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The exchange character of the Anderson model Hamiltonian has been studied. We find that for deter-
mining the conduction-electron Green’s function, this Hamiltonian can be replaced by an effective Hamilton-
ian in which the strong d-d exchange term Unat#qy has been treated exactly and the s-d mixing term Vpmix
has been modified so that it exhibits explicitly exchange character. Hence, Vmix gives rise to a Kondo-
like divergence in the conduction-electron self-energy. Extending the Anderson Hamiltonian by adding an
s-d exchange interaction, we find this exchange interaction is left unchanged in going to our effec-

tive Hamiltonian.

N the Anderson model' of localized magnetic states,
the self-energy of the conduction electrons exhibits
singularities similar to those found for conduction
electrons interacting with localized spins via an s-d
exchange interaction.?~* This anomalous behavior of the
electron self-energy has been made plausible by the
work of Schrieffer and Wolff? showing that the s-d
mixing term in the Anderson Hamiltonian can be
eliminated to first order by means of a canonical trans-
formation and can partly be rewritten to second order
as an s-d exchangelike term with an energy-dependent
exchange interaction strength. It is the purpose of this
paper to examine the structure of the Anderson Hamil-
tonian from a different point of view which further
exhibits the connection between the Anderson and
Kondo Hamiltonians.
We begin with the Anderson Hamiltonian

H=H0+ Vmix; (1)
where
‘HOE Z ekvsnkas_l"z Edvnda+Hu ) (2)
k,o o
H,=Unatna , (3)
“)

I/mixE Z de (akvfda_‘"dvfaka) )
k,o

and ax' and ai, are the creation and destruction
operators for conduction electrons (s electrons) with
momentum £ and spin o, respectively. d,t and d, have
similar meanings for the d electrons. e,* and E4, are
the single-electron energies for s and d electrons, re-
spectively. As has been discussed by a number of
authors,!® Vyix results from electron scattering due to
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the crystal potential involving transitions between s and
d states and also from a Hartree factorization of that
part of the Coulomb interaction among s and d electrons
which contains one s-electron operator and three
d-electron operators or vice versa.

Since we should like to study the properties of the
s electrons, we examine the s-electron Green’s function
which in the interaction representation is given as the
time-ordered expectation value

Gia* (1= 1) = —i(T (@ (D (S)/(S),  (5)
with
S=T exp(— 1/ Vmix(’r)d'r) , 6)
and -
dka1 (t) = akaT (t) = akaTeiek"st , (7)
d,T (,;) — daf(t) ¢iUn—st=( tgiBdotgilUn—qt , (8)

which follows from using the transformation formula
O (f) = eiHotQg—iHot 9)

for going from the Schrédinger to the interaction repre-
sentation. The Green’s function G.® is now evaluated
using H, as a zeroth-order Hamiltonian,® since it can be
treated exactly, and at zero temperature for simplicity.
This division of the total Hamiltonian has the ad-
vantage that at the very outset exact care is taken of
the strong d-d exchange interaction Hy. Notice that
Hy has the special property that the eigenvectors which
diagonalize (Ho—H y) diagonalize also Ho.® We assume
in the following that U is sufficiently large so that the
ground state of H, contains only one d electron with
spin 3. : :

The Green’s function Gy,® is now usually treated by
diagramatic techniques, in which the exact Gi.* is
expanded in terms of

Gro*(t—1') = —i(T (ao (1) ars 1 (')))

6 This stems from our assumption that one has a single orbitally
nondegenerate d level.
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and
G (t—t)=—i(Td,Od, ())). (11)

This is not possible under the present circumstance,
since the application of Wick’s theorem is not valid for
the operators d@,(f) and d,t(f) as becomes clear in the
following.

In order to apply Wick’s theorem to a product of
creation and annihilation operators it is necessary that
the unequal-time commutation relations among these
operators be ¢ numbers.” Now normally O(f) differs
from O only in having an extra exp(—1ef) factor, so that
the commutation relation for O and Ot is sufficient to
ensure that [O(#),01(#)] is a ¢ number. However, in
our case, d,f(f) differs from d,' by the time-dependent
operator ¢i(FartUn-ot and hence [d,(f), d,'(#)] is no
longer a ¢ number.

In an attempt to circumvent this problem, we notice
that d,1(¢) and d, (¢) are given by

d () =d ()4 f* ()t d 1 ()d—. (1)  (12)
and
do(t)=do () + f(D)ds (D) d_st ()d_0 (1) , (13)
where
fO=eVt— (14)

Rewriting Vmix, then, in terms of a,(8), ar.1(2), d.(8),
and d,1(¢), we obtain ‘

Vmix= Z{Via(asa! (0o (4o (Dar (1))
o Tae(Daret (O, (s () ()
+ Va* (Odot (D are ()d—ot ()d—_. @)}, (15)
Via(t)= Viaf (). (16)

Using this expression for Vnix in determining .S, we can
apply Wick’s theorem to the operators d,(), d ’f(l), and
we can then expand G,*(f—¢) in terms of

G (1= 1) = — (T (ar, (Daxs1(¢))) an
Gt (1—1)= =T (d,()d1())). (18)

Now, we notice that from the point of view of calculat-
ing Gro*({—1') our effective Hamiltonian in the Schréd-
inger representation takes the form

H= Heff= Z Eka'snkae‘i"z Edvnd0+ Vmix(t) .
k,o 4

with

and

(19)

This is an exact result. This effective Hamiltonian no
longer contains Hy explicitly. The exchange character
of Hy has been transferred entirely to Vmix.

In this connection, notice also that if an s-d exchange
interaction of the form

Vex= - Z ](kakl)aka’Tak’adaTda’ 3
kR

o, 0’

(20)

7S. S.  Schweber, Introduction to Relativistic Quanium Field
Theory (Harper and Row, New York, 1962).
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OrS—lO
Vex=""J Z a’kvfak’v’avv"s, (21)
k, k'
2,9

which results from replacing the d-electron operators by
spin operators, is added to the Anderson Hamiltonian
given by Eq. (1), then this exchange interaction between
s and d electrons is not altered by the transformation
used in deriving the effective Hamiltonian given by
Eq. (19). Notice that Eq. (20) represents only that part
of the total exchange interaction between s and d elec-
trons which involved two s and two d electrons. Clearly,
one should in general also include in Ve exchange
interactions involving three s electrons and one d
electron and vice versa. For simplicity, we do not
discuss these terms.

Figure 1(a) shows an elementary exchange scattering
event contained in the effective Hamiltonian given by
Eq. (19). For comparison, Fig. 1(b) shows a correspond-
ing scattering event described by Vex.

Notice that Fig. 1(a) demonstrates how a conduction
electron spin-flip process results from successive scatter-
ing involving 7 and V.

The exchange character of Vnix is now evident, and
it is thus clear that the self-energy of the conduction
electrons exhibits a Kondo-like singularity. Notice that
in the case of Ve singularities first appear in order J3,
and since it requires two V vertices to generate an
elementary exchange scattering corresponding to Vex,
the Anderson Hamiltonian will exhibit Kondo-like
singularities first in order V°.

The physical meaning of Vwuix can be further ap-
preciated if we consider the limit in which U>> (exo*,Eav)-
Then we know the system cannot respond to the
rapidly oscillating parts of Vyix (the terms proportional
to €Ut and ¢~*V%). If we ignore these terms in Vmix we
obtain

Z de(aka'Tda—*_dvTaka) (1 - n—yd) . (22)
k,o
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Fic. 1. (a) Scattering graph resulting from Vpmix.
(b) Scattering graph resulting from Vex.
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F16. 2. Graphical representation © f
the self-energy for spin T and |
s electrons assuming an unperturbed
ground state consisting of the s-elec-
tron Fermi sea and a d electron with

spin 1. ‘ X ’]‘
Z= dat Vi

[ L

7y T2

This is identical to the V,ix defined by Eq. (4), except
for the added operator (1—#n_,%). This extra factor
prevents Vmix from generating a doubly occupied 4
state and, by doing so, gives exchange character to
Vmix-

It should be pointed out that while we have demon-
strated quite generally the presence of Kondo-like
singularities in the electron Green’s function for the
Anderson model we have not proved, and it may not be
true, that the detailed dynamic structure of the
Anderson and Kondo Hamiltonians are identical.

With these reservations in mind it is nevertheless
interesting to make contact with the work of Schrieffer
and Wolff 2

The self-energy for the conduction electrons we cal-
culate using Vmix(f) will have contributions to it from
both direct as well as exchange scattering contained in
Vmiz(f). The exchange and direct contribution to the
self-energy can be disentangled in the lowest-order
self-energy graphs by taking the difference between the
self-energy for a spin-up s electron and that for a spin-
down s electron (we assume our ground state consists
of a d electron with spin up and a Fermi sea of
s electrons).

The self energies for spin-up and spin-down s elec-
trons are shown in Fig. 2. We have drawn each graph
in Fig. 2 in its time-coordinate form because of the time
dependence of Vyix. While each graph does not main-
tain time translational invariance, the sum of the
graphs is, of course, time translationally invariant.

The lowest-order self energy due to an effective
exchange interaction

Vex=— Z J et (kyk,)[(a'kT fagt— axitaw J)Sz

kK’
~Faxttaw 1S+ ay faw 1 ST,

(21)

where S=3, and assuming S,=% (this corresponds to a
d-electron state with spin up being occupied), is

—'% eff(k7k> )
%jeff(k;k) )

The difference between the self energies for a spin 1
and a spin | electron for the effective exchange inter-
action given above, —J:(k,%), is set equal to the differ-
ence between the Fourier transform of the self-energies
shown in Figs. 2a and 2b. This procedure defines the

spin 1 s electrons
spin | s electrons.
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effective exchange vertex for the Anderson Hamil-
tonian, which is given below:

Teit(kjw) = | Via|2(Gi*(w—U)—G1%%(w)) ,
with

(23)

G 9% (w) = (w—eas+18)71,
G1%%(w)= (w—ear—1) .

The derivation of (23) is found in the Appendix. All
energies are measured from the Fermi energy (h=1).
In particular, for small electron excitation, one gets
energies which, for many electronic properties, are most
important,

(29)

T ois(B,2,0)=—| Via|? (25)

leaf (U—leal)’

using the fact the es<0. This is essentially the result
obtained by Schrieffer and Wolff.!2

We would like to mention that our discussion can be
generalized to finite temperature by using thermal
Green’s functions. However, our conclusions would be
essentially unmodified, although our expression for
Vmix in the effective Hamiltonian would then become
“temperature-dependent.”

Finally, note that it is interesting to study more
generally the relation between the Anderson and
Kondo Hamiltonians by using the two-electron scatter-
ing matrix and an electron-electron interaction which is
more general than the one used in the Anderson or
Kondo Hamiltonian. Then, for example, all results
obtained in this paper can be easily rederived from the
integral equation for the two-electron scattering matrix.
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APPENDIX

The self-energies given in Figs. 2a and 2b can be
evaluated in the usual way starting from the s-electron
Green’s function!?

Gro® (1= 1) = — (T (aro (Darot (£)S))eone, (A1)

where ( )eont indicates the fact that we consider only
connected diagrams, and by expanding .S to second order
in Vand V.

When this is done for spin 1 s electrons we get

G (t—1")=Gu(t—1t")+ V2//Gk1°°(t—r)

XG0 r—1")Gi%* (v — 1t )drdr'  (A2)
from which we see that
2t (r—1)=V2G % (r—7), (A3)

1B A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1963).
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using
G=G"+G2G=G"+G2G*5- -+ -, (A4)
where Z* is the self-energy shown in Fig. 2a.
In a similar way, one obtains for the self-energies in
Fig. 2b, reading from left to right,

2 (r—7)=V2G % (r—7"), (AS)
2ot (7, 7)) = V2G4 (r— 1) f(7), (A6)
2t (r,7) = V2G4 (r— ) f*(+'), (A7)
S, ) =VIG 4 (r—1') f(7) f*(). (A8)

Adding (AS) through (A8), we obtain the total self-
energy 24 (r—1'):

SHr—1)=V2G % (r—1")efU =", (A9)

Notice that while 25, 23, and 24 are functions of 7 and 7/,
3+ is a function only of 7—1'.

Fourier transforming =t and 2!, and taking their
difference, one obtains the Jes given in Eq. (23).
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The proposal that reconstructed phases may exist for the clean (100) surfaces of some fcc metals is con-
sidered in terms of results obtained from low-energy electron-diffraction studies of epitaxial single-crystal
films of silver and gold grown in ultrahigh vacuum (1 X 1071 Torr). The purpose of this paper is to show that
the experimentally observed (1X5) structure on the Au(100) surface and the (1X1) structure on the Ag (100)
surface are characteristic of the clean surface, and to suggest a possible atomic structure for the reconstructed
Au(100) surface. The evidence from the epitaxial film studies indicates the occurrence of a thin hexagonal
layer of pure gold on the (100) substrate rather than an impurity-stabilized surface layer of hexagonal
symmetry, of some unknown substance. It is suggested that the interfacial energy between a thin hexagonal
layer and the nonreconstructed substrate may be the determining factor in the occurrence of reconstruction

on the (100) surface of fcc metals.

LTHOUGH it is generally assumed that clean
metal surfaces are characterized by a bulk atomic
arrangement, some recent experiments on Pt,! Pd,?
Au?3 and Ag? suggest that reconstructed phases may
exist for the clean (100) surface of some metals. There
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has been considerable disagreement on whether these
observed superstructures are characteristic of clean
metals or whether they are stabilized by impurities.
The purpose of this paper is to report on some experi-
ments in which it is believed that contamination does
not play a role and to suggest a possible atomic struc-
ture for the Au (100) surface.

One of the difficulties encountered in preparing sur-
faces for low-energy electron diffraction (LEED)
studies is diffusion of impurities from the bulk. Even
for crystals of highest available purity, bulk contamina-
tion represents an almost inexhaustable source of sur-
face impurities unless the samples are extremely thin.
One method of forming very thin crystals is to grow
epitaxial films on inert substrates,



