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A theory of the magnetic-Geld dependence of the ultrasonic attenuation in metals is given for some simple
models of the Fermi surface. These models exhibit open orbits and allow for magnetic breakdown from
open to closed orbits. The theory is semiclassical and is based on a generalization of the path-integral
method of solving Boltzmann's equation. Results of calculation are given for magnetic Gelds perpendicular
to the sound wave vector q, with both longitudinal and transverse polarizations and with open orbits both
parallel and perpendicular to q. These cases include the geometry corresponding to the open-orbit resonance
observed experimentally in cadmium by Gavenda and Deaton. It is found that (a) the transverse polarization
shows open-orbit antiresonances; (b) experimental evidence of magnetic breakdown can be obtained only
by a detailed examination of the whole line shape; (c) quantum-mechanical coherence etfects should mani-
fest themselves as an extra set of highly nonsinusoidal oscillations.

I. INTRODUCTlON'

N open-orbit resonance was first observed by
Gavenda and Deaton' in ultrasonic attenuation

measurements made on metallic cadmium Lhexagonal
close-packed (hcp) structureg in the presence of a
magnetic field. The open orbit observed is parallel to
the $0001$ direction in k space. It results from the
presence of an energy gap in the AI-II plane of the
Brillouin zone (B.Z.) which is due to the spin-orbit
interaction. The fact that this energy gap exists in all

hcp metals was pointed out by Falicov and Cohen,
who estimated the gap for magnesium to be 7.5)&10 '
eV. The gap in cadmium is presumably larger by about
two orders of magnitude, yet still small.

For metals with small gaps magnetic breakdown, i.e.,
magnetic-field induced tunneling of electrons through
the gap, has been observed and its effect on the gal-
vanomagnetic properties calculated. '4 A small gap 6
means in this context that the condition'

Xh' jetr'itto & 1

is satisfied for readily obtainable magnetic fields B; in
(1.1) et'is the unperturbed Fermi energy, to= ~e~H/rttc
is the cydotron frequency, m is the free electron mass,
and E is"'a numerical factor of order unity. Complete
magnetic breakdown across the spin-orbit induced gap
in cadmium would result in dosed. orbits, i.e., complete
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disappearance of the open-orbit resonance. Changes of
topology of this kind due to magnetic breakdown have
drastic effects on the galvanomagnetic properties in
general, and the magnetoresistance in particular. It
should be pointed out that when magnetic breakdown is
almost complete the partial absence of breakdown across
the gap introduces an extra scattering mechanism which
scatters the electron off of the closed orbit. In the case
of the galvanomagnetic tensors, this can be described
in terms of an additional effective relaxation time. '

It is the purpose of this paper to present a more
general procedure for including magnetic breakdown in
the theory of transport phenomena in the semiclassical
regime. This method is applied to calculate the magneto-
acoustic attenuation for a simple model of a metal ex-
hibiting open orbits which have the possibility of break-
ing down to closed orbits. The line shape of the open-
orbit resonance is studied in detail. The previously un-
answered question of what constitutes evidence for
magnetic breakdown in the magnetoacoustic attenua-
tion' receives an answer.

Section II contains the theory relevant to the calcula-
tions: Sec. II A is a brief summary of the semiclassical
model which is the basis of this work; Sec. II 8 is a brief
statement of the breakdown probabilities that are used;
Sec. II C contains the details of the path integral or
kinetic method of including magnetic breakdown in
the semiclassical transport problem; in Sec. IID the
attenuation coeKcients are derived in a general way and
discussed. The mathematical details of the evaluation of
the conductivities and other quantities needed for the
calculation of the attenuation coeScients are relegated
to an Appendix. Section III contains a description of
the models studied and the results of the calculations.
Some of the models are chosen so as to exhibit an open-
orbit resonance similar in character to that observed
in cadmium. In all cases both longitudinal and trans-
verse wave attenuations are calculated. The numerical
results of the calculations are also discussed and inter-
preted; Sec. III A contains a discussion of the results
(both numerical and analytic) obtained for closed orbits;
Sec. III 8 contains the presentation and. discussion of
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be neglected. In this sense our model is free-electron-
llke.

Since the electrons are considered classical particles,
it is possible to define an electronic distribution function
f= fs+g(r, k, t) which obeys Boltzmann's equation

(4)
k Spoc

(o)
(i)

B.Z. Boundories Bf Bf F Bf Bf—+v —+——=—
Bt Bi k Bk Bt

In (2.1), we have

(2.1)

(~) (a) (
and

F= &(dk/dt) = —
~

e
~
(E+ (v/c) x H), (2.2)

v= (1/It) Be(k)/Bk. (2 ~)
Q)

r Spoce

(b)

(3)

Fro. 1.(a) A Fermi surface in the extended-zone scheme which
for no breakdown has open orbits parallel to k~ in the first band
and a closed electron piece in the second band. For complete
breakdown the surface is a closed circular electron piece. The
-angle 8 measures the amount of Fermi cylinder that contributes
to the open orbit, sine= ~G~/2ko. (b) The corresponding orbits
in.real space with the direction of the sound propagation vector q
and the external magnetic field H are shown. The open orbits in
real space are parallel to q.

the numerical results for open orbits with no magnetic
breakdown operating; Sec. III C is a detailed study of
the open-orbit resonance and the effects of the relaxa-
tion time and magnetic breakdown; also, the numerical
results and a discussion of the effects of magnetic break-
down on the line shape in general are given; Sec. III D
presents the results of including quantum oscillations in
the breakdown probabilities as given in Sec. IIB.
Finally, Sec. IV contains a summary of all of the con-
clusions drawn from the results of these calculations.

II. THEORY

A. General Model

A semiclassical approach to the theory of the mag-
netoacoustic effect has been shown by Cohen, Harrison,
and Harrison' (CHH) to be adequate for explain-
irig experimental results in the range of magnetic
6elds of interest here, i.e., that range correspond-
in.g to geometric resonances. A modification of their
method is used in this paper. It is assumed that the
sound wave can be represented by a velocity field

-u(r, t) ~ exp[i(tl r—rd, t)). The sound wave has a prop-
-agation vector q and frequency co„dispersion being
neglected at this stage. The electrons, Eo per unit
volume, are considered to be "classical" particles which
obey a dispersion law e(k) and Fermi-Dirac statistics.
It is also'assumed that .the pseudopotential at the
Fermi level is small enough so that distortion of the
Fermi surface due to deformation potential eBects can

'M, H. Cohen, M. J. Harrison, and AV. A. Harrison, Phys.
Rev. 117-, 937 (1960).

Further, fs is the unperturbed Fermi-Dirac djstrjbu
tion, k is the propagation vector describing the state
(i.e., position of the electron in k space), E is an internal
electric field set up by the sound wave, and H is the
external magnetic field. (The magnetic field set up by
the sound wave is small compared to the external Geld
and is therefore neglected. ) A relaxation time ansatz

Bf/Bt I
-ii= —(f f.)lr— (2.4)

is made; in (2.4) it is assumed that the electrons scatter
into the local equilibrium distribution

f,(r,k, t) =fs(k —mu/r, e~(r, t)), (2.5)

and 7 is assumed constant everywhere on the Fermi sur-
face. Expanding to first order in u and quantities pro-
portional to u, we obtain the solution of the above
Boltzmann equation in terms of Chamber's path
integral'~

g(r, k, t) = —(Bfs/Be)LJ(k) (E—mu/r)
+(ep'%V pv')K(k)1Vij, (2.6)

where

(J(k),K(k)) = (—~
e ( v(t'), 1)

&«xp(iLa (r(t') —r(t)) —~.(t' —t)j
—(t—t')/r)dt' (2.7)

and the time t' parametrizes the path followed by the
electron in k space previous to the time t. Equation (2.7)
is called the path integral.

It is now assumed that the Fermi surface is a circular
cylinder of height dk, and radius ks so that de/dlV= e~'/cVo. The problem is thus reduced to two dimen-
sions, which makes the resonances sharper but does not
essentially alter the physical situation in spite of the
considerable deviation from a free-electron sphere. This
is so because we consider only cases where tie H and H
is parallel to the cylinder axis. At very low temperature
we have Bfs/Be~ 3(e—e~') and con—sequently only
electrons at the Fermi surface contribute to the trans-

' R. G. Chambers, Proc. Phys. Soc. (London) A65, 458 (1952);A238, 344 (1956).
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port phenomena; moreover, electrons on the Fermi
surface "cylinder" circulate perpendicularly to 8, . as
seen from the solution of (2.2) and (2,3) for K=0,

a

ky

B. Magnetic Breakdown

If there were no periodic lattice potential or if k()

were such that the entire Fermi surface cylinder was
contained within the 6rst BZ, the electrons would have
circular paths in k space. However, when the lattice
potential is nonvanishing and ko is larger than some
dimension of the erst BZ, Bragg reaction takes place
and the electronic paths become more complicated. For
example, Fig. 1 depicts a Fermi surface and BZ bound-
aries such that there is an open orbit parallel to the x
axis in real space (which is also parallel to tl=tll)
when there is no magnetic breakdown. Using the labels
of the pieces of the cylinder in Fig. 1(a), with no mag-
netic breakdown the electrons follow the paths 1—1—1—1

and 3—3—3—3 for open orbits and 2—4—2—4 for the closed
electron orbit. When magnetic break. down is complete
the electron follows the circula, r closed electron orbits
1—4—3—2—1. For partial breakdown the paths are not
uniquely defined and they form a network on which the
electrons describe a random walk. In other words, an
electron on 1 has a probability P of having arrived there
after tunneling from 2, and a, probability Q=1 Pof-
having arrived directly from 1. The tunneling proba-
bility P is given by'

where
P= exp( —Hp/8'),

Hp= E&'mc/eg'Ae.

(2.8)

(2.9)

Here ~&' is the Fermi energy, 6 is the energy gap, and K
is a constant of order unity. As shown in Fig. 1(a), the
angle 0 measures the amount of Fermi cylinder that
contrib'utes to the open orbit, so that. sin8=

I GI/2ks,
where G is the reciprocal lattice vector. In the case
when 8 approaches ~x it is seen that the Fermi cylinder
has in fact only two, instead of four, pieces (see Fig. 2),
and the probabilities P and Q are replaced by'

R11d

S=2Q/(1+

T——P(1+Q)= 1—S.

(2.10)

(2.11)

and
S= 2Q(1—cosP)/(1+ Q' —2Q cosp)

I

I

(2.12)

T=P'/(1+Q' —2Q cosP) = 1—S, (2.13)
8 M, H, Cohen and L. M. Falicov, Phys. Rev. Letters 7, 231

(1961);E. I. Blount, Phys. Rev. 126, 1636 (1962).

In these equations, S is the probability of following the
Bragg reflected path and 2' is the tunneling (free elec-

tron) probability; P is given by (2.8). If 8 is so close to
~2m that the electron piece is small enough to be in the
oscillatory regime, 4 the quantum-mechanical phase
coherence of the electrons. on this piece must be ac-
counted for. This results in

Fio. 2.(a) The Fermi sur-
face . in the . extended-zone
scheme corresponding to that
of Fig. 1(a), with e very close
to ~~m. (b) Detail of the small
electron piece whose position
is indicated by n in Fig. 2(a)
and where the tunneHng prob-
abilities mentioned in the text
are shown.

{S)

(b)

C. The Path Integral

The path integral, Eq. (2.7), is now used to include

magrietic breakdown into the solution of the transport
problem. Because time t parametrizes the position of
the electron on its phase-space path and since all our
models are two dimensional, only the time dependence
of the path integral is made explicit in what follows.

Equation (2.7) can be written

tp

Xexp{iLQ (r(t') —r(t)) —td, (t' —t)j—(t—t')/r}dt'

+exp{iI q (r(ts) —r(t))—ts, (t —t)]—(t—t )/r)

X(J(ts),E(to)). (2.15)

The path integral for the time t is thus broken up into
contributions from the times between to and t plus the
path integral for to modified by a weight factor. As seen
in (2.15), this weight factor, the coefficient of (J(ts),
K(ts)), has a phase associated with a change of position
of the electron with time relative to the sound wave'.

The magnitude of the coefficient is associated with the
scattering of electrons off the path between points cor-
responding to times to and t. The above formulation of
the path integral can be used in the way described

beloved.

where T, S, P, and Q have the same meaning as above
and where

y = (hc 8/eH) gp. — (2.14)

In (2.14), 8 is the area of the vanishingly small elec-
tron piece in k space, and Ps is a constant phase. In all

calculations, the "rounding off" of the Fermi surface
due to the lattice potential in the vicinity of the junc-
tions is neglected.
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The Fermi cylinder is divided into a Gnite number e
of pieces labeled by an index / running from 1 to n. This
would correspond physically to the way in which the
BZ boundaries cut the free-electron Fermi sphere (or
the Fermi cylinder in, our two-dimensional model). A
conduction electr'on circulates on the Fermi surface in
each piece with its position in k space related to its
position in r space by

hk=. (—)e~/c)[(r —re) x Hj, (2.16)

where ro is an arbitrary origin. The individual pieces can
be considered simultaneously, i.e., a diferent time vari-
able can be de6ned for each piece. Suppose that the
time origin t=0 for the lth piece is taken at the time
at which the transit of that piece begins, and t~ is the
corresponding time at which the transit is completed.
An electron in the lth piece can be followed back from
some point corresponding to t, to the beginning of the
piece corresponding to the time origin for that piece.
Then it can be said to have come from the end of some
other piece p corresponding to t~ for the time variable
in that piece. As can be seen from (2.15), the path
integral depends only on the relative position r(t) —r(t')
and the time diBerence t—t', the velocity being given
by (2.3) as just the local energy gradient on the Fermi
surface. So if the position and velocity in the 1th piece
are denoted by r(l, t) and v(l, t), respectively, the path
integral for a time t at which the electron is in the lth
piece can be given by a reformulation of (2.15) setting
to=0. This is

(J(l,i),E(l,i))= (I(l,i),I,(l,i))
+D(l,t)(J(p, i ),E(p,t )), (2.17)

where (J(p, io),E(p,t„)) is the path integral for the end
of the pth piece corresponding to t~ and where

(I(l,t),IO(l, t))= (—~
e

~
v(l, t), 1)

Xexp{i[q (r(l, t') —r(l, t))—sr, (t' —i)j
-(i-i')/ &«', (2»)

where M~„(the NXN breakdown matrix of Ref. 3) is the
probability that an electron in the piece l has come from
the piece p. In the example in Fig. 1 for some general tt,

3I), is
'QPOO
0 0 P Q
0 0 Q P '

.P Q 0 0.

(2.22)

If we let q and co, tend to zero to obtain the uniform
static case, Eq. (2.21) still represents a generalization of
previous methods used to include magnetic breakdown
sects in the calculation of galvanomagnetic tensors. "

The method of obtaining the solution of (2.21) for
the path integrals is to set t= t~ and solve the resulting
set of simultaneous linear equations. Then these solu-
tions are inserted back into (2.21) for arbitrary t. The
total electronic current can now be written following
CHH, ' as

j,=e. (E—mu/er) —RXs
~
e

~
w„ (2.23)

where, for the two dimensional models calculated here,

and

—e m(o
ak, P ~;(t,i)J,(l,i)«(2.24)

4m'It'

6g tg(0
hk, Q

4m'V prv,
v;(l. i)E(i,&)«. (2.25)

iq I(l,i) = —
~e~ {1—[(1—ice,r)/r)IQ(t, t) —D(l, t)) (2.26)

which is obtained by an integration by parts on t' in
(6.18).Using (2.26) and the fact that

Here cv is the cyclotron frequency, m is the free-electron
mass, and v, is the velocity of sound. Also in this two-
dimensional scheme the equilibrium electron density
is cVe= kola. /4~', where hk, is the height of the Fermi
cylinder. Note that

and

D(l, t) = exp —i[g hr(l, t) —co,ig —— (2.19) because of conservation of probabilities, it is easily
shown that

Dr(l, i) = r(l, t) r(l, o) . — (2.20)

Since (2.17) governs the contribution of (J(p,[~),
IC(p, t~)) to (J(l,t),E(l,t)) through D(l, t), magnetic break-
down can be included as an additional weight factor
which gives the probability of connecting various pieces
of Fermi surface. Using the breakdown probabilities
de6ned above we have, in general,

(J(l,t),E(l,i))= (I(t,t),Io(l,t))

+D(l,t) p 3E~„(J(p,t,),~(p,i„)), (2.21)
p~l

ice,r(v p/w—.)' o;g

2(1—uu, r) cro

(2.28)

Thus the discussion of Eq. (2.16) in CHH [which is
identical to (2.27)) goes through here unchanged.
The conductivity tensor e and the diffusion vector
R are now used in the formulation of the attenuation
caeS.cient.

iI(l, t) q= —
~e~ {1—[(1—i&o,r)/rjE(l, i)) (2.27)

and consequently for q= qX,
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D. Attenuation CoeS.cient

The wave equation for sound propagating in the x
direction in a metal is'

O'S/Bt'-v sOsS/Bxs= F/1VgM, (2.29)

where M is the ionic mass, F is the force acting on the
ions as described below, 1Vp is the ionic density (as-
sumed to be the same as the electron density), v, is
the velocity of sound before interactions with the
conduction electrons are included, and S is the ionic
displacement field. By assuming the velocity field of
the sound wave to have the dependence

and

E= (Npe/op)W u,

W = —(e'+ B) ' (t —e')

0 = — C Op

Eg =E;8&; ~

(2.39)

(2.40)

(2.41)

(2.42)

The form of the tensor e' and the vector R results from
the constitutive equation, Eq. (2.23) above which
reduces to

the sound wavelength, typically of order 10 ' for metals
of interest. op is the dc conductivity. Solving for E as
in CHH we obtain

u(r, t) ~ exp{i/(q+iA)x pp,—tj),
we have 8=iu/ai„and (2.29) becomes

icp,+—i(v.s/(o, )(q+iA)s)u= F/NpM (2.3.0)

j,= op+' (E—mu/er),

when the equation of continuity,

(j.) g
= —Ngcv,

(2.43)

(2.44)

Here iA is the deviation of the wave number from
q=co,/v, induced by interaction with the electrons; A

may be regarded as a complex amplitude attenuation
coeKcient. The force F is given by

F=Np (
e ( (E+(u/c) se H)+ F., (2.31)

F,= (1Vpm/r) ((v,) u), — (2.32)

where (v.) is the average electronic velocity. The forces
due to the deformation potential are neglected. The
average electronic velocity is given by

(2.33)

in terms of the electronic current j„and the total
current j,

(2.34)j=j,+Np(e( u,

where E is the self-consistent electric field, H is the
external magnetic field (the internal magnetic field is

neglected), and F, is the coherent force which feeds
en ergy coherently back into the ion sys tem. The
coeherent force is due to the electron-ion collisions and
has the form'

in this case, is used. Using (2.33), (2.35), and (2.39) in
(2.31) and (2.32), we obtain the expression for the force

where

F= —(Npscs/op)S u+(Npl e I/c)u x H, (2.45)

S= (&+B)L(o'+B) '(i+B)—&1 (2 46)

inserting this into (2.30) and neglecting terms quadratic
in A we obtain

where

and

Au= D u,

D= ', (mvp/Mv—, ) t 'PS eirG-j—
( 0

I —1 03

(2.47)

(2.48)

(2.49)

The electronic mean free path is given by l= vzv. .
Equation (2.47) is an eigenvalue equation for the
complex amplitude attenuation coeNcient A. Because
S and G have oK-diagonal terms, the normal modes
are mixtures of longitudinal and transverse waves.
Solving for the eigenvalues yields

4Dy2D21 /2

X 1+
(Dn —Des)'j=—opB E ~ (2.35)

s (Dll+D22) +s (Ds1 Dsp)
is related to the self-consistent field E by Maxwell's

equations as given in CHH
(2.50)

for 8=Hs and q= ql we have

( iy—
0 ip&

'

where
p =arcs/4s o pv, '

7=P(v./c)'

(2.36)

(2.37)

(2.38)

Here if' is the screening parameter and is proportional
to the square of the ratio of the classical skin depth to

'T. Kjeldaas, Phys. Rev. 113, 1473 (1959).

The term (4D»D»)/(D» —D»)' in Eq. (2.50), arises
from the mode mixing. It was calculated for the case of
complete breakdown P= 1, i.e., for the simple circular
electron orbit, and in the case of no breakdown Q= 1,
i.e., when open orbits were present. In both cases both
the real and imaginary parts of this term were no greater
than 10 ' for the magnetic fields of interest. This shows
that mode mixing, although detectable for other field

orientations, ""is small here and can be neglected. The
relative energy attenuations that are calculated are

B. I, Miller, Phys. Rev. 151, 519 (1966).
u H. P. Aubauer, Phys. Rev. 155, 673 (1967).



PAU I R. S I E VERT

G is proportional to the resistance

Re(A) o-Re(y' j. j.)—1. (2.55)

H ~Hz

k Space

(a)

r Space

(b)

.Z. Boundarjes
The minus one that occurs in (2.55) is due to energy
being coherently fed ba, ck into the sound wave by the
collision drag force mu/r. Here y= LIrotr'1 ', e' measur-
ing the total response to the 6eld, i.e., the diffusion
vector has been included. Thus, when P is neglected,
the form of the attenuation (2.52) and (2.53) can be
understood in this way.

The evaluation of the formulas for the conductivity
tensors and diEusion vectors as well as those of the
relative attenuation coeKcients are quite straightfor-
ward but very cumbersome; the procedure is indicated
in the Appendix. The numerical results displayed in
the figures were obtained using the IBM 7094-7040
complex of the University of Chicago Computation
Center.

Fro. 3.(a) A Fermi surface in the extended-zone scheme which
for no breakdown has open orbits parallel to k, in the first band
and a closed electron piece in the second band. The angle 8 here
measures the amount of Fermi cylinder that contributes to the
closed lens-shaped. orbit, cos8= ~G~/2ko. (b) The corresponding
orbits in real space with the direction of the sound propagation
vector q and the external magnetic field 8 shown. The open
rbits in real space are perpendicular to q.

Re(Srt) corresponding to the positive sign in (2.50)
and to longitudinal waves, and Re(Sss) corresponding to
the negative signs and to transverse waves. These are
given by

Re(S,;)= Re((1+8;;)'L(e'+B) 'j,;)—1, (2.51)

which is the same expression used by CHH. )Eq. (2.44)
in Ref. 6j. In terms of o' (2.51) becomes

aI1d

Re(Stt) =Re
&n +iP

011 0 22 Z &12

—1 (2.52)

Re(Sss) = Re(at t'/[o tt'(o st'+iP)+ (o ts')') }—1, (2.53)

where we have neglected y. Also we have used the fact
that o»'= —o»' which is a consequence of (2.28) and
the relation 0.12———0.21."

The mechanism of the attenuation can be explained
in terms of a response argument erst given by CHH.
The argument is as follows: Since the screening in real
metals is almost complete, i.e., P is small, we have a
constant current system, i.e., the internal electric 6eld
E which is induced changes in such a way so as to force
the electronic current to equal, and cancel the ionic
current Eeu; this means that the attenuation, which
can be given schematically as

Re(A) cc Re(E j.)—1, (2.54)

"This is always found to be so for the symmetry of the problem
here discussed.

III. MODEL CALCULATIONS

The Fermi surface models that are used in thi~-cal-
culation are shown in Figs. 1 and 3. They are con-
structed from pieces of circular cylinder as described
above. Also, as mentioned above, we consider only the
cases where the magnetic field H is perpendicular to the
sound propagation vector q, so that we always take
H=Hz and q=qX. When there is no magnetic break-
down both Figs. 1 and 3 exhibit open orbits in the x-y

plane, Fig. 1 shows open orbits parallel q, whereas Fig. 3
shows open orbits perpendicular q. We shall also, in all

cases, confine our attention to that range of magnetic
fields ag.d sound frequencies where the phonon wave-

lerigth is of the order of the classical orbit radii, i.e.,
to the range of geometric resonances or geometric
oscillations. In this case ro is much greater than a&, (by
a factor vp/v, which in our case is taken to be 500).
Finally, since we are interested in free-electron-like

metals the parameter P is always chosen to be small, i.e.,
about 10 4.

A. Closed Orbiti

Before considering the results for open orbits and

magnetic breakdown, we consider simple closed orbits
in our two-dimensional model. The results of the
numerical calculation of the relative attenuations for
closed orbits are given in Figs. 4(a) and 4(b) as func-

tions of cur for longitudinal and transverse waves, re-

spectively. In this case ql= 40 and /=8&&10 '. We can
explain these results better by going through an argu. -

ment similar to that in CHH (Sec. IV of Ref. 6), only

here we have no spherical polar angle to integrate over
because our model of the Fermi surface is a circular
cylinder. By keeping only the n=0 and m=1 terms in

our series, which correspond to Eq. (4.1) of CHH, we
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Fro. 4(al. The relative at-
tenuation cf longitudinal sound
waves for closed orbits cor-
responding to a cylindrical
Fermi surface. The values of
the parameters are pr/p. =500,
ql =40, and P =8X10 s. (b)
The corresponding relative at-
tenuation of transverse waves.
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022 2
(HJp(X))'3'+((Jt(X))'g'B)

0 p (1—zM+r) Re (S22)—Irp/R e(o'») —1 . (3.4)

surface, the model is valid and the essential mechanisms
here are correct.

{1—J '(X)—J '(X)B}, For transverse waves and closed orbits, the response

&2p
' argument given above takes a particularly simple form

which can be used to explain (3.2). We review it here
&12 0 21 because similar arguments are used later. Detailed

»(L ( )j+LJt (X)~ ) ~ ( ' ) analysis shows that for transverse waves the only
important component of the conductivity tensor is 0.»,
and of that the real part is predominant; in this way we
ha, ve

Here B=2(1—ipp, r)/cp'r', X=oI,v~/oIv, is the argu-
ment of the Bessel functions, l=epr is the electronic
mean free path, and we have assumed ~&&co, and
o)'v-'»1, which are approximations appropriate to the
range of Gelds where geometric resonances or oscilla-
tions are important. The prime in (3.1) denotes dif-
ferentiation with respect to X. Using the above results
in (2.28), (2.42), and (2.53), we obtain

Re(Sss)—(1—Jp (X))/2Jt (X) 1 (3.2)

for the relative attenuation of transverse sound waves.
In (3.2) we have neglected terms containing B, i.e., .

we have kept only the rI,=0 terms in the series. We note
that (3.2) exhibits no explicit dependence on r and that
it increases without limit at Gelds corresponding to the
zeros of Jt(X).

When calculating the longitudinal sound wave
attenuation (2.52) in this approximate way it is not
meaningful to neglect all terms containing B, since in
that case we obtain the nonsensical result Re(Stt) = —1.

hen terms linear in 8 are kept,

Re(Stt) X'(LJt(X)j')'/Jts(X) —1. (3.3)

Ke see that again there is no explicit dependence on s-

and that the zeros of Jt(X) give the positions of the
ma, xima. This is in contrast to the results of CHH. In
their calcula, tion, with a spherical Fermi surface as a
model, they obtain an explicitly v dependent result by
keeping only the e= 0 terms. The above considerations
are a consequence of the two-dimensional model; how-

ever, since we are mainly interested in open orbits
which occur usually only in narrow bands of the Perm~

The important contribution is thus due to the response
of the electron to a transverse electric field which is
essentially a stationary one. The physical stiuaiion is
illustrated in Fig. 5. In case (a) the field is always
directed against the electrons' motion; therefore, the
electron speed monotonically decreases with each
passage. If the orbit were displaced a half-waveleg. gth,
the speed would monotonically increase. In both cases
there is an increase in the current in phase with the field,
which corresponds to a large current response, large
real conductivity, and low attenuation. Case (b) shows

the electron alternately being accelerated and decele-
rated by the Geld in one cycle; therefore, one obtains
a small current response, low conductivity, and high
attenuation. The orbit radius r in case (b) and in any
case of maximum attenuation in the geometric reso-
nance or geometric oscillation" range corresponds to the
condition I=qr= szx, e= 1,2,3 (3,5)

g

~r
4) (b)

FIG. 5. Closed orbits in real space with a transverse wave
schematically represented by the important component of the
self-consistent electric 6eld E. Case (a) represents the electron
orbit corresponding to high conductivity (low attenuation) case
(bl, an electron orbit corresponding to low conductivity (high
attenuation).

"We shall refer to the attenuation oscillation as geometric
oscillations when they are due to closed orbits and geometric
resonances when thev refer to open orbits.
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This condition on I corresponds approximately to the
zeros of Ji(X) for high magnetic fields in fact th

e d increases the geometric oscillation peak approaches
the field point corresponding to (3.5) from the low side.

study of the conductivities for all cases considered in
this paper shows that (3.4) is valid for transverse waves,
in general. Simple response arguments like the one above
can therefore be used to explain the attenuation of
transverse waves in all cases.

The situation, even for closed orbits, is much more
complicated when the attenuation of longitudinal waves
is considered. In this case the diffusion term contiibutes
strongly, and there is a delicate cancellation of terms in
gl. Also, the off-diagonal components of the conductivity

tensor arejnot~negligible, so that self-consistent Hall
fields are important. The situation becomes so difficult
as to prevent the formulation of a simple picture similar
to that for transverse waves. However, it can be seen
from the similarity of (3.2) and (3.3) that the attenua-
tion peaks for longitudinal waves provide a means of
measuring the same sort of calipers of the Fermi surface
as do the transverse waves. This is presumably true in
general.

B. Open Ghats

The results of the calculation of the attenuation for
open orbits are given in Figs. 6 and 7. Figure 6 contains
the results for the model shown in Fig. 1 which has the
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FIG. f. Relative attenuations for
the model shown in Fig. 3 with no
magnetic breakdown and the
various angles indicated. In this
case the open orbit in real space is
perpendicular to q. The longi-
tudinal sound wave results are
given in (a) and the corresponding
transverse wave results in (b).
The values of the parameters are
the same as for the cases in Fig. 6.
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open orbit parallel to the same propagation vector q in
real space and the angle 8 measuring the amount of the
Fermi cylinder that contributes to the open orbit so
that sin8= 161/2ks. Figure 7 contains the results for
the model shown in Fig. 3 which has open orbits per-
pendicular to q in real space and 8 in this case measuring
the amount of the Fermi cylinder that contributes to
the closed-lens shaped piece of Fermi surface, ~~x —8 con-
tributing to the open orbits, so that cos8= 1G ~/2ks. In
all these cases q/=40 and P=8&(10 '.

For the case of Fig. 6, (a), (c), and (e) give the results
for longitudinal wave attenuation. The geometric
resonance occurs when the average value (taken over
the period T of the motion which is Gxed by the BZ
boundaries and the strength of the magnetic field) of
the velocity satisfies the condition (v,T), q=2irn,
e= 1, 2, . In terms of 8 this becomes

(ql/ns) sin8= ((or), . (3.6)

Closed-orbit geometric oscillations due to the caliper-
ing of the lens piece are also present with the position
of the maxima given approximately by

(q//nm) (1—sin8) (tor), . (3.7)

Equations (3.7) estimates the field corresponding to the
oscillation maxima. The period is given approximately
by P(1/oor) = ir/q/(1 —sin8) . (3 8)

The resonances are shown in Fig. 6(a), (c), and (e) as 8

increases. For small 8, less of the Fermi cylinder goes to
the open orbit and the resonances are small. As 8 in-
creases they become larger arid more frequent Laccord-
ing to (3.6)$ until 8 approaches 90' when a degeneration
in Lsee Fig. 6(e)). In the integral involved in the cal-
culation of the conductivities, the end points of the
Fermi cylinder segment contribute strongly. These
critical points correspond to points in real space where
the electronic velocity v, has a considerable component
parallel to the self-consistent longitudinal electronic
field E for small 8. The velocity component parallel E
decreases until for 8=90' it vanishes. This evidently
accounts for the degeneration observed in the results.
The geometric oscillations due to the lens are seen in
Fig. 6(a) and (c) (marked by arrows at the maxima) and
the:period is seen to be given by (3.8). Also, these
oscBlations are smaller in magnitude than those of the

simple circular closed orbits of Fig. 4(a) because less
of the cylinder contributes in this case.

The transverse wave attenuations for open orbits
parallel q are given in Fig. 6(b), (d), and (f) for in-
creasing 8. The most striking feature of these results is
the emergence of geometric antiresonances correspond-
ing in position to the condition (3.6). These antireso-
nances are superposed on a general rise with increasing
cov and 8 in the attenuation which is due to the average
of (v,), over the period T being large and is just the
ordinary open-orbit eBect seen in magnetoresistance
data. A simple response argument is sufhcient to ex-

plain these antiresonances. Figure 8 shows the trans-
verse self-consistent electric-Geld conGguration that
gives the antiresonance. The important part of the
open orbit is the "scallop. " It is here where the Geld is
effective in increasing monotonically the electrons
velocity, giving a large response or a small attenuation.
If the sound wave were displaced half a wavelength, the
electronic velocity is monotonically decreased and the
'same argument holds. For a quarter wavelength dis-
placement, the electron is accelerated and decelerated
and there is no effective response. In addition, the deeper
the scallop, i.e., the larger 8, the greater the magnitude
of the antiresonance, because v, is more nearly parallel
to E for longer segments of the orbit. This effect is seen
in the results. Closed-orbit oscillations due to calipering
the lens are also seen in Figs. 6(b) and (d); they are
similar to the longitudinal attenuation results (marked

by arrows in the figure). They can be interpreted in
exactly the same way as the circular closed orbits de-
scribed above. Finally, there is an anomaly in Fig. 6(f):
the over-all attenuation for '8=90' in lower than that
for 8= 80', reversing the general trend for other angles.
This is undoubtedly a result of using a two-piece Fermi
cylinder for the 8=90' case '.as illustrated in Fig. 2(a),
one piece of the Fermi surface has vanished.

FIG. 8. An open orbit in real space parallel to the sound propa-
gation vect'or' q with a transverse wave schematically:represented
by the import'ant component of the self-consistent electric Geld E.
The con6guration represents the:situation corresponding to anti-
resonances in the transverse wave relative attenuations.
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d g

(a)

FIG. 9. Open orbits in real
space perpendicular to the
sound propagation vector q
with a transverse wave sche-
matically represented by the
important component of the
self-consistent electric field E.
The configuration correspond-
ing to the attenuation maxima
for transverse sound waves is
given in {a) and the attenua-
tion minima in (b).

the longitudinal waves show attenuations minima for
8=0' and 30'.The case 8= 60'appears to be degenerated
for both longitudinal and transverse waves. However,
(3.9) indicates that for this case we would not expect
minima or maxima at values of the Geld in the range
under consideration. It should 6nally be pointed out
that the general rise in the attenuations for longi-
tudinal waves LFig. 7(a)] is due to ((v,)„)„,being large
and is thus a consequence of ordinary open-orbit
magnetoresistive eRect.

C. Magnetic Breakdown of Oyen Orbits

45 I I I I, I I

40-
ql ~50

Figures 7(a) and /(b) give the results of longitudinal
and transverse wave attenuations, respectively, in the
case where the open orbits are perpendicular to q in
real space. There are no pronounced resonances or
antiresonances; however, there appears to be some
weak structure. In the transverse wave attenuation
there are weak maxima LFig. 7(b), ()=0', 30'] that cor-
respond to the field configuration and calipering shown
in Fig. 9(a). The condition for maxima in this case is

(~r), = (q//2trn)(1 —sing), tv= 1,2,3 . (3.9)

The response argument can again be used to point cut
that the field shown in Fig. 9(a) accelerates and de-
celerates the electron in a single period leading therefore
to maxima in the attenuation. Figure 9(b) is the situa-
tion corresponding to minima in the attenuation, i.e.,
the electron is monotonically accelerated (or decelerated
if the electron-field configuration is displaced a half
wavelength) in a single period. This effect is stronger
for 8=30' than for 8=0' because for the former case
the scallop is shallower, so that in the neighborhood of
the scallop point the electronic velocity v, has a larger
component parallel to the electric field E at the reso-
nance configuration. When condition (3.9) is satisfied

In this section the eRect of magnetic breakdown on
the line shape of the attenuations is studied. First, how-
ever, Fig. 10 shows the eRect of changing the relaxa-
tion time (or equivalently q/) on an isolated open orbit
resonance. For this case the open orbit is parallel to q
in real space, 8=45' and P is negligible, i.e., of order
10 '. The resonance is in the longitudinal wave at-
tenuation and it is at cp,/co=0. 89&&10 s which cor-
responds to a resonance 6eld H„=5.1 kG. The reso-
nance has a Lorentzian line shape in agreement with the
calculation of Kaner, Peschanski, and Privoratski' and
it has the expected dependence on q/. Both the closed-
orbit oscillations and open-orbit resonances exhibit the
same kind of dependence on ql. This is another con-
sequence of our two-dimensional model, where all the
electrons at a given angular position are in the same
phase relation to the sound wave.

The change in line shape when magnetic breakdown
occurs is seen in Figs. 11(a) and 11(b). For this case
q/=40, P=8&&10 ', (the parameters q/ and P have
these values for all the rest of the calculations pre-
sented in this section) 8=45', and we take the break-
down or tunneling probability I' as given in (2.8). In
this case the open orbits parallel to q in real space
break down to closed orbits. The breakdown parameter
Hp was expressed in terms of E(H„), the value of the
probability P for B=H„.In this case B„=5.1 kG and
we have the correspondence

50-

lo -'

qli40

ql a50

P(H„)=0 ~Hp po, ——
I (H„)=0.005 ~ Hp= 27.000 kG,

E(H„)=0.050~ Hp= 15.299 l&G,

E(H.)=0300~ Hp= 6 136 kG,
P(H„)=0.700~Hp= 1.831 kG

I'(H„)= 1 +-+ Hp=0.

0
0

I0 20

ql a5 ql 10

I I I l I I I I

.20,40' .60; .SO I.OO l.20 l,40 l.60 I,80 2.00
(lo x ~,i~)

Fxa. 10. The details of an-opea, -orbit resonance for longitudinal
sound waves. This is the case corresponding to Fig. 1 with 8=45'.
The, ,resonance condition tp, /tv='tsv/(vs/v, ) sine reduces in this
case to ra, /co=0 89X10 ', Th.e dependence of the line shape on the
electronic mean free path is shown.

In Fig. 11.(a) one sees a maximum at high fields even
for small breakdown probabilities. This is due to the
averaging of maxima corresponding to the calipers of a
number of extended orbits which exist when there is
partial breakdown. The magnitude of the resonance

"O'. A. Kaner, V. G. Peschanskii, and I. A. Privorotski, Zh.
Eskperim. i Teor. Fiz. 40, 214 (1961) LEnglish transl: Soviet
Phys. —JETP 13, 147 (1961)$
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FIG. 13.(a) The longitudinal
sound wave attenuation re-
sults for open-orbit resonances
undergoing magnetic break-
down in the case corresponding
to Pig. 1 for 0=60', ql=40,
ep/s, =500, and P=8X10 ';
(b) the corresponding results
for transverse waves The dis-
appearance of the antireso-
nance is to be noted

D. Oscillating Magnetic Breakdown Probabilities

For very small lens pieces, i.e., when 0 is very close
to 90' for the open-orbit parallel to q case, or 8 very
close to 0' for the open-orbit perpendicular to q case,
the quantum-mechanical phase coherence of the elec-
trons on the lens must be accounted for in the break-
dovrn probabilities. The oscillating effective probabili-
ties (2.12) and (2.13) are used in the calculation here in
conjunction with a two-piece Fermi cylinder, the case
of Fig. 2 serving as an example. The phase P can be
written &=terr/ror+gs and in the calculation here we
take Ps=0 and a typical value of 200 for &err. Also, Hs
is chosen to be 6.14kG. The results of the calculation are
presented by the solid-line curves in Figs. 17(a) and
17(b), which correspond to the open-orbit parallel to

case and longitudinal and transverse wave attenua-
tion, respectively. Figures 17(c) and 17(d) show the
open-orbit perpendicular to q case for longitudinaall and
transverse wave attenuations, respectively. In this
calculation we take as before q/=40, P=8&&10 '. The
results are plotted logarithmically against ce,/~. so that
the periodicities are more evident and the limiting
curves, i.e., the Bp=0 or circular closed-orbit attenua-
tion and the Hp= ~ or open-orbit attenuation, are
also shown.

The eBect of the phase coherence in the small piece
is seen to be the introduction of very sharp "spiky"
oscillations superposed on the open orbit or IIp= ~
curves. These spikes get sharper as the magnetic Geld

decreases. For cosP=+1,
5= 4 and 7=0,

whereas for co&= —1 we have

(3.10)

S=4Q/(1+Q)',
(3 11)

&= ((1—Q)/(1+Q))'.

From Eqs. (3.10) and (3.11) we can see that the spikes
of the oscillations always touch the closed orbit Op=0
curve, no matter what value one has for ~~7 and 4. The
envelope of these oscillations will always be the same
as the closed-orbit curve, and this is shown in Pig. 1'?

to be the case in our calculation here. This feature is

only a consequence of the model. The rate at which the
spiked curves approach the Hp= ~ curves with de-

creasing magnetic 6eM depends on Hp. The smaller Bp
the faster the rate of approach. Also, since the spikes
must touch the closed-orbit curve for any Geld value,
the smaller Hp the sharper the spikes become as the
magnetic Geld is decreased. %e note here again the
open-orbit magnetoresistance effect, i.e., of Figs. 17(a)
and 17(b): lt is (b) which shows the indefinite increase

for high magnetic fields whereas of (c) and (d) it is (c)
that shows this eGect.

IV. CONCLUSIONS

%e summarize the main conclusions to be dra, wn from
this paper as follows:
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Fro. 14.(a) The longitudinal
sound wave attenuation results
for open orbits undergoing

- magnetic breakdown in the case
.-corresponding to Fig. 2, i.e.,
8= ~~7I. so there is no closed lens-
shaped piece; (b) the cor-
responding results for trans-
verse waves.
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Fro. 15(a) The longitudinal
sound wave attenuation results
for open orbits undergoing
magnetic breakdown in the
case corresponding to Fig. 3 for
8=45', the open orbit in real
space is perpendicular to q; (b)
the corresponding results for
transverse waves.
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(a) A study of the conductivity tensor reveals that
for transverse waves the only important component is
o ss and of that Re(o ss) predominantes; therefore,
transverse wave attenuation can always be understood
simply in terms of the response to the transverse com-
ponent of the self-consistent electric 6eld. The situation
for longitudinal waves is much more complicated be-
cause diffusion and off-diagonal components of the
conductivity tensor contribute strongly; therefore, it is
not possible to understand longitudinal wave attenua-
tion with any simple picture of the response argument.
The results indicate, however, that the longitudinal
wave attenuation provides calipers of the Fermi sur-
face similar to the transverse wave attenuation.

(b) Open-orbit geometric resonances appear in the
longitudinal wave attenuation for a somewhat con-
voluted open orbit in a normal fashion. The transverse
wave attenuation, however, exhibits pronounced geo-
metric antiresonances for this convoluted open-orbit,
and these can be simply explained by a response
argument.

(c) A study of the details of an open-orbit geometric
resonance when varying amounts of magnetic break-
down is taking place indicates that evidence for mag-

netic breakdown is taking place indicates that evidence
for magnetic breakdown can be reliably obtained only
in magnetoacoustic-attenuation experiments when the
entire line shape over a fairly wide range of magnetic
fields is analyzed. This is because magnetic breakdown
does not alter the resonance line shape locally; instead,
a closed-orbit geometric oscillation due to calipering
extended orbits appears at higher magnetic 6elds.

(d) Finally, it is evident from a comparison of the q/

dependence of the open-orbit geometric resonance and
the behavior described in (c) above that deviation
from complete magnetic breakdown can not be under-

stood as an interband scattering describable by an
effective relaxation time for any time- and position-
dependent transport phenomena.

Note added se proof. It has been pointed out to the
author by Dr. E. I. Blount, thatin Eq. (2.31) one extra
contribution to the force has been omitted. This is an
impulsive term responsible, in some electron trajec-
tories, for the Bragg reflection that takes place at well
deined points. This term, as far as the author is aware,
has not been considered previously in the literature and
should produce an effect in the attenuation coeKcient.
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Fro. 16.(a) The longitudinal
sound wave attenuation results
for open orbits undergoing
magnetic breakdown in the
case corresponding to Fig. 3
for 8=0'; all other parameters
are as in Fig. 13; (b) the cor-
responding results for trans-
verse waves.
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Fro. 17(a). The longi-
tudinal sound wave at-
tenuation results for
open orbits undergoing
magnetic breakdown in
the case corresponding
to Fig. 2, i.e., open orbit
in real space parallel to
q, where the oscillating
probabilities mentioned
in the text were used.
The values of the pa-
rameters are vg/v, =500,
pl=40, and P=SX10 ';
(b) the corresponding
results for transverse
waves; (c) the results
for longitudinal m aves
in the case correspond
to Fig. 3, 8=0', i.e.,
open orbit in real space
perpendicular to q; (d)
the corresponding re-
sults for transverse
waves.
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APjF'EÃDIX

In order to indicate how (2.24) and (2.25) were
evaluated, the time in the lth Fermi surface piece is
defined by

(A1)

where for t=t~, q=q~, 2. The angle q designates the

Q
1'= X SIIlp (A3)

The index / has been dropped as unnecessary, where r
and v are expressed in terms of p. We can eliminate the
dimensioned constants by defining V=(m/hkp)v, and
II(l, qp) = (—ppm/

~
e

~
hkp) J(l,t) .

In these terms, grouping fact, ors, we obtain for (2.24)

(o) 1 ~ Fls

Z
ko p/;;

where o p=Npe'r/m. We obtain R from (A4) and (2.28).
We also have from (2.i7)

&((,v)=&((,v)+D((v) Z &to&(P vo, s), (A5)
p I

electrons position on the Fermi surface. For example, in
Fig. 1(a) the pieces of the Fermi surface are numbered so
tllat (pl 1=e 8 +1,2 =e+8' ps 1=8 +2 2= e' 8' etc.
Solving (2.2) and (2.3) we have for any piece

et(to) = (hkp/m) cosy, es(to) = (hkp/m) sinto, (A2)

and since we always take I= A, we have
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(- (l y))
!
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