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TheLLaoelectric Power in the Nearly-Free-Electron Model
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The thermoelectric power in the nearly-free-electron model is re-examined with specific reference to the
especially long-standing theoretical problem posed by occurrences among pure monovalent metals of a
negative Hall coefficient but a positive electron-diffusion thermopower. The physical picture is clarified
by referring steady-state excitations of the electron gas to the current-free equilibrium distribution, and a
summary is given of the evidence which shows Fermi-surface anisotropy to be unimportant for an expla-
nation of the "reversed sign" thermopowers. It is pointed out that the scattering of an electron by the
pseudopotential of a single ion generally exhibits Coulomb-core interference which is the analog of the
Coulomb-nuclear interference in nuclear physics, and that this can yield the required energy dependence
of the transport mean free path. This is illustrated by a model calculation which allows analytic evaluation
of all results and which contains only the simplest ingredients: free electrons, a relaxation time, an isotropic
elastic-continuum structure factor for acoustic phonons, and a point-ion pseudopotential. The model can
accommodate a rather wide range of thermopower coe%cients of either sign, and allows a sharp reversal
of sign for modest changes of the parameters. Although no quantitative comparison is attempted, estimates
of the parameter values appropriate to real systems indicate that Coulomb-core interference eBects dis-
criminate between real metals rather satisfactorily and are, in fact, strong enough to produce positive
thermopowers with little, if any, additional help.

I. DtTRODUCTION

~ OR more than thirty years the absolute thermo-
electric power of pure samples of monovalent

metals (at STP) has remained a nagging embarrass-
ment to the theory of the ordinary electronic transport
properties of solids. ' "All familiar simple theory has
promised us that in these materials the sign of the
electron-diffusion contribution to the thermopower
should be that of the charge carriers as determined

by the Hall eRect, i.e., negative; but instead it turns
out to be positive for Cu, Ag, Au, and —even more
perversely —for I.i alone of the solid alkalies. At least
two generations of experimentalists have remained com-
pletely unshaken in testifying to these results as ob-
stinate facts of life, and considerable effort has been
expended unsuccessfully to explain them. Accordingly,
it is of interest to display in this paper a very simple
model calculation which relies on general features of
the electron-phonon interaction which have become well
established only in relatively recent times, and which

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.' No attempt is made here to review the evolution of the present
state of knowledge of thermoelectric power in monovalent metals,
The following references may be consulted for discussions of the
experimental data and various aspects of the theory at, diferent
stages of their development.' G. Borelius, Proc. Roy. Acad. Amsterdam 33, 1/ (1930).' A. Sommerfeld and ¹ H. Frank, Rev. Mod. Phys. 3, 1 (1931).

4D. K. C. MacDonald, Thernioelectricity: An Introduction to
the Principles (John Wiley & Sons, Inc. , New York, 1962).' J. S. Dugdale, Science 134, 77 (1961).

e N. F. Mott and H. Jones, Theory of the Properties of 3IIetols
und Alloys (Dover Publications, Inc. , New York, 1958).' A. H. Wilson, Theory of Metals (Cambridge University Press,
Cambridge, England, 1953), 2nd ed.

F. Seitzr Modern Theory of Solids (McGraw —Hill Book
Company, Inc. , New York, 1940), Sec. 33.

F. J. Blatt, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1957), Vol. 4."J.M. Ziman, Electrons and Phonons (Oxford lT~niversity Press,
London, 1962).

for physically reasonable parameter values can yield
either a positive or a negative thermopower. "

It is generally agreed among thermoelectricians that
in solid noble metals the origin of the positive sign must
in large part lie in the energy dependence of the elec-
tronic mean free path. ""The viewpoint underlying
this paper goes rather further and is: The primary in-
gredients in understanding the high-temperature ther-
mopower of all the monovalents can be fitted into a
nearly-free-electron model, provided that the eRective
electron-ion interaction is treated reasonably well. This
position is, seemingly, diametrically opposed to that of
previous theoretical attempts, all of which have relied
heavily upon departures of the real world from free-
electron models. In Sec. II the physical situation at a
microscopic level is examined and such of the accumu-
lated theoretical experience and experimental evidence
as bears most directly on the present standpoint is
summarized.

In Sec. III we show that the fol~n of both the electron-
ion pseudopotential in simple metals and of the cor-
responding screened deformation potential in degener-
ate semiconductors can lead to a mean free path rapidly
decreasing with increasing energy and hence to a
"reversed" sign in the electron-diffusion thermopower.
To illustrate this we adopt in Sec. IV a simplided model
interaction and evaluate analytically the high-temper-
ature mean free path and thermopower for free elec-
trons, and give plots of the latter as a function of the
parameters.

The applicability and significance of these results to
real systems is discussed in the last section. Since for
the sake of simplicity the model calculation uses an

"A preliminary account was given by J. E. Robinson /Bull.
Am. Phys. Soc. 10, 325 {1965)g.

» J. M. Ziman, Advan. Phys. 10, 1 (1961).
» F. J. Blatt, Phys. Letters 8, 235 (1964).
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isotropic Debye structure factor" for the phonons,
quantitative comparison to experiment is not attempted.
Nevertheless, the indications for the monovalents sug-
gest that their thermopowers could be accounted for
at least semiquantitatively with little if any help from
Fermi-surface distortion if accurate electron-ion inter-
actions and structure factors were in hand.

Q. THE PHYSICAL PICTURE

A positive thermopower in a gas of free electrons
would seem to present a conceptual difhculty to many
physicists, since it implies that under the influence of a
temperature difference the diggsive motion of the carriers
is upward ugliest the temperature gradient. It is hence
more than ordinarily helpful to develop a physical
picture, and to this end it is advantageous to examine
in some detail the solution of the relevant Boltzmann
equation when a relaxation time r(k) exists. The nature
of the electron steady-state distribution function f(k)
in the presence of a thermal gradient VT is quite
clearly described by Ziman, "but we need here to carry
the discussion a step further. We write

f, (k)=f(k) f()(k) —( Bfe/Be(k)){Le(k) f](1/2')
&(( VT) 1(k)—+(—eE) 1(k)}, (2.1)

1(k) r=(k) v(k), (2.2)

"This terminology is dehned in Sec. IV.
. .

~5 Reference 10, Secs. 9.9 and 9.10.
~6 See, e.g., S. R. de Groot, Thernsodymamics of Irreversible

Processes (North-Holland Publishing Company, Amsterdam,
1952), Chap. III.

j,(k) =[—ev(k) jf,(k) . (2.3)

Here, fe(k) is the Fermi function, s(k) and v(k) are the
electron energy and group velocity, i' the chemical
potential, (—e) the electron charge, and E the effective
electric field. Discarding the "background" fs(k), the
microscopic contribution to the current arising from
carriers near k is

2(2sr) sdsk jt(k) =2(2sr)—sdeLdA(s, k)/llsv(k) jjr(k)
= (—e/ x4s)isddsA(e, k)ft(k)8(k), (2.4)

where dA (e,k) is that energy surface area element which
subtends the solid angle d'k about the direction k. Note
that these expressions are quite general within the con-
text of Boltzrnann equation plus relaxation time. The
quantity in braces ( ) in (2.1) is the work done ore a
carrier during one collision-free flight, and a key fact
is that the entropy of transfer ((e(k)—i g/T) and hence
the eRective "thermal force" on a carrier changes sign
at the Fermi level i "The direct. ion of the net diffusion
is thus determined by competition between carriers
below and carriers above the Fermi level in which those
with the greater free path tend to win, and nothing in
the structure of (2.1)—(2.4) forces that direction to be
dome the temperature gradient. It is interesting to note
in this connection that the theory of the spectacular

fountain eRect and thermal conductivity in liquid He II
was initially stimulated by that of thermoelectricity. '~

It is particularly vivid to describe f(k) in terms of
particles and holes referred to fs(k), the current-free
equilibrium distribution at Gnite temperature. Since
ft(k) is exactly antisymmetric about k=0 by virtue of
the time reversal symmetry of s(k) and r(k), f(k) is

exactly that distribution which would be produced by
transferring electrons from k to —k, i.e., by creating
particles (charge —e) in —k and holes (charge +e)
in k. This is illustrated in Fig. 1.There is here, of course,
no direct relation to the electronlike or holelike charac-
teristics of an underlying band structure. For example,
the only explicit emergence of the band structure in
(2.4) is, through dA(e, k), in determining the amount
of phase space at given energy available for creation of
excitations from equilibrium. Because of the exact sym-
metry of jt(k) about k =0 and of the ( Bj—s/Bs) factor,
we can conhne our attention to the vicinity of the
Fermi level and to particles and holes moving down the
gradient. We need discuss only that electrical current
which would be produced by ( VT) act—ing alone,
taking E to be whatever is necessary for its complete
cancellation.

The qualitative behavior of ft(k) near the Fermi level
is determined by the energy dependence of l(e,k); the
three cases which can arise are schematized in Fig. 2.
When the mean free path is independent of energy,
fr(k) exhibits exact particle-hole symmetry about the
Fermi level for every k. If dA(e, k) were symmetric
about f, then the current due to ( VT) would —vanish
microscopically and a fortiori the thermopower would be

Ho

-kF

(o) (-eE)

Partic

Holes icles

-k
F

(b) (-nT)

Fn. 1. Particle-hole structure of the steady-state distribution
function. Solid lines: steady-state distribution f(k}, dashed lines:
equilibrium distribution f0(k). {a) Electric field acting alone,
directed as indicated. (b) Temperature gradient acting alone,
directed as indicated.

r7 F. London, SNPerjlusds (John Wiley 8r Sons, Inc. , New York,
1954), Vol. II, p. 1'3.
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zero. For the moment, let us stick with dA (e,k) increas-

ing at t', i.e., to an electronlike Fermi surface. Since
the phase space for creating excitations at given

i e(k) —f ~

is greater for particles than for holes, the
net electron current is down the temperature gradient
and the thermopower is negative. When pell(k)/Bejr,)0, ft(k) itself is unbalanced in favor of particles and
the thermopower will be more strongly negative. When,
however, LBl(k)/Bej, r(0, then ft(k) contains more
holes than particles and if the excess is sufhciently pro-
nounced to overcome the phase-space asymmetry, the
net electron flow will be stp the temperature gradient
and the thermopower will be post'tive. The corresponding
statements for holelike dA(e, k) are obvious. To trans-
late all this into mathematics we would, for 6xed k
in (2.1)-(2.4), expand everything in sight but (—Bf/sBe)
in Taylor series in e=e(k) —f. Integration of (2.4)
over e would then give a microscopic or partial thermo-

power, depending in general on k. This might be done
to advantage when, for example, the Fermi surface
has both electronlike and holelike directions. The full

thermopower is then obtained from the average over
the Fermi surface of the partial thermopower weighted

by l(t,k) just as for a many-band model. "
It can now be concluded that the sign of the diffusion

thermopower is always that of the carriers which domi-
nate the Qow down the temperature gradient provided
that the carriers are taken —as they should be taken-
to be the particles and holes required to excite the
system from equilibrium to steady state. We have no
right to complain if this sign differs from that of the
low-field isothermal Hall coeKcient, since the steady-
state excitation structure is qualitatively different for
the two effects: In the Hall effect, along a given direc-
tion k we find either particles or holes but not both.

All previous attacks on the positive thermopower
problem have relied either exclusively or in an essential
way on nonspherical distortion of the Fermi surface,
i.e., on the inQuence of the phase space."However, as
emphasized by Ziman, a Fermi surface sufFiciently hole-
like to give unaided a sizeable positive thermopower
would also lead to a positive Hall coeKcient. "In retro-
spect it is a comfort that Ham's calculations' for the
alkalies and Ziman's" for the noble metals showed
Fermi-surface distortion alone to be inadequate to the
need. The possibility that "simple" anisotropy of r(k)
might turn the trick was shown by Taylor's detailed
calculation" to be another false hope. The candidacy
of electron-electron scattering advanced by Blatt" has
not been fully tested, but rests specifically on the hole-
like curvature in the necks of noble-metal Fermi surfaces.

In fact, there are several indications that Fermi-

(a)

(b) 0-

(c) 0

r
r

H01es Particles

surface anisotropy cannot be essential. First of all,
thermopowers of Li, Cu, Ag, and Au remain positive
in the liquid state." Secondly, the Ettingshausen and
Ettingshausen —Nernst coeKcients are, where they are
known, negative for these metals, ""and indicate a
dominance of excitation holes. Thirdly, the calculations
of Sjundstrom's give the correct (i.e., positive) sign for
liquid Li (see Sec. V). Accordingly, not only are we
forced to seek the resolution of the problem in a strongly
negative $8l(k)/Deja but are guaranteed that such
exists and can be obtained for a spherical Fermi surface. .

The key, of course, is to find a scattering Inodel which
can yield such a mean free path, and to this task we now
turn.

III. MODEL PSEUDOPOTENTIAI,

We have now to produce in the scattering of free elec-
trons by the thermal vibrations of the lattice ions a

FIG. 2. Determination of the deviation from the equilibrium
distribution by the mean-free-path energy dependence. Schemati-
zation for carriers moving down a temperature gradient acting
alone. Dashed lines: (e I )I (e) —Solid li.nes: f~ (e) = ( Bfe/Be) (e—I')—
Xt(e)(1/T) ( VT(. (a) I=co—nstant, (h) (sl/Be)r)0, (c) (Bt/Be)r
&0.

"Reference 7, Sec. 8.42.
"See, e.g., Ref. 6, p. 312; Ref. 7, p. 207; Ref. 10, p. 399. See

also I. V. Abarenkov and M. V. Vedernikov, Fiz. Tverd. Tela
8, 236 (1966) English transl, : Soviet Phys. —Solid State 8, 186
(1966)3."F.S. Ham, Phys. Rev. 128, 82 (1962); 128, 2524 (1962)."P.L. Taylor, Proc. Roy. Soc. (London) A275, 209 (1965).

n N. E. Cusack, Reports on Progress in Physics (The Institute oj
Physics and The Physical Society, London, 1963), Vol. 26, p. 361.

~ Reference 7, Secs. 8.532 and 8.54.
J. -P. Jan, in Solid State Physics, edited by F. Seitz and D

Turnbull (Academic Press Inc. , New York, 1957), Vol. V, pp.
64-66."L.J. SlQndstrotn, Phil. Mag. 11, 657 (1965).
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mechanism which can lead to a mean free path such
that Lcll(e)/cte)r(0. In all electron-phonon models the
Golden Rule rate for the transition k-+k+q can be
taken proportional to a phonon structure factor S(q)
and to the absolute square of a form factor or coupling
function V(q). As Ziman has, stressed ss if the maximum

~q~ for elastic scattering (i.e., 2k+) is close enough to
the shortest reciprocal lattice vector, and provided that
V(2ks) is large enough, then the rapid rise of S(q) to
its erst maximum can turn the trick. However, al-
though this Bragg peak rise in S(q) is certainly essential
to quantitative calculation, it is by itself neither neces-
sary nor sufhcient to obtain a positive thermopower,
and we now concentrate on V(q).

A simple model interaction which exhibits all features
essential to this paper is

V(q) ={1/«(q) }(D—(4srNe'/q') }, (3.1)

where D is a constant, E is the mean carrier density,
and «(q) is the static dielectric function due to the
carriers. In a deformation potential treatment, D is the
"bare" deformation potential and the bare Coulomb
term arises from the charge shifted to keep the chemical
potential constant. "In a rigid-ion model this is exactly
the "point-ion" interaction used extensively by Harri-
son" as a semiquantitative approximation to the elec-
tron-ion pseudopotential in simple metals. The bare
electron-ion interaction is just the long-range Coulomb
term due to the ionic charge Ze= (NQse) together with
a 5 function of strength D to approximate the short-
range terms (including orthogonality repulsion). Di-
electric screening of the bare interaction is of course
necessary in either model and ensures the proper limit

V(0) = as Et . Equatio—n (3.1) is both the simplest physi-

cally reasonable form for V(q) and, with appropriate
interpretation, applicable rather widely. Of course, one
must not use (3.1) when very large q are required, since

it remains 6nite for q
—+~. This is of no practical con-

cern here since we are dealing with the scattering of plane-
wave electrons and hence with q no greater than about
2k'.

The characteristic of the model V(q) which is central
to this discussion is that it can vanish at 6nite q. If it
d.oes, every scattering cross section (differential, total,
momentum transfer) will exhibit a minimum as a func-

tion of energy, and on the high-energy side of the mini-
mum we shall have dl(e)/de(0. Such a maximum in

l(e), if it is sharp enough and lies somewhat below the
Fermi level, obviously produces a "reversed sign" in
the thermopower. Indeed, because large momentum
transfers are preferentially weighted in l(e), a positive
thermopower can result even if V(q) does not actually

go through zero.
This behavior should not be confused either with a

44 J. M. Ziman, Phil. Mag. 6, 1013 (1961)."Reference 10, Sec. 5.6.
"W. A. Harrison, Pseldopoterttsals srt the Theory of Metals

(W. A. Benjamin, Inc., New Vor)t, 1966), Sec. 2.9.

Ramsauer-Townsend eRect or with a resonance or anti-
resonance. We have here the solid-state counterpart of
the long familiar interference between Coulomb and
nuclear scattering in low-energy nuclear physics. In
the nuclear case, interference can lead to a reduction
in total cross section over a narrow interval of incident
energy" by as much as two orders of magnitude. We
mention this not to imply anything quantitative for
the solid-state case, but to nullify any predisposition to
regard such Coulomb-core interference effects, associ-
ated with a single ion, as being necessarily small.

We close this section by indicating the adaption of
V(q) to a degenerate semiconductor case. First the bare
Coulomb charge-shift term becomes (47rNes/«oq'), where
f(0 is the static dielectric constant of the host material.
We take the polarizabilities of the host and of the free
carriers to be additive and interpret «(q) in Eq. (3.1)
as 1+4srn(q)/«s, where n(q) is the total polarizability
due to the free carriers. This interpretation of «(q) is
necessary if D is to represent an ordinary deformation
potential in the limit of vanishing carrier concentration.
Formal complications, e.g., associated with many-valley
aspects, arise primarily in trying to use V(q) in a calcu-
lation, not in its form.

/s dl)
S,= 1+i ——

i

3(—e)t' kl de) r

3(—e)j
(4.1)

The scattering may be taken to be elastic insofar as
the electrons are concerned, and in the Born, or "weak
scattering, '"' approximation we have"

(trte)s 4 ss

dq q'~ V(q) ~'QS(q), (4.2)
ls srIt4 (2k)4 o

where m* is the eRective electronic mass, 0 is the
normalization volume, and S(q) the static structure

» J.E. Brolley, Jr., J. D. Seagrave, and J. G. Beery, Phys. Rev.
135, B1119(1964).

3' M. Greene and W. Kohn, Phys. Rev. 137, A513 (1965).» Eqnation (4.2) can be derived in the simplest form of Bloch-
Wilson theory; no variational theorem is involved. See e.g., Ref.
28, p. 133.

IV. NUMERICAL MODEL CALCULATION

The primary eRects of Coulomb-core interference on
the mean free path and thermopower can be displayed
adequately within the simplest possible theoretical
framework. Ke assume a free-electron energy spectrum

k', a Bravais lattice, complete isotropy for the
phonons, a Boltzmann equation, and take the tempera-
ture to be high enough to obviate any diKculty in de-
fining a relaxation time. The electron diffusion thermo-
power is then given by
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factor s' Note particularly that Eq. (4.2) holds for any
k. It is worth emphasizing that the limits on integration
over momentum transfer Ag are for elastic scattering
ahvays determined, for any e, by the electron energy
surface, since this fact tends to get lost in a labyrinth
of umklapp complications in treatments which do not
explicitly collect all the lattice dynamics into a structure
factor. Under our assumption of high temperature, S(q)
is proportional to T.

We now approximate S(q) by its elastic continuum
limit S(0).This is just a slightly disguised and different
version of the simplest Debye model, and we shall use
the name (isotropic) Debye structure factor to refer to
it. We hereby amputate the Bragg peak rises from S(q),
and have for T) On

nS(q) ~ (k, r/p;. „cP), (4.3)

)((q) —+ 1+(k,,'/q'), (4 4.)

where k, is the usual screening constant, Neither of
these approximations is essential, but they allow ele-

mentary analytic evaluation of everything.
It is convenient to measure the mean free path by a

constant lp defined by

1 (~*)&D&k,r
~o xkp jo~c )

Taking the mean free path to be lp would correspond to
the venerable approximation of V(q) by a constant,
although D is not the same as the old interaction con-
stant C. We also define two parameters

x= (k,s/4k p'),

A= (I V(o) I/D) (4.7)

Equations (4.2)—(4.7) and the familiar
I V(0)

I

= (4n-Xe'/kP) then give

lp

l(eg) (2k)' p

1—A(k'/q') '

1+(k.'/q')
(4.8)

ss S((f} is the Fonrier space transform of the density-density
correlation function of the lattice at Gnite temperature. Some-
times, perhaps confusingly, the term structure factor is used to
designate a rather diferent quantity (see, e.g., Ref. 28, Sec. 2.5).

33 See, e.g., J. R. Schrieffer, Theory of Sttperoowdttoiioity (W. A.
Benjamin, Inc. , New York, 1964), Sec, 6.2,

where p;, is the mass density of the ion lattice and c~ the
velocity of longitudinal acoustic waves. In perhaps
more familiar terms we are treating umklapps like
normal processes and hence neglect transverse waves
completely. " By making this rather drastic approxi-
mation we place all responsibility for energy depend-
ence of the mean free path squarely on the pseudo-
potential. In addition, for )((q) we use the Fermi-Thomas
dielectric function

Elementary integration then yields

(4.9)

where

d ln l~ 2 1—Ax~s

d ln sit R(x,A) 1+x l
(4.10)

E(x,A) —=1+2(A+1)'
1 s

x= (1/7rankp) =0.166r„ (4.12)

where ae is the effective Bohr radius (k/mee') and r, the
usual dimensionless radius of the volume per carrier.
We further write

where
xp= (1/~ankp)sgnD, (4.13)

kp'—= (2nz*I D I/O') (4 14)

and display in Figs. 3 and 4 numerical plots of Eq. (4.10)
as functions of x, xp. It is quite clear from these curves
that a wide range of thermopower coeKcients can be
accommodated within the free-electron model. The
sharp sign reversals for xp&0 result from the onset of
strong Coulomb-core interference. Note that $(0 can
obtain for low density (large x), the point being that
for a small Fermi surface only normal process scattering
can occur. Accordingly we see that free electrons in a
band of standard form, for which the Hall coefficient
is always negative, can exhibit a positive diffusion
therrnopower entirely as a result of Coulomb-core in-
terference, without any inQuence whatsoever either of

~ Reference 7, Secs. 9.34 and 8.42.

—2(8+1)(A+3) x—x'ln(1+ —
) . (4.11)

Equations (4.9)—(4.11) constitute our principal formal
results and show considerable variation in behavior as
functions of A and x. Note that according to Eqs.
(4.10) and (4.1) the thermopower coefficient f is never
greater than three, which would be the value found for
X&~ 4 per atom if a Debye clfog on the q integration
were used'4 and umklapprozesse were discarded com-
pletely. If we fix the carrier density (i.e., take x=con-
stant) and increase D from a small positive value this
maximum is reached just when the zero of the model
pseudopotential passes 2k' into the range of elastic
momentum transfers.

When the Fermi surface consists of a number of
separated spherical pieces, these expressions can be
used to describe the intravalley scattering within one
of the pieces, provided 2 and x are properly related to
the number and structure of the valleys. For illustrative
purposes we stick to a (simply connected) free-electron
Fermi surface. In this case
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TmLE 1. Thermopower coefBcients for solid monovalent metals in the nearly-free-electron model. Calculated from
Eqs. (4.9)—(4.13) for parameters chosen as discussed in Sec. V.

(d ln l/d ln s)»

(BXP

—1.09—0.09—6.7.

1.68
2.68
2.7

1.75
2.75
3 8a

Rb

1.77
2.77
2 3s

Cs

1.67
2.67
0.2.

"CQ"

—1.67—0.67
1 7b

—0.62
0.38—1.1b

"Au"

-0.63
0.37—1.5b

a J. S. Dugdale, Science 134, 77 (1961).
b As quoted iu Ref. 12, p. 45.

the Fermi level within a nearly-free-electron picture,
and that quantitatively accurate results can be obtained
therefrom. Work is presently being done to extend the
calculation to Ag and to Au". Consider those two con-
duction-band states at the point I.of the Brillouin zone
which border the band gap there just above the Fermi
level. The lower of this pair has P-like symmetry (I.s')
while the upper is s like (I '). This has long been known
for Cu," is now established for Ag,""and is surely
so for Au."This implies that the (111) Fourier coeK-
cient of the eRective interaction is positive, and since
the deformation potential theorem assures us that the
effective electron-ion interaction is negative at q=0, it
must go through zero. Accordingly, we invent three
simple metals whose lattice structures and r, are those
of Cu, Ag, and Au, and 6x xo for these pseudometals by
fitting V(q) to the V(111) extracted by Ziman from
de Haas —van Alphen data. "We expect in this way to
obtain a qualitative indication of the importance of
interference eRects for the real metals.

The results of all this parameter 6tting are displayed,
in Fig. 5, in a parameter-space plot of lines of constant
(d ln //d ln e)» as given by Eqs. (4.10)—(4.14). Lithium
and the pseudometal relatives of Cu, Ag, and Au are
distinguished qualitatively from other metals in exactly
the manner required. A range of parameters obtained
from the AHA potentials for the divalent metals is also
shown, but only to indicate where polyvalent metals
tend to congregate in such a plot; no claim of direct
relevance is being made for them. Table I contains the
numbers found by Gtting for the alkalies to the 6rst
zero in the published curves of Animalu and Heine
and for the pseudometals as described above. No pre-
tense to quantitative comparison to experiment is to be
read into this table, if for no other reason than that the
Bragg peak rises in the structure factor have been
excised.

The noble metals, of course, present additional com-
plications due to the d bands lying close to and below

"R. Jacobs (to be published), cited in Ref. 39 as Ref. 13.
4' B. Segall, Phys. Rev. 124, 1797 (1963); G. A. Burdick, ibid.

I29, 138 (1963).
o B. Segsll, Bull. Am. Phys. Soc. 6, 145 (1961).
~ F. Mueller (private communication).

the Fermi level. The eRective interaction of Mueller
and of Heine contains, in addition to a weak pseudo-
potential, terms arising from hybridization and re-
sonancelike interaction with the d bands, and these
latter are not properly allowed for in the model V(q)
of Eq. (3.1). Since the resonances lie below the Fermi
level we may expect them to provide a sizeable Posifim
contribution to (d ln f/d ln e)», and it seems likely that
this would be essential to the success of a realistic
calculation. Without this eRect of the resonances, the
Bragg peak rise in the real $(q) would probably lead to
negative $ which were very much too large.

As regards the alkalies, the one puzzling case would
seem to be that of Cs, and it should be remarked that
for liquid Cs near the melting point t= —1.3." We
emphaize that the discrepancy found here for Cs is
rot due to the use of a Debye structure factor. A de-
tailed calculation has now been made which shows that
the thermopowers of all the other alkalies can be under-
stood in terms of simple pseudopotentials with inter-
ference effects amplified by realistic structure factors. 44

For example, the reason why Sjundstrom's calculation"
for liquid I.i gave the correct sign is simple: The mean-
free-path integral Eq. (4.2) was evaluated numerically
and hence the q dependence of V(q) was retained. A
possible source of the behavior of Cs appears to be the
d bands which in this metal lie close to and above the
Fermi level. " A resonancelike interaction associated
with these would give a negative contribution to $, and.
this would moreover be in accord with the eRects of
pressure on solid Cs.4'" Should this prove to be the
case, then perhaps Cs should be removed from the list
of simple metals.
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