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A system of neutral molecules having permanent electric dipole moments should exhibit self-sustained
longitudinal polarization waves analogous to the plasma vibrations of an electron gas. To study these
long-wavelength collective modes (dipolar plasmons), we adapt some techniques successful in many-
electron problems to systems whose Hamiltonians include kinetic energy both of center-of-mass and of
rotational. motion, the interaction between rigid dipoles, and short-range interactions which we need not
specify in detail. A canonical transformation plus a random-phase approximation (RPA) is used to display
the collective modes explicitly in the Hamiltonian, and it is shown that the ground state of the system is
adequately described in the RPA. The dipolar plasmon frequency so found is also obtained by linearizing
equations of motion for Fourier components of the polarization charge density, and is affected statistically
by short-range forces through a constant factor. Linear dielectric response theory yields a simple exact sum
rule and, in a self-consistent-held approximation, a dielectric function in which dynamical e8ects of short-
range forces can be retained. The classical dielectric function for linear and spherical rotators is evaluated
in closed form when short-range forces are neglected. Its static limit is the Onsager expression for rigid
dipoles, and it vanishes at the dipolar plasmon frequency.

I. INTRODUCTION

1

~OI.I.ECTIVE excitations in charged p1asmas have
M been studied extensively, both theoretically and

experimentally. ' ' The best known are the long-wave-
length plasma oscillations, for example, in the electron
gas. Similar collective oscillations must also exist in sys-
tems of neutral molecules having permanent electric
dipole moments, but no detailed analysis of such modes
seems to be available. In a system of identical inter-
acting dipoles, we anticipate the existence of self-
sustained polarization waves whose frequency in the
long-wavelength limit tends to a finite value of order
(Etc'/IQ) 't', where E is the number of molecules in the
system of volume 0, p, is the dipole moment, and I is
a suitable average moment of inertia of each molecule.
The purpose of this work is to give a theoretical descrip-
tion of the dynamics of such modes.

Ke concentrate primarily on the inhuence of the
long-range dipolar fields. Short-range dipole-dipole
correlations are, of course, extremely important for the
dielectric properties at low frequencies. However, we
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are here interested not in the static dielectric constant,
but in the response of the system at frequencies of the
order of 10"—10" sec '. The frequency of the collective
dipolar mode (dipolar plasrnon) does, of course, depend
on the nature of the short-range forces, but primarily
their effect upon the equilibrium distribution of dipole
moments in the system. We shall show in Sec. II that
the frequency coI, of the dipolar plasmon, in the long-
wavelength limit k=0, is given by

co '= (4sr/ts'/QI) (srn'0) (&)

where 8 is the angle formed by one dipole moment with
the direction of propagation, and the brackets indicate
an average over all dipoles at equilibrium. If, for ex-
ample, at equilibrium the dipoles are oriented at ran-
dom, this average is -', . On the other hand, if the system
is completely polarized at equilibrium, this average is
unity for propagation at right angles to the direction
of polarization. Accordingly, the effect of short-range
forces can be taken into account in performing the
average in Eq. (1).

There exist alternative ways to arrive at a description
of the dipolar plasmons and to derive their frequency.
The approximations we use are similar to those common
in treating the electron gas. In Sec. II A, we employ a
canonical transformation to separate the Hamiltonian
of the system into parts corresponding to single-particle
and to collective motions, and discuss the conditions
under which the residual coupling between these parts
may be neglected. In Sec. II 8 we introduce collective
coordinates which are Fourier coefficients of the polar-
ization charge density, and obtain their equations of
motion. Section III contains a discussion of the dielec-
tric function within the linear™response theory.
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II. DYNAMICS OF AN ASSEMBLY OF
PERMANENT ELECTRIC DIPOLES

A. Canonical Transformations and the Random-Phase
Approximation

We consider a system of identical molecules each of
which has a permanent electric dipole. We shall in this
section take these to be linear molecules, thus neglecting
the moment of inertia about the direction of the dipole.
The coordinates of the lth molecule are then the posi-
tion R& of its center-of-mass system and polar and
azimuthal angles 9&, 4&, specifying the orientation of
the dipole moment in an arbitrary reference frame.
The classical Hamiltonian of the system is

GC= Q I (PP/2M)+(2I) '(Pgj+(sin'e, )-'P„') }

+k Q (I"u+~n) (2)

introduce also a field 7r(R) canonically conjugated to
4 (R) and write

~(R) =Q-''2 g s~ exp(ik R) .

Since i'(R) and 7r(R) are taken to be real,

egg —7i

and

+a=+—a ~

The Hamiltonian can now be written as

X= g (PP/2M)+(2I)-' g t P~&'+(sin'8, )
—'P,O2j

l

+-', Q ~
7',+ Qik y)(kr/Q)'I'exp(ik R() ~'

)xi&a, l

+-,'Q Ug) —(2~/Q) Q (fc yg)2

The single sum is the kinetic energy, M being the mass
of one molecule, and P~, 8~8, P~~ the momenta canon-
ically conjugate to R&, 8&, 4&, respectively. The inter-
action between the molecules l and l' is separated into
two parts: Vg~ is the dipole-dipole interaction and Ug~.

is a short-range interaction whose form we need not
specify. It is convenient to rewrite the total interaction
energy as a Fourier series. We take V« to be the inter-
action of two finite dipoles and go to the limit of point
dipoles after eGecting the Fourier expansion, obtaining

V&v= g (4n/Q&')k yak p& expfik (Ri—Rp) j. (3)

It is to be understood that in this and all subsequent
summations over k, the term k=O is to be omitted.

Let us now introduce further degrees of freedom
which can be regarded as being associated with the
self-consistent electromagnetic 6eld in the dipolar
system. 4 Instead of using as 6eld variables the Fourier
components of the vector potential of the electromag-
netic 6eld, we use the scalar 6eld

4(R) =Q '~' g O'I, exp( ik R),—
&&&c

where the summation is over all k having magnitude
less than that of a cutoff wave number k, . There is, in
principle, no need to introduce a cutoG. However, we
wish to describe the system in terms of separated and
relatively simple single-particle and collective motions.
Such simple collective modes can exist only for wave-
lengths greater than the intermolecular spacing which,
therefore, provides an upper limit to k, . In practice, we
impose the more restrictive condition on k, that the
number of additional variables%I„be small compared
to the number of degrees of freedom in the system. We

4 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).

+-,'Q Q (4r/Q) (k p() (k p() expLik (R)—R(.)).
iV )Xl&uc

(6)

We require that the Hamiltonian in Eq. (6) be
identical to the on.e in Eq. (2). Thus we have the
subsidiary conditions

for
~

k
~
(k,. In the quantum theory we impose the

condition that the solutions of the Schrodinger equation
BCN= EN be such that ~I,I=0, where +I, is to be regarded
as a quantum-mechanical operator.

We shall now carry out a canonical transformation
generated by the function

S= —Q Q ikey(47r/Q)"'(fc:. yg) exp(ik Rg)
l&l&&c

+ Q ~A'I+ Q (peBi+pyP~+p~ Ri) (&)
)k)&kc l

This transformation takes us from the old variables R~,
P~, 8~, I'8~, 4~, I'~g, 4~, ~I, to the new variables r~, p~,
g~, pg~, p~, pq~, 4'q, mq. The canonical transformation is
given in the following explicit form:

%g= BS/Beg ——4'g,

Hi= BS/Bpgi BE,
——

(f)i= BS/Bppg= C g,

r)= BS/Bp( ——R),

and the correspondirig equations for the generalized
momenta. To obtain the expressions for the new
momenta, we need to de6ne the polar angles of k.
These are designated by nI, and Pz, where nI, is the angle
formed by k and the polar axis and PI, is an azimuthal
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angle of the vector k. Then

q, k=t [coseI cosa&+ sineI sinn& cos(C» —p&) g, (13)

p„=8S/8C, =p~~+ Q i%pt '(4 /0)"' exp(ik r1) sin81 sinnq sin(QI —pg),
l kl&kc

I'gI = 8S/BBI pq——t+ g it1(47r/0) "%'q exp(ik rI) [sin81 cosnI, —cos81 sinnq cos(&I—pq) j,
l kl&kc

PI BS——/BRI p ——+I(4'/0) '~' p kk1p exp(ik rI) [cos81 cosn1+ sin8I sinuI. Cos(&I—pq) g,
l kl&kc

(14)

(16)

'zI =BS/Blj/g= my '1tj(41I /0) I p exp(lk'rI) [cos81 cosep+ sln81 sln&g cos($I pp) ]&

where in Eqs. (14)-(17) we have replaced the old variables by the new ones obtained in Eqs. (9)-(12). The
new Hamiltonian is

K=X+BS/Bt=K.
We now write

K= g (pp/235)+(2I) ' g (pyp+(sin'81) 'p~p)+ p -', s. s q
lkl&k

—(21rtI'/IQ) g p g%'@21.exp[i(k+k') .rQIsinaI, sinnI, sin(&I —p~) sin(&I —pq. )
lkl&kc l kil&kc L

+[cosn1, sin81 —cos81 sinaq cos(QI pI, )j[—cosa'. sin81 —cos81 sinaI, . Cos(QI —I81,.) g

—(IltlII')k k'(vI &)(sI &') I+K'-~+I 2 g (4~/0) yI &@I &exp[ik («—«)]
lkl&kc L, LI

+-,' Q UII —(2m/0) Q Q (yI A')', (19)
LWLI

where

K;nt, = g g (ip/I) (4rr/0)'I'%1P~I exp(ik rI) [sinnq sin(PI —Pq)/sin81]
l k)&kc L

+ g g (itI/I) (4n/0) '%IPaI exp('ik rI) [cosa» sin81 —cos8& sinn& cos(PI Pf) j
l kl&kc

+ g g M—I(41r/0)"'pI k4'~ exp(ik rI) pI A:. (20)
l kl&kc

In Eq. (19) the first two terms represent, as before,
the kinetic energy of the molecules. E;„& couples the
the collective oscillations described by the coordinates
wk and%k with the individual particle modes described
by rL, pL, and pL. U« is the same as before with the
new coordinates substituted in place of the old ones.
The term containing a summation over wave vectors
whose magnitudes exceed k, is the short-range part of
the dipole-dipole interaction. The last term is the self-
energy of the electrical dipoles. The fourth term con-
tains a sum over two wave vectors k and k'. This
double summation can be divided into two parts, one
with k= —k' and the other with k& —k'. This latter
part is negligible as we shall demonstrate later. After
dropping these terms with k+k'&0, the Hami]tonian

function becomes

K= Z (PI'/2M)+ Z [(PqP/2I)+(P&P/2I sin'81) j
l L

+ Q g(7ra7r a+~1'+8' I-;)+K'nt
lkl&kc

+-', Q (41r/0) (yI 7I:) (yI k) exp[ik (r1—rI)g
lkl&kc

+-:ZU -(2-/0) ZZ(~ f), (»)
k LL&V

where

41rp'5 (sin'('k, yI} k'cos'(k, pI}&

0 j I I M

or& is regarded as the frequency of a collective dipolar
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excitation. Strictly speaking, the term in the Hamil-
tonian,

&~= g o(~a&—a+ooa"4+—a),
(hj&kg

(23)

does not give a completely satisfactory description of
the collective excitations because coI, depends, as is clear
from Eq. (22), on the instantaneous angular orienta-
tion of all the dipoles in the system. However, it depends
on this orientation only through terms of the form

+& sin'(k, y&), so that to a high degree of accuracy
they can be replaced by an average over all molecules

L(k, p~) designates the angle between k and pQ. The
frequency ~& is to be interpreted as a frequency analo-
gous to the frequency of plasma oscillations in an elec-
tron gas. The frequency of long-wavelength plasma
oscillations in an electron gas is given by (4vrEe'/mQ) "',
where E is the number of electrons present. The analo-
gous frequency for the fluctuation of the polarization
field of a dipolar system is proportional to (1''/IQ)'~',
and this is exactly the frequency given in Eq. (22).
It is to be noticed, however, that this frequency de-
pends on the average of sin'(k, p~) over all the dipoles
in the system. Thus the numerical factor in front of
(Ey'/IQ)'I' depends on the nature of the short-range
forces between the molecules since these will determine
the value of that average.

From Eqs. (9) and (17) and remembering that a a=
or —aa and p a=m+pa and that t(R) and 4'(R) are
real, we Qnd that

t ~a, aa ']= 4a .

Substitution into X~ yields

&y= Q ~a(~a'~a+-'. )

(26)

(27)

XVe now turn to the question of the justification of
the neglect of the terms in Eq. (19) containing sum-
mations over k and k' with the restriction k+k'QO.
This approximation will be called (in analogy to the
similar one made for the free-electron gas) th'e random-
phase approximation (RPA) .o To be explicit, the terms

The system is quantized in the usual fashion by
requiring that canonically conjugate variables be
operators satisfying the usual commutation relations.
For example,

t.+a, ~a ]=i@,a,
where we take units such that 5=1. Let us now con-
centrate on the term E„give innEq. (23). We define
the non-Hermitian operators uz and a& t by means of

aat= (2&oa) "(ooa@ a i+a). — (25)

Remembering that x~~=m ~, CI,~=+ ~, andes I,
——co~, we

Gnd that

we have in mind are

is of the form
(30)

(31)

where po(l) is the ground-state wave function of the
lth molecule in the Hartree self-consistent Geld of all
other molecules (excluding long-range interactions) .We
now de6ne

C (K) =7 '~' g exp(iK rv)4o(1) 'Ao(/' —1)

&&4 (i')A(i'+1) 4 P) (32)

Here p (t) is the mth rotational state of the 3th mole-
cule. It is assumed that the number of molecules
excited above their ground state into excited rotational
states is so small that it does not appreciably alter the
Hartree self-consistent field. in which each molecule is
supposed to move. ln the absence of interaction, C (K)
has an energy 8' —8'p above the ground-state energy
of the system. (W is the energy of a single molecule in
its mth stationary state in the self-consistent 6eld
arising from the short-range interaction of the other
molecules. ) The ground state of

is of the form CpAp where Ap is the state in which
cp~G@Ap=0 for all k; i.e., the state with no excitations
of the collective motion. Of course, this is only. . valid
when we can regard the co~ as being indeperident of the
position of the molecules. Strictly speaking, this is
not rigorously correct; but there can be no doubt that
it is valid to a high degree of accuracy. The term E'
connects the ground state Ap with states with two dis-

2'Fp
Q Q+gIa exp/i(k+k') r)]

IQ i, gr

X I sin+a sin+a sin(p~ —pa) sin($~ —pa )

+t cosaa sino~ —cos0g sinoa cos($~—pa) ]
Xt cost+~ sine) —coseg sing~ cos(fg —pa~)]

—(I/&~') k. k'(t ~ fo) (V~ fo') I (28)

Here the summation over k and k' is restricted to those
pairs of values of k and k' whose magnitude is less
than k, and satisfying the condition k+k'WO. We
rewrite Eq. (28) as

7r 2

E'= g expLi(k+k') r~]@a+a'F~(k, k'), (29)
QI

where the definition of the function F~(k, k ) is obvious
from a comparison of Eqs. (28) and (29). Let us
assume that the ground state of
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tinct excitations because

+o+o =(4o)ao)o) "(~o+o o') (~) +o o'), (33)
aild

k+k'AO.

%e now assume that excitation of one molecule does
not alter the Hartree self-consistent Geld of other
molecules or its own. Thus we have, in particular,

From Eqs. (29) and (34) it follows that the only
nonzero matrix elements of E' between the ground state
Qp(1) Qp(2) ' ' '(jho(l) ' ' and states of the form
)t„(1)@ .(2) ~ P -(l) ~ ~ ~ are those in which the latter
is such that only one molecule is excited. Let us define
the quantity f (k, k') by

(4-(l) I Pi(k, k') 14o(l') )=f-(k, k') &«' (35)

Clearly, this approximation breaks down if a consider-
able fraction of the molecules are excited, but vre shall
not be concerned with that case.

We have made the further assumption that @ (l) and
)to(l') do not overlap. We now calculate the matrix
elements of E' for states Cp [Eq. (31)) and C (K)
[Eq. (32)].We have

(C' (K) (
E'

( C'p)= Q (4)rp'/QI)%'o%o. (C ('K)
~
exp[i(k+k') rQP)(k, k')

) Cp)
&&Il

= g (4 I /DI)e. e,.X- I g Q, (1.) ~ y„(l') ~ ~ y.(&) )
P (k, k')

Xexp[i(k+k') r~ —iK r)] )4o(1) 4o(l')' '4e(&) ).

The matrix elements involved here can be simplified considerably by writing down the explicit integrations. Let
the element of volume of the configuration space of one molecule be dr~du~, where du~ represents the contribution
arising from the rotational degrees of freedom. We have, for /)&l',

9'p(1)'''4'~(l)'''4p(S) IP~(k, k') exp[i(k+k') r&—iK rv) )Qo(1) @o(i') 4o(N))

dr( dr). exp['i(k+k') r(—iK rpl dwt dw(. y *(l')go*(l)P((k, k')@()(l')yo(l)

since, from Eq. (34),

For I,=l'

Qp(1) "4-(l)" co%') IP~(k, k') em[i(k+k' —K) r~jl4o(1)" 4o(&))

drg exp[i(k+k' —K) rgj dw))t)„'(l) P)(k, k') 4p(l)

There are, of course, X terms of this form. Thus,

=&z,»+o f (k, k')

(C~(K) (
E'

) C'o)= (4)rp'/QI)1P" Q+o+x ),f„(k) K—k). (36)

We notice that this is still an operator containing% ~% ~ I, which connects Ao with a state containing two collective
excitations (KWO) . The change in the ground-state energy to second, order in E' is

i (C„(K)A(k, k') )
E'

) CoAp) P

m 1r.,kl o)o+o)o +W —Wp

Here o)o is the energy of a col]ective excitation (dipolar plasmon) of wave vector k, W —Wp is the excitation
energy of a single molecule in state m and h. (k, k') is a wave function characterizing the system when it has
tw'o dipolar plasmons with wave vectors k and k'. We wish to find an upper bound. for d'. We have

(38)
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The matrix element is

(C~(K) A(k', k")
I
E'

I CpAp)= (4m p'/IQ) N"' Q (peeped p) "'f„(k,K—k) bp. , ebp-, x+p.

Hence
2, '&(2Np) ' g g (47rp'/IQ)'N(coeNx p)

' If~(k, K—k) I'

and a fortiori
5'& Q Q (4erte'/IQ)'(2(ape) 'N

I f~(k) K—k) I' (39)

Replacing 47rNte'/IQ by pep', which is of the same order of magnitude, we Gnd

hg& Q Q ((op/SN) I f (k, K—k) I'.
m It:,K

One can easily establish a sum rule for the f„(k, k') as follows:

2 If (k, k') I'= 2 (4p(t) I
Fi(» k')

I 0 (t) &(0 (t) I
Fi(k, k')

I A(t) &

= (Vo(t) I
I"'(k, k')

I eo(t) ).

The maximum value (as a function of k and k') of
this quantity will be designated by fed. Now we let N'
be the number of dipolar plasmon degrees of freedom
so that Pp &p,1=N'. Then we have

6'& (N'/SN) N's)p f~.

From Eq. (28) it is easy to see that

f~ &4

Thus, the ratio of d' to the zero-point energy of the
dipolar plasmons is

(2h'/N'ppp) & (N'/4N) (&1.

This procedure justifies the use of the RPA for the
ground state of the system.

Furthermore, we may place an upper bound on the
shift of the ground-state energy of the system arising
from the term E;„t in the Hamiltonian which couples
dipolar plasmons with the individual particle motions.
We calculate this shift by perturbation theory to second
order in the plasrnon field operators, and after carrying
out the intermediate sum over one-plasmon states,
have left an operator depending only on the single-
particle momenta. Sy averaging this operator in the
classical equilibrium ensemble at temperature T we
obtain an upper bound to the shift. We find in this wa
that (E;~e)&(IeoT/cup) Zp&p, (~e/2), where ko is th
Boltzmann constant.

B. Equation of Motion. of the Po1arization
Charge Density

In this section we treat the dynamics of the polariza-
tion charge density and discuss the conditions under

Ia, ag iIa, Ilg, , , (44)

where P.B.means Poisson bracket. Using Eqs. (3) and

(42), the Hamiltonian of Eq. (2) becomes

fp~e' I'~e' PP

(2+0 (2m.)+ Z I, t (k) t ( k) Z I

—
I
(—pz. l )—'

a

+-,' Q U)(. (45)

The meanings of the terms in R are the same as in
the previous sections. The third term oo the right-hand
side is the self-energy term for the dipoles and is a
constant that we shall disregard. The fourth term is a
short-range interaction between molecules, and can
aQect the frequency of the charge-density fluctuations
only at large k. Accordingly, since we concentrate on
the 1ong-wavelength limit, we neglect V~E. Choosing

which its Fourier components vary harmonically in
time and, hence, are suitable collective coordinates of
the system. The polarization charge density is

p(r) = —7 P(r),
and has Fourier components

p(k) = (—i/Q) g~ k te~ exp( ik r—~). (42)

The quantum-mechanical equation of motion for p is

t (k)=-L& L~~ o(k)Z

The classical equation of motion is obtained by the
correspondence, for any quantities A, 8,
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the polar axis parallel to k, we fj.nd

imp,
p(k) = P exp( —ik rt' cos8t(k. vt)'+ cos8t(t}t)s

0

Pig cosgi+ . —2i(k vt) 8t sin8t
12 sll1~0g

4mp, 'k
, exp{i(k —k) rt}{sin8t sin(k', pt)

IQk

+(Ik k'/M') cos8t cos(k', yt) )p(k'), (46)

where v& is the velocity of the center of mass of the
1th molecule. In the RPA, the summation in k' is
replaced by the single term in which k'= k. We then
have

47rtss ( Ik'i
Q I

sin'8t+
I
cos'8t

I p(k)
IQ t I Mj )

+ g exp( —ik r&) (i/Q) k p&{ (8t)'+its sin'8 t

p(k) =—

+(k v&)' 2i(k—v&)8t tan8&}. (47)

We now linearize Eq. (47) by taking averages in the
equilibrium ensemble' as follows:

p(k) =—(47','/IQ) g (si n'8t+(O'I/M) cos'8t)p(k)
l

—P (—i/Q) k pt exp( —ik rt)

IG. DIELECTRIC RESPONSE OF A DIPOLAR
SYSTEM

A. General Results

The dielectric behavior of a gas of interacting elec-
trons is well known. '~ We first sketch the linear-
response theory for a system having an arbitrary dis-
tribution of electric charge in order to emphasize the
complete generality of the results, and then specialize
f;o the present case of neutral dipoles.

) We are concerned with the response of our system to
a small perturbation produced. by an external charge
distribution p, r, (r, t) . To 6rst order in the perturbation
the induced charge p;„& is related to p, & by

e '(k, ~) —~ = {p'.~(k, ~)/p-s(k, ~) } (52)

where p(k, co) is the Fourier transform with respect to
space and time of p(r, t), and e(k, to) is the dielectric
function of the system. The external charge is assumed
proportional to exp(i{ k r—(to+ib) t]), where b is a
positive infinitesimal which ensures that the perturba-
tion is turned on adiabatically. The total charge density
is the trace of the product of charge-density operator
of Eq. (42) and the density matrix f of the system in
the presence of the external perturbation. If we write

f=fp+fy(t) where fp is the equilibrium density matrix
in the absence of p,„&, then we have

expL —i(co+ib) tgp;~e(k, p&) =Tr{p(k) fj (t) }. (53)

& (8,+~. . .8+(k ), 2 (k )8 t „8 ) f~(t) is obtained from the equation of motion

Since the indicated averages are independent of I, we
obtain where

i(8f/8t) = PC+X', f), (54)

p(k) = —{(4srNts'/QI) (sin'8+ (tesI/M) cos'8)

+ (8'+jP sin'8+(k v)')}p(k) (48)

the averages being for one molecule. Since we have no
velocity-dependent potentials, the classical average of
the second term in Eq. (48) can be obtained using the
equipartition principle. We then have

p(k) = »'{&+—(&~7'/I»') [2+(&'/I. IM) j}p(k),

where k~ is Boltzrnann's constant and T the absolute
temperature. The second term is negligible. For ex-
ample, for water we should have (I»'/2k~) =3000'K.
The quantum-mechanical average in the second term
of Eq. (48) is always smaller than the classical, and
hence we can always neglect this term. Finally then,

p(k) =- -»'p(k),

K'(t) = tPr V, p(r, t) p(r)

i(af,/8t) =
{ SC, f,)+{X', f,j, (56)

whose solution is

t

f, (t) =i dt' exp{ i3C(t t') }{—.fp, K'—(t') j
&( exp{i3C(t—t') }. (57)

= expL —i(to+ib) tf(4nQ/k') p( —k) p. p(k, to)

(55)

is the interaction with the potential V,„& produced by
p,x~. Note that in Eq. (55) p,„p(k, to) is a c number
while p( —k) is an operator in the Schrodinger repre-
sentation. Within linear response theory we have

with I J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. I"ys.
» = (47r)iIts /IQ) (sin 8+ (te I/M) coss8) (5l) Medd. 28, 8 (1954}.

7P. Nozieres and D. Pines, Nuovo Cimento 9, 470 (1958);
See, e.g. , D. Pines, The Many Body Problem (W. -A. Benjamin, also D. Pines, Elementary Exeitations in Solids (W. A. Benjamin,

Inc. , New York, 1961),pp. 44-48. Inc. , New York, 1963), Sec. 3.4.
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Equations (52), (53), and (57) then give

e
—'(k, to) —1= (4irQ/k') dt exp/i(to+iB) tg

limit (S-k0),
~ der

E,'= —ktdT —Q Ime '(k, do).
p %07

(66)

Here, as usual,

and

&& (iLp( k—, 0), p(k, t) j). (58)

(59)

p(k, t) = exp(iXt) p(k) exp( —iXt). (60)

The asymptotic expansion of e '(lr, co) is obtained from
Eq. (58) on integrating with respect to t by parts
twice. Using Eq. (60) and noting that Lp( —k, 0),
p(k, 0))=0 we 6nd

krQ 1

6)

+O(do s). (61)

Equations (61) and (62) become

e '(k, do) —1-k(coks/do')+O(co '), (68)

These expressions, in particular Eqs. (58), (61), (62),
and (64), are completely general and hold for an arbi-
trary distribution of system change.

We now specialize to the present case, and, using
Eqs. (2) and (42), we find

Pp( —k), Lp(k), Xj]
= —(k'td'/IQ') g {sin'et+ (O'I/M) cos'fit I. (67)

A sum rule then follows by exactly the same steps
used for the electron gas, and is

dco to Ime i(k, do) = —srs-doss. (69)

d ae '(k, )=2df dawIms '(k o)
0

(4trQ/P) (L,(—k), L,(k), X]g).
(62)

That part of the total interaction energy at equilibrium
which is due to the explicit intermolecular Coulomb
interactions may be expressed in terms of e(k, &o).

Understanding that self-energy terms Le.g., as in Eq.
(45)j must eventually be subtracted, we write

E,'—=—',g (4rrQ/k') (p( —k) p(k) )

=-,'g (4rrQ/k') (fp( —k 0) p(k, il) I ), (63)

where the curly bracket indicates an anticommutator
and p is a positive infinitesimal. Vsing only a Ructua-
tion-dissipation theorems and the symmetry of e(k, co),
we find'

E,'= — —Q t't coth(-,'Pko)) Ime '(k, do), (64)
o

where p= (1/kid T) . We restore 5 in this and in succeed-
ing interaction, energy formulas in order to make pass-
age to the classical limit clearer. In the quantum limit
( T—+0),

It is shown in Appendix A that Eqs. (67) through (69)
hold for dipolar molecules of arbitrary rotational sym-
metry and dipole orientation when (1/I) in Eq. (67)
is supplanted by an appropriate average of the inverse
principal moments of inertia. The dipole-dipole inter-
action energy at equilibrium is

8M
Es;o,i„=—Q —t't coth(-,'t35to) Ime '(k, co)

Jg 0 2x

+2' (X/Q) tds (COS'e ) . (70)

In subtracting oG the self-energy, we have assumed
the system to be homogeneous. The dielectric function
itself follows immediately on using Eq. (42) in Eq.
(58).

We illustrate the connection of these expressions to
the work of the preceding section by a simple example.
Linearization of the equations of motion is, by Eqs.
(43) and (50), equivalent to taking

tX, LX, p(lr) $] to 'p(k). (71)

It we assume Eq. (71) to be exact, then we easily find
from Eq. (60)

p(k, t) = cos(&okt) p(k) + (1/(ok) sin(dost) iLX, p(k) $,

s Only Eq. (B1) of Appendix B is required.
s See R. Brout and P. Carruthers pLectlres odd the Mdtdty Etectrort-

Problem (John Wiley tk Sons, Inc. , New York, 1963), p. 1.32)
f'or a similar derivation for the electron gas.

'o D. Pines, The Navy-Body Problems (%. A. Benjamin, Inc.,
Neer York, 1961),p. 43.

, &E (—k), L k), XZ)

=—dos sin (tost) .

~Au
E.'= —lrt —g Ims '(k, to), (65) d t F (67)

which has the same form as occurs in the ground-state 4trQ

interaction energy of the electron gas."In the classical tts

(73)
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We then have from Eq. (58)

e '(k, pp) —1=-',co~I((o—pp~+z6) ' —(to+tot, +zb) '},
and hence

Ime '(k, pp) = —(sr/2) cyA,, I 3(o)—(as) —3(co+pps) }, (74)

Res(k, o)) = 1—(&vs'/toz) . (75)

B. Self-Consistent Field Approximation

In this section we address ourselves to reducing the
general expression for e(k, co) to a form on which
practical calculation could be based. In the classical
limit and for the static dielectric response this problem
was long ago solved by the work of Onsager'4 and of
Kirkwood, '5 and extension to finite frequency was

» D. Pines, Ref. 10, p. 42.
» 3. Giovanni and S. Koide, Progr. Theoret. Phys. (Kyoto)

34, 705 {1965);Y.-L. Wang and H. B. Callen, Phys. Rev. 148,
433 (1966);T. Arai and B. Goodman, Bull. Am. Phys. Soc. 12,
134 (1967).

"A. N. Kaufmann and K. M. Watson, Phys. Fluids 4, 931
(1961);D. W. Jepsen and 11.L. Friedman, J. Chem. Phys. 38,
846 (1963).

' L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936)."J.G. Kirkwood, J. Chem. Phys. 7, 911 (1939).

Equation (74) together with Eq. (70) gives the inter-
action energy associated with the dipolar plasmons as

+dipole, p lasman

= Q I-',Stop coth(rppfipes) —23 (X/Q)ts'(cos'0)} (76)

= g I -,'Los —2zr ($/Q) ts' (cos'8 )} ( T~O) (7'7)
lt:&&c

=E'
I -', kn T—2x (X/Q) ts' (cos'8 ) } (5-+0) . (78)

Just as we shouM expect, the dipolar plasma frequency
is a root of the dielectric function, " and interaction
energy in the quantum limit is the exact analog of the
corresponding expression for the electron gas. '

We shaH carry the general discussion no further. We
are dissuaded from attempting a diagrammatic analysis
of the inverse dielectric function by the following cir-
cumstances: In a quantum-mechanical treatment, since
the angular-momentum operators with which we must
perforce deal have many eigenstates and do not have
c-number commutators, no simple form of Wick's
theorem or of a linked cluster expanlon exists. Some
progress has recently been made in this respect, but
not yet enough to facilitate the present work. "A similar
complication of course carries over to the classical
regime. Some graphical analysis of the static dielectric
constant indeed exists, " but only up to the inclusion,
for practical purposes, of ring or chain diagrams; and
this results in a Clausius-Mosotti formula with con-
comitant peril of a ferroelectric catastrophe. Accord-
ingly, we now turn to a simpler method of reducing
calculations of e(k, co) to tractable proportions.

later treated by Glarum. "Here we wish not only to
retain quantum-mechanical validity, but also to allow
for dispersion and center-of-mass motion. We must be
careful to avoid introducing a spurious ferroelectric
catastrophe, and commence by showing how this could
most simply arise in the present formalism. It is suQi-

cient to consider the classical limit of Eq. (58) for
co=-0, which with the help of Eq. (33) of Appendix 8
is seen to be

e '(k, 0) —1=—(4rQ/k') (1/&AT) (p( —k) p(k) ). (79)

If now a11 interactions between molecules were ne-
glected, then

e
—t(k 0) 1 e

—t(0 0) 1 (4zrEtss/3QPn T) (80)

which would indicate a ferroelectric Curie point at
T,= (4s.Xts'/3Q)'zg). The precise parallel to this situa-
tion exists in the uniform electron gas, in which case
neglect of all many-electron interactions would lead, ~

at long wavelength, to e '(k 0) —1= (k '/k') instead of
the correct form e(k& 0) = 1+(k,'/k') . One well-known
cure for this disease, in the electron gas, is to treat the
electron-electron interactions by self-consistent first-
order perturbation theory, "and we adopt this approach
for the present case of dipolar systems.

The eGective field to which a dipole responds is not
the macroscopic field in the medium, in contrast to the
case in the electron gas. As first pointed out by
Onsager, "the reaction field" must be excluded. Hence
we sha11 assume that each dipole responds to a general-
ized cavity field' which we further take to be pf the
form y(k, a&)Vacua(k, co). We do not here enter into
discussion of the form of y for general k, eu. We choose
a form which is consistent with Glarum's results, "and
for 1ong wavelengths shall take

y(k, to) = L2ep+e(k, pp) )/(2ep+1), (81)

where eo denotes the static dielectric constant at infinite
wavelength. In the static limit (pe=0), y reduces to the
proportionality constant } 3ep/(2ep+1) j of the Onsager
cavity field.

Our self-consistent-field approximation consists of
replacing the interactions with the external field to-
gether with those due to long-range dipole-dipole forces
by an interaction of the charge density with the gen-
eralized cavity field. The induced charge in the system
is then taken to be that produced by the linear response
to an interaction of the form of Eq. (55) but with

p,„&(k, pp) replaced by p(k, pp) pscF(k, to), where

pscs (k, to) produces the macroscopic field in the me-
dium. In consequence we have

p;„q(k, co) = —4ry(k, p&) a(k, pp) pscp(k, to), (82)
I S. H. Glarum, J. Chem. Phys. 33, 1371 (1960).
'7 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115,786 (1959).
'8For discussion of static reaction and cavity 6elds, see H.

Frohlich, Theory of Dieleetrzes (Oxford University Press, London,
1938), 2nd ed.
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where

(Q)
a(k, co) = —

~

—
~

Ch e'"'(ihip( —k, 0), p(k, f) g)'
&k')

(83)

e(k, (o) =1+47'(k, (o) n(k, (o), (85)

as our expression for the dielectric function in the self-
consistent-field approximation. Substitution of Eq.
(81) into Eq. (85) gives

e{k, (a) —1

e(k, (o) +2ep

4~n(k, (o)

2ep+1
(86)

The asymptotic expansion of e(k, ~) as obtained from
that of n(k, &a) and Eq. (86) is consistent with Eq.
(61) and, in the case of linear molecules, agrees with
Eq. (68) . If we neglect short-range interactions, so that
the polarizability given by Eq. (83) is that of free
dipolar molecules, we 6nd in the classical limit

3' krNp'
co= 1

2eo+1 3QkgT
' (87)

which is just onsager's result for rigid dipoles.
The dipolar plasma frequencies are given by the

zeros of e(k, co) at given k. To exhibit this behavior
explicitly it suffices to neglect all short-range interac-
tions and calculate the classical polarizability u&(k, o&) of
a system of free rotators. Details of this calculation for
linear and for spherically symmetric rotators are given
in the Appendix B. It is there shown that for co»
(2k' T/I) '"

(N'I 1 8m-Np' ( k'P cog'
4~

(

—
[ ~0(k, ~)~——

&Ql
'

(o' 3QI E 2Mj oP

is the polarizability of the system. As indicated by the
prime on the angular bracket, those long-range terms
which have been incorporated into the self-consistent
field are now to be omitted from the Hamiltonian used
in generating the time evolution in p(k, t) and in the
density matrix involved in the thermal trace. For
consistency we require

pscF (k, ~) =p;.a(k, ~)+p..~(k, ~),

and hence obtain

the "natural frequencies" of significance in the equi-
librium ensemble are measured by the thermal fre-
quency cur =—(2k& T/I) 'I', and the polarizability is
adequately represented by its asymptotic expansion
whenever &o))~r. As noted below Eq. (49), we com-
monly have (o&q'/&or')))1 in cases of interest, so that
iE(k, re) will have a root given by Eq. (89) . We see fur-
ther that co»{k) is nearly equal to a&z for condensed
systems of such dipolar molecules. In systems for which
(o&z/cur) is only moderately large, the dipolar plasmon
will still be a well-dined collective mode, but the
frequency will be somewhat shifted by thermal damping
eSects.

We show in Fig. 1 the real and imaginary parts of
the dielectric function, as given by the formulas of
AppendixB, for Ep=10. In Fig. 2weplot I

—Ime '(O, co) }
as a measure of the absorption, and in Fig. 3 plot the
reQectivity. As the figures show, there is a substantial
shift, due to thermal damping, of the frequency at peak
absorption from co,&(k), as given by Eq. (89) . It should
be borne in mind that these calculations assume rigid
dipoles and hence do not apply quantitatively to real
systems in which the polarizability of individual mole-
cules must be taken into account. They do indicate,
however, the eGects of collective dipolar modes to be
expected in the optical constants of dipolar systems
such as HCl and SO2. These modes should also be
detectable in studies of Raman scattering in dipolar
systems.
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APPENDIX A

We here evaluate the double commutator of Eq. (62)
when the kinetic-energy operator has the form

where I; is a principal moment of inertia and I.~,; the
corresponding component of the angular momentum.
Using (A1) and Eq. (42)

The corresponding dipolar plasmon frequency is

copy(k) =
t 2ep/(2e +1o)j"rul,

(88)

(89)

L&(
—k)~ L~(k) ~ T33= (&'/Q') 2 I

—(&'/~) (& si)'

+$fc y&, Lk 9E, g (2I,)-'I&,,jj}. (A2)

Indeed, we must expect Eq. (89) to hold for molecules
of arbitrary rotational symmetry and dipole orienta-
tion, I then being a suitable average, as discussed below
Fq. (69) and in Appendix A. In a system of free rotators

Suppressing the index /, we erst suppose p to be directed
along a principal axis of inertia which we choose to be
the 3 axis. On introducing Euler angles n, P, y and
expressing the I.; in terms of the conjugate momenta
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p, p, p„" 6nd

[L&, k pj=z(kxp)t,

[L„k pj=i(kXp)s,

[Ls, k pJ=z(kXp)s ——0.

We can choose p to lie along each principal axis in
turn and obtain the same result merely by relabeling

g 40—
O
t 30—

20—

4'g n 10~'

IO—

0 {

I I I I I I

LINEAR DIPOLES50—

IO.O

I I l I
}

l 1 I I

}
I l I I

t
I l I l

}
I I I I

LINEAR OIPOLES
&0 a!0

60

50—

3 40
0

30
'4t

20

SPHERICAL DIPOLES

Eo= I5

5.0 IO—

0
I.O 402,0 3.0

(QJ/laly)

PxG. 2. Absorption at infinite wavelength for rigid dipoles, as
measured by I

—Im p '(0, pp) I and for the indicated static dielec-
tric constants. The height of the maximum for so= 15 is 343.1 for
linear rotators and 221.6 for spherical rotators.

5.0

0 I .0 2.0 3.0 4,0

SPHERICAL OIPOLES
E'pu I 0

directly that

Lk 5 Lk 8 z (&~t) 'L'33= —z (kXP)t'(lt) '.

(A4)
The general sum rule for homogeneous dipolar systems
is therefore

Re p(o, po)~
+((kxp) i-' ~ (kxp) &, (As)

8 I.O 2.0 3.0 40 5.0

I.O

(b)

FIG. 1. Real and imaginary parts of the dielectric function at
infinite wavelength, c(0, ~), for rigid dipoles calculated in the
SCF approximation, Eq. (86), for a static dielectric constant
pp = 10. cur

——(2ko )T/I) 'I'. Thermal damping shifts the zero of
Rep(0, &p) from the value (cp/a&r) =+6 given by the asymptotic
expansion, Eq. (88). (a) Linear rotators. (b) Spherical rotators.
Note that in this case 6.3 =lim„„p p(0, cp) N limp p p(k, 0) =10.
(See Appendix B.)

ft. 0.5

I.O

axes, and hence we have

LL k vJ= z(kX v) t (A3)

fL. 05

for arbitrary orientation of p in its molecule. It follows 0
0 I .0 2.0 3,0 4,0 5.0

'P See, e.g., A. R. Edmonds, Angular 3Eomentum in Quantum
Mechanics (Princeton University Press, Princeton, New Jersey,
1957), Secs, 1,3 and 2,2,

(QJ/tdT)

Fro. 3. ReQectivity of a system of rigid dipoles in the SCF
approximation for the indicated static di|:lectric constants.
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where I ' is the inverse inertial tensor. The quadratic
form (kXp) I '(AXED) is the inverse moment of
inertia for an axis of rotation (kXP) and is propor-
tional to

~ (kXP) }'= sins8; it may be diagonalized as
follows: Let 8, p be the polar and azimuthal angles of

p relative to the principal axes of inertia (1, 2, 3) with
the 3 axis polar. Successive rotations by Euler angles
n'=y, P'=8, p'= (s/4) produce a coordinate system
(1', 2', 3') with p as polar axis and in which

(kXt) I '(kXt)=(k )'(I ') +(k )'(I ')

which in the classical limit (5~0) is simply

(LA, B(t)3)= P—(8/&t) (A B(t) ). (83)
In Eq. (83) and throughout the remainder of this
Appendix, a square bracket denotes a Poisson bracket.
Using Eq. (42) and Eq. (83) in the classical limit of
Eq. (83), each dipole then independently contributes

no ~p (O

kyi= sine cos(p, II 91= Sing Slnttt7'. (AS)

Reductions in special cases are trivial. For example,
for free rotation

where

(I ) y~y~ = (1/2) I (1/Iy) (cos8 cosy —silly)

+ (1/I, ) (cos8 siny+ cosy) '+ (sin%/Is) }, (A7a)

(I ') s s.——(1/2) I ( 1/I~) (cosd cosy+ siny) '

+ (1/Is) (siny —cosy) '+ (sin%/I, ) }, (A7b)

X k P ' m+ dtexp no+t
Q

x(expfik (r—r(t))lk gt: j(t))I, (s4)

where ~+ ++st. Re——mark that we could still retain
short-range effects within a Hartree approximation and,
for example, include the familiar single-particle hindered
rotation. In the present case, the Hamiltonian for one
dipolar rotator is (p'/2') +Hg, H~ being the rotational
kinetic energy. The static polarizability is independent
of k and is just the Langevin expression

((kXP) 'I '(kXt1) )
= (1/3) I (1/I~) (1—sin'el cos'y)

+ (1/Is) (1—sin'8 sin'y) + (sin'8/Is) },
= (1/3) I (1/Ig) (1—PP) + (1/Is) (1—14')

+ (1/Is) (1—Ps) '}. (A9)

ns(k, 0) =ns(0, 0) = (Xp,'/3QA~T).

The time evolution of p is given by

p(t) = exp( —itLg) p,

where the Liouville operator I.& is defined by

iL~ts= t'Hn, y$. —

(85)

(86)

(87)
Equations (67) through (69) follow on takingIq ——I2=I,
Is ——ae, and P'=0 in the relevant equations above.

APPENDIX 8
We here calculate the polarizability ns(k, co) of a

collection of identical, noninteracting dipoles in the
classical limit. The calculation is considerably simplified

by first making use of the relation, for any two operators
2 andB,

dt exp(ia)t) ((i/fi) LA, B(t)j )

(o(I/2k' T) 'I—'= ((o/(or)—
and will write

r= ~r t, (88)

np(k, a)) —= (IVp, '/30kgT) A(k, ~). (89)

Carrying out the trivial average over the translational
center-of-mass motion gives

VVe shall often present our expressions in the reduced
variables

k—=k (I/M) '",

A (k, (v) =1+3ior~ dt exp (ico+t—-„'k'a&r'ts)

= —tanh (-',Pho)) dt exp(rot) ((i/5) I A, B(t) } ),
For linear dipoles

X (k p k p(t) ). (810)

which is the heart of the Quctuation-dissipation
theorem. m Equation (81) implies the formal equiva-
lence

&(1/ia) I A, B(t)g)
= —(1/fi) tan(-,'PS(8/at) ) (IA, B(t) } ), (82)

'o See, e.g., W. Bernard and H. B. Callen, Rev. Mod. Phys. 31,
1017 (1999);A. Rahman, K; S. Singwi; and A. Sjolander, Phys.
Rev. 126, 986 (1962).

H~ = (Pss//2I) + (Pq'/2I sin'8),

k P k P(t) = cos8cos8(t).

One finds immediately

i L~ cos8 = (1/I) Pg sin8,

(1Lgl cos8= —(2H~/I) cos8,

—=—aug cos8,

(811)

(812)

(813)

(814)

(815)
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3 (cos8 cos8(t) )=C (1, i; —4r') (817)

where

= exp( —4r')C( —r~, 2; 4r') (817')

C (a, c; s) =rPr (a; c; s) = Q I (44) „s"/(c)„n!}
n&0

is the Kummer conQuent hypergeometric function. "
For k=0, a closed form is obtained on inserting (817)
in (810).We have

A(0, co) =1+ice+ dr exp(ico4.r—-',r') C (—-',-, —,', -',r')

= 1+ lim is+(d/die+) dr exp(ironer —-',r') r'
0

so that, after some transformation,

cos8(t) = cos8 costottt —(Pe/Itolt) sin8 sin&otrt. (816)
The average over the rotational variables is straight-
forward and is

For spherically synnnetric rotators,

II'= (1/2I) L'= ,'Itott'-

&LzP= —gX P,

(823)

(824)

&& -', I1+(2—r') exp( ——4'r') }, (827)

can be evaluated directly in closed form. Separating
real and imaginary parts we obtain

and on iterating Eq. (824) we find

k.tt(t) = cos(cotrt) k p+ I1—cos(cotrt) }(cote k) Cite ts)

+ sin(eotrt) (k)&(ott p) . (825)

Averaging over the rotational variables gives the very
simple result

3 (k'& k'&(t) )= e (1+(2—r') «p( —er') } (826)

The reduced poIarizability,

4(k, iej= j+iejef 4 exp(i e ',ir'ie—-

= 1—&o~' exp( —co+') Ei(co+')

)& C(—c, c; -', r') co (
ImA (k, co) =-';+sr = «p

~

—=
~

ksI

dx exp( —x) (x—co4.') '. (818)
2oj — 2oo ) co jk'+ exp — . 82&

(1+k')» 1+k'~ 1+k'&

These steps use the following equations in Ref. 21:
6.6 (11), 6.9.2 (25), 9.1 (2), 9.3 (3). Separating real
and imaginary parts

2 co 0) 4 GP
ReA (k, co) = 1——:C 1, —,'; —=

3 k' k' 3 ( 1+k')'

ImA (0, co) = srcos exp( —cos), (819) 4 1) -'„— —1 . 329

ReA (oe co) =1+co' exp( —co') dx x ' exp( —x),

(820)

The C function in Eq. (829) is an error function,
given by

(830)

xC 1, ',-; —x' = exp —x' Erfi x = d$ exp P—x').
the integral in (820) being a principal value. For all
k we have, from (810) and (819),

ImA(k io) =4o exp((k'/4) (d'/dco') }(1/co) ImA(oj co),

CO GP
exp

(1+k')»' & 1+k'
(821)

~' A. Krd6lyi, W. Magnus, F. Oberhettinger, and F. Tricomi,
Higher Transcendentat Functions (McGrajjp-Hill Book Com-
pany, Inc. , Net York, 1953). Chapters 6 and 9 contain all formu-
las used in these derivations.

A power series in ks for ReA(k, &o) can be generated
from ReA(0, co) in similar fashion, without, however,
obtaining a closed form. For ~)&1, we 6nd

ReA (k, to) ~—(1+-',k') (1/co') . (822)

For k=0 we have the simpler expressions

ImA(0, to) = (4(+sr)/3)to' exp( —io') (831)

ReA (0e io) =a3I (1+2co4) —4''Cj(1, —',; —io2) } (832)

=-,'C (1, —-', ; —to'). (832')

Note that the value obtained for A(0, 0) depends on
the order in which limits are taken, in contrast to the
case for linear dipoles. From Eqs. (829) and (830),

1= lim lim A (k, M) & lim lim A (k, co) = as.
It:~0 co-+0 Cst~o k~o

The asymptotic expansion of Eq. (829) for co'))1+&'
again yields Eq. (822).


