 {1964).
'7 F. Herman and S. Skillman, Atomic Structure Calculatioes

(Prentice-Hall, Inc. , Englewood ClifFs, New Jersey, 1963),

TABLE I.The energies of certain special points from the energy
bands calculated with diferent potentials. The unit is rydbergs,
and the energies of the other points are measured from E(Fj).

Potential

Vz
lmax= 2

E(r()
—1.0468

E(I.s ) E(X4 )

0.6145 0.8156 0.6685

Vz
lmfLx =4

Chodorow'
Vzz
Vzzz

—1.0468 0.6112 0.8081 0.6672

—1.043 0.614 0.808 0.659—1.1471 0.5903 0.7995 0,6796—23.990 0.6120 0.8044 0.5930

a From the APW calculation of Ref. 12.

It can be seen from Table I that when Vrrr is used,
Er is less than E(I.s.). This means that the Fermi sur-
face calculated with this potential does not make con-
tact with the hexagonal faces of the Brillouin zone,
which disagrees with the experimental results described
below. The results obtained using Vr and Vrr are more
reasonable, and we will focus our attention on these
potentials for comparisons with experiments.

The calculations described above were carried out
using l, = 2. In order to check the convergence of the
results, a number of calculations have been done using
the potential function Vr with larger values of l, .
Some of the values obtained are shown in Table I. In
going from /, „=2 to l, =4, E(I t) changes by less
than 10 ' Ry. For all eigenvalues tested the change was
less than 10 ' Ry. The changes seem to be greater for
points on the symmetry axes than for general points.
With such good convergence we use l, = 2 for most
of our calculations, although we did calculate the Fermi
surface and one constant-energy surface on either side
of it using Vr and /, „=4for additional checks.

Since the potential function V& is essentially the
Chodorow potential used in Burdick's APW calcula-
tions, "we have compared our results with his. As is
illustrated by the values in Table I, the differences for
specific eigenvalues arise in the third decimal place.
This is the kind of agreement that Burdick and Segall4
had already demonstrated between the APW and KKR
methods. The errors that we introduce by using l, =2
seem to be at least as small as the truncation errors in
Burdick's calculation, which is in agreement. with the
general considerations of Johnson' on this point.

If a constant-energy surface is calculated for some
energy E then twice the volume inside of this surface
divided by the volume of the Brillouin zone gives the
number of states per atom in that band having an
energy less than E. If there is only one band at E then
this quantity is the integrated density of states M(E).
If there is more than one band at E it is necessary to
sort out the points obtained from the constant-energy
search with respect to the various bands involved. The
volume inside of each surface is calculated separately
and M(E) is obtained from the sum of the volumes. It
is necessary to take care that the regions of k space
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TAnLE II. The integrated density of states 3E(E) and density
of states p(E) calculated for a number of energies using the
potential function Uz with l, =2.

E (Ry)

0.51785
0.53477
0.55169
0.56861
0.58553
0.59399
0.60245
0.61091
0.61261
0.61430
0.61599
0.61768
0.61937
0.62783
0.63630
0.64476
0.65322
0.66168
0.66675
0.66845
0.67014
0.67860
0.67806
0.70398

u(z)
0.39878
0.48090
0.55483
0.62369
0.68941
0.72154
0.75344
0.78529
0.79169
0.79812
0.80461
0.81109
0.81758
0.84976
0.88i59
0.91314
0.94444
0.97542
0.99392
1.00002
1.00613
1.03655
1.06673
1.12608

4.36
3.88
3.55
3.35
3.23
3.21
3.18
3.20
3.21
3.22
3.25
3.24
3.23
3.20
3.17
3.14
3.11
3.09
3.07
3.06
3.06
3.03
3.00
2.94

Z (Ry)

0.72090
0.73782
0.75475
0.77167
0.78859
0.79705
0.80551
0.80720
0.80889
0.81059
0.81228
0.81397
0.81566
0.81735
0.81905
0.82074
0.82243
0.83089
0.83935
0.85627
0.87320
0.89012
0.90704

1.18444 2.88
1.24141 2.82
1.29727 2.77
1.35202 2.71
1,40578 2.65
1.43261 2.62
1.45886 2.60
1.46408 2.61
1.46932 2.63
1.47461 2.66
1.47996 2.69
1.48539 2.74
1.49089 2.72
1.49629 2.69
1.50165 2.66
1.50697 2.65
1.51222 2.64
1.53850 2.62
1.56451 2,56
1.61448 2.42
1.66108 2,28
1.70575 2.15
1.74760 2.05

separated by a constant-energy surface are correctly
identified as being inside or outside the surface, since
many bands have their energy minima at points other
than the center of the Brillouin zone. An over-all survey
of the general behavior of the bands and a comparison
of neighboring energy surfaces for small changes in E
are helpful in making this identification.

If e is the number of electrons per atom that must be
put into band states, then the Fermi energy Ey is de-
fined by the equation M(E~)=n. Clearly the Fermi
energy can be found very accurately by calculating
M (E) for several ene'rgies in the neighborhood of Er.
The density of states for the system is defined as the de-
rivative of M(E) with respect to energy, p(E) =dMidE.

In copper there is only one band for energies in the
neighborhood of the Fermi energy. The constant-energy
surfaces for this band were calculated for a number of
energies above the d bands using Vz and l, =2. The
enclosed volumes were calculated by a simple numerical
integration technique. This technique and our reasons
for believing that it leads to a function M(E) that is
accurate to approximately four decimal places are dis-
cussed in the Appendix. The density-of-states function
p(E) was calculated by fitting the calculated values of
M (E) to polynomials with'in limited energy intervals
and diGerentiating the polynomials. We feel that this
procedure leads to values for p(E) that are accurate to
three figures. Values for these functions are given in
Table II for all of the energies at which the constant
energy surfaces were calculated. It can be seen that the
intervals between successive energies are not equal. One
of the advantages in this technique is that greater detail
&an easily be obtained in energy regions where this is

T~z,E III. The integrated density of states M(L&) calculated for
three energies using different potential functions.

't'
z& lmax=4

Z (Ry) u(Z)
0.66169 0.97981
0.66723 0.99993
0.67015 1.01062

Uzz

L; (Ry) M(Z)

0,67621 0.98584
0.67960 0.99992
0.68467 1.02097

Uzzz

L; (Ry) u(Z)
0.58884 0.98771
0.59299 0.99999
0.59730. 1.01290

desirable because the functions are varying rapidly or
for some other reason.

There are eleven electrons in copper outside of the
rare-gas core that must be fitted into the calculated
bands. Ten of these go into the five bands which fall
completely below the energies that we are considering.
Thus, the energy for which M(E)=1.0 is the Fermi
energy. The value of 0.6685 Ry obtained from Table II
diGers from the value of 0.659 Ry obtained by Burdick
and 0.658Ry obtained by Segall partly because of
small differences in the eigenvalues but also because it
is more dificult to obtain an accurate Fermi energy
from their data.

In Table III we give three values of the integrated
density of states calculated using Vz and I, =4, Vzz,

Vzzz. These results justify the Fermi energies
quoted in Table I and can also be used to calculate a
density of states at the Fermi energy.

The density of states, integrated density of states,
and Fermi energy represent only a small part of the
information that is contained in the complete numerical
representations of constant energy surfaces that have
been calculated. The dimensions of the Fermi surface
measured by the magnetoacoustic effect and the cross-
sectional areas of planes passing through the Fermi
surface measured by the de Haas —van Alphen eGect are
easily and accurately found for a given potential from
the numerical representation of that surface. The rate
of change with energy of cross-sectional areas of the
Fermi surface measured by cyclotron resonance experi-
ments can be obtained by using the Fermi surface and
another surface calculated for an energy suKciently
close to E~. The results of calculations with Vz and Vzz

of certain quantities that are measured in these experi-
ments are shown in Table IV. Calculations with Vz

and l,„=4 are shown to demonstrate convergence.
With the 26066 points on the Fermi surface that we
have obtained more e1aborate comparisons could be
made, but these are sufficient for our present purposes.

A searching procedure that is diGerent from the one
described in the Appendix is used to investigate the
neck where the Fermi surface is in contact with a
hexagonal face of the Brillouin zone. Lines of search
lie in the plane of this face and k is varied from its
center to its edge in a, number of directions. The dis-
tances from the center of the hexa, gonal face to the
points where the lines of sea,rch cross the Fermi surface
are calculated to at least four-figure accuracy for a
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TABLE IV. The comparison of certain quantities that we have calculated with the experimental results discussed in the text.

&'z

~max =2

Fermi-surface radii
(dimensionless)

~100 ~110 ~N

1.0501 0.9553 0.1783 5.957 2.510 0.193

de Haas-van Alphen frequencies
(10s G)

~B ~D

Cyclotron masses
(dimensionless)

(m /m )s (m"/ns, )n (m /m, )~

1.21 1.13 0.38

Low-temperature
specific-heat

coefficient
(mJ/g-atom

deg')
v

0.629

Vz
/„,„.,=4

1.0530 0.9544 0.1808 5.960 2.504 0.199 1.22 1.12 0.38

&zz
Experiment

1,0658 0.9426 0.2146
1.036 0.956 0.195

5,920
6.0337

2.462 0.280
2.5203 0.2187

1.43
1.37

1.23
J 29

0,42
0.46

0.720
0.697

given case. In addition to 6nding accurate parameters
for the neck we have also shown that the neck is circular.
Radii calculated using Vz and Vzz show no change with
direction to within the accuracy of the calculation.
Burdick's less detailed results" indicated the possibility
of a noncircular neck, but the magnetoacoustic and
de Haas —van Alphen experiments are consistent with a
circular one.

The most direct measurements of the radii of the
Fermi surface come from the magnetoacoustic effect.
The radii in the (100) and (110) directions, ktss and
ki]p and the neck radius k~ expressed as ratios of the
calculated values to the radius of the free-electron
sphere are compared with Bohm and Easterling's ex-
perimental values" in Table IV. The neck radius ob-
tained using Vzz is too large, and also the value for happ

shows that this Fermi surface is pulled out too far in
the direction of the square face. A more detailed in-
vestigation of the radii in the (100} and (110) planes
shows that the radii of the Fermi surface calculated
with Vz agree with Bohm and Easterling's measure-
ments to within experimental error for most directions
that they could measure directly, except for those
rather close to the neck which are too small. Previous
calculations with the Chodorow potential agree with
our value for k]pp but agree less well for k»p and k~.
The Fermi surface obtained using Vzz is quite similar
to the one advanced by Roaf" to fit the de Haas-
van Alphen results of Shoenberg. "

The de Haas —van Alphen frequencies are calculated
from the formula

F= eked/47r'e,

where A is the central extremal area perpendicular to
the (100) directions for Iin shown in Table IV, it is the
dog' s-bone area for F~, and the neck area for Il~. The
calculations are compared with the experimental results
of Joseph, Thorsen, ('ertner, and Valbys' Dr. I. M.

"H. V. Bohm and V. J. Easterling, Phys. Rev. 128, 1021
(1962).

» D. j.Roaf, Phil. Trans. Roy. Soc. London 2SS, 135 (1962).
20 D. Shoenberg, Phil. Trans. Roy. Soc. London 255, 85 (1962).
"A. S. Joseph, A. C. Thorsen, E. Gertner, and L. E. Valby,

Phys. Rev. 148, 569 (1966).

Templeton is quoted by Zornberg and Mueller" to the
effect that his experiments indicate that the experi-
mental frequencies we are using may be 0.6'Po too large.
If they are changed by the amount, then the calcula-
tions with Vz yield reasonable values for Ii& and Ii&,
but the neck area is too small as was already indicated
by the magnetoacoustic results. The differences be-
tween the frequencies calculated using Vzz and experi-
ment are also consistent with the magnetoacoustic
results, indicating too large a neck area and too much
d.istortion in the belly.

The ratio of cyclotron masses to the mass of the elec-
tron is given by

m* A' (3A

The subscripts on the m*/m, given in Table IV refer
to the same extremal cross-sectional areas that were
used, in connection with the de Haas —van Alphen re-
sults. The experimental values are obtained from the
cyclotron resonance experiments of Koch, Stradling,
and Kip.23 It is seen that the agreement between the
calculations and experiment is not as good as in the
preceding cases. Our values using Vz agree with the
results calculated by Segall4 with approximately the
same potential, but the uncertainties in our calculation
are much smaller.

IV. MSCUSSION OF RESULTS FOR COPPER

The above data seem to indicate that the best poten-
tial for copper, as far as states very near the Fermi
surface are concerned, would be similar to Vz but
modified in the direction of Vzz. This means, effectively,
that the d bands should be higher than those obtained
using Vz but lower than the ones obtained using Vzz.
Such a change would make the neck bigger, hopefully
without distorting the belly too much. The agreement
with the cyclotron resonance experiments should. also

~ E.I.Zornberg and F.M. Mueller, Phys. Rev. 151,557 (1966).
~ ].F. Koch, R. A. Stradling, and A. F. Kip, Phys. Rev. 133,

A240 (1964).
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FIG. 1. The density of states versus energy obtained using the
potential function Vz with / =2.

be improved. Of course, one cannot shift values around
at random by this means. For example, it is no doubt
impossible to find a muon-tin potential that will give a
Fermi surface that has the larger neck area required by
the de Haas —van Alphen frequency F& without making
the calculated F& and FD smaller than the frequencies
predicted using Vz. This lends theoretical support to
the suggestion that the experimental values of Ref. 20
are slightly larger than they should be. Since we are
interested in band theory rather than in just fitting
Fermi-surface data, the critical question for such an
adjusted potential would be whether or not the position
of the d bands, the critical points E(Ls ) and E(X4.)
and other features that give information about states
away from the Fermi energy could be made consistent
with photoemission experiments, optical experiments,
and other experiments that measure these features. In
the following section we discuss the possibilities for
obtaining such a potential.

The coefficient of T in the electronic contribution to
speci6c heat is given by

y = -'smsksp (Er),

where )'s is Boltzmann's constant and p (Er) is the density
of states at the Fermi energy. This density of states
has been calculated to three-figure accuracy for a given
potential and l, , and the resulting y's are compared
with the experimental value of Kneip, Betterton, and
Scarbrough'4 in Table IV. The comparison of the values
0.629 and, 0.631 rnJ/g atom deg' calculated using Vr
with /, = 2 and l =4 shows that errors in the calcu-
lated values for a given potential can conservatively be
estimated as less than 1%.Segall' used an interpolation
scheme to obtain y=0.59 mJ/g-atom deg', and Bur-
dick's" histogram gives a value of approximately 0.50
mJ/g-atom deg' for the Chodorow potential. Since our
accurate calculations give a value for y that is 10%
below the experimental value when Vr is used and 3%

'4 G. D. Kneip, J. O. Betterton, and J. O. Scarbrough, Phys.
Rev. 130, 1687 (1963).

above when V&z is used, it is likely that a potential
which leads to a Fermi surface in better agreement with
the data will give a value for y that is even closer to the
measurement. This leaves a portion of y to be explained
by electron-phonon interactions that is small in com-
parison with estimates that have been made for other
materials. "

The data in Table II have been used to plot the
density of states versus energy shown in Fig. 1. The
units have been changed to states per eV versus eV,
the energy being measured relative to the Fermi energy,
to facilitate comparison with experiment. The large
values of p(E) for low energies arise from the distortion
of the conduction band at those energies, since the range
of energies shown here is above the d bands. To our
knowledge, this is the first time that the density of
states for a metal having d bands has been calculated
to this accuracy and in this much detail on the basis of
a realistic band theory without the use of interpolation
schemes for the bands, even over a restricted range of
energies. Vile might point out that our programs will
work for the d bands although the investigation is more
expensive.

This portion of the density-of-states curve for copper
has figured prominently in discussions of alloys. "The
peaks in the curve at E(Ls.) and E(X4.) are smaller
than has generally been assumed in those discussions.
The density of states is seen to be a linear function of
energy over a rather wide range of energies in the
neighborhood of Ef. Attempts have been made to in-
vestigate this function by alloying polyvalent metals
with copper and measuring the change in y. According
to the rigid-band model, the Fermi energy of such an
alloy ef can be found on the assumption that the extra
electrons added to the system fill the states that have
been calculated for copper. Thus, if M(E) is the
integrated density-of-states function for pure copper,
the Fermi energy for the alloy can be found from
3II(er) =e/a, where e/u is the average number of elec-
trons per atom. The slope dy/d(e/u) can be calculated
from our data, but the experiments generally give the
opposite sign from this calculation. '~

Berglund and Spicer" have made photoemission
studies on copper that can be interpreted to give a
density-of-states function. Their Fig. 16 shows the
peaks at E(Ls ) and E(X4 ), but they are much larger
than our calculated ones. These results can probably be
explained on the basis that the transition probabilities
are not the same for all states in the conduction band,
but the positions for these peaks that we find are not
consistent with their results. Our calculations with Vz
and V» lead to values of approximately 2.0 eV and 1.6
eV for E(X4.)—Er, which agrees reasonably well with

"N. W. Ashcroft and J. %. Wilkins, Phys. Letters 14, 285
(1965)."H. Jones, Proc. Phys. Soc. (London) 49, 250 (1937); Phys.
Rev. 134, A958 (1964).

~' L. C. Clune and B.A. Green, Phys. Rev. 144, 525 (1966).
~' C. N. Berglund and W. E. Spicer, Phys. Rev. 136, A1044

(1964).
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Setting up a grid, in the plane of the square face of
the Brillouin zone as shown in Fig. 2, the lines that
connect the point |with the points of intersection of
the grid can be used as the lines of search. From sym-
metry considerations it is known that it is sufficient to
carry out calculations only in the region of the Brillouin
zone set off by heavy lines in the figures which contains
1/48 of the volume of the zone. If iV is the number of
intervals that a side of the grid is divided into, then the
number of lines passing through this region is given by
-,'(1V+1)(X+2).By searching this set of directions and
then using the sylIunetry of the constant energy sur-
faces, a total of 24(X—1)(X+3)+26 distinct points
can be found for each surface. In the calculations re-
ported here the value 32 is used for E. Such a mesh
leads to the calculation of 561 points on the portion
of the constant-energy surface that lies in the 1/48 of
the Brillouin zone, and they define 26066 points on
the total surface.

If a constant-energy surface is simply connected its
volume can be obtained by adding up the volumes of
tetrahedra which have one vertex at I' and whose edges
are the radii of the surface in three neighboring direc-
tions. To check. the accuracy of this integration method,
we calculated the volume of several free-electron
spheres in this way and compared them with the exact
values. We found, that the ratio of the error in the
volume, he, to the volume of the sphere, e, is given by
the approximate formula

6v (number of radii used )—x( i=8.0.
v kin volume caiculationf

Since we calculated 26 066 radii for the constant energy
surfaces discussed in this work. , we feel that the volumes
that we have calculated (and hence the integrated
densities of states) are accurate to about four decimal
places.
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Recovery of Electron-Irradiated Aluminum and Aluminum Alloys.
I. Stage I

A. SOSIN

North American Aviation Science Center, Thousand Oaks, Cahfornia

AND
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Atomics International, Division of North American Aviation, Incorporated, Canoga Park, California
(Received 28 April 1967)

The recovery in Stage I of the increase in electrical resistivity due to electron bombardment of aluminum
has been examined using a "ratio-plot" technique. The differences in annealing between two samples with
either different pre-irradiation histories or varying irradiation conditions are emphasized by this technique.
Using samples irradiated to different doses (i.e., different initial defect concentration), the temperature
region of non-first-order processes is clearly delineated; this region encompasses free interstitial migration.
Using samples with 0.1 at.% copper or zinc and comparing with pure aluminum, the suppression of re-
covery by impurity doping is shown to be consistent with previous doping studies.

I. INTRODUCTION

HE Stage-I region (typically (70oK) is of central
importance in the annealing of many irradiated

metals as approximately 80-90% of the radiation-
induced damage may be eliminated below 70'K, follow-

ing electron irradiation near liquid-helium temperature
(4.2'K). The first detailed studies of the Stage-I re-

covery following electron irradiation were performed by
the General Electric group, ' using copper. They reported
five substages, labeled I~ through I~, in increasing order

*Work supported by the Division of Research, Metallurgy and
Materials Programs, U. S. Atomic Energy Commission, under
Contract No. AT(04-3)-701.

' J. W. Corbett, R. B. Smith, and R. M. Walker, Phys. Rev.
114, 1452 (1959);114, 1560 (1959).

of temperature. The first three of these substages were
reported to follow first-order kinetics and were attrib-
uted to close-pair vacancy-interstitial annihilation,
The fourth and fifth (ID and Is) were reported to pos-
sess the same activation energy. No simple chemical
rate-theory formulation was found to adequately de-
scribe the I&—Iz recovery. Corbett eI, al. ' fitted their
data to a di6'usion model in which this region of recovery.
was ascribed to the migration of interstitials, charac-
terized by its free migration energy, first to nearby
vacant sites but later to more distant vacancies as con-
tinuing interstitial migration results in reduced spatial
correlation between an interstitial and its original va-
cant site. The fact that complete recovery was not
eBected in this way was explained by further introduc-


