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The magnetic form factor of Tb at 4.2'K has been measured to (sinai/X=1. 1 A ' by the use of both
polarized and unpolarized neutrons. The crystal was magnetized along the b and a directions by the use of
a split-coil superconducting magnet providing a field of 40 kOe. At lower scattering angles where the
magnetic amplitude p is greater than the nuclear amplitude b, the main source of experimental error is
uncertainty in the extinction correction, which was estimated by changing wavelength as well as sample
thickness. At higher scattering angles where p(b, the polarized-beam experiments yielded accurate form-
factor values. Except for a scale factor, the measurements are in good agreement with theoretical values,
suggesting a contribution from the conduction electrons which has been borne out by Fourier synthesis of
the magnetization density. A theoretical calculation has been made of the aspherical contribution to the
form factor.

I. INTRODUCTION

& ~ETERMINATION of the neutron magnetic form
factors of magnetic elements is of great value

because their Fourier transforms give information
about the spatial distribution of the magnetic-moment
densities on an atomic scale. Much experimental and
theoretical effort in recent years has consequently been
concerned with determination of the magnetic form
factors of transition-metal elements. However, while
the form factors of 3d metals have been measured by
means of polarized neutrons with considerable accuracy,
no comparable measurements have been performed to
date on the rare-earth metals. We have therefore
carried out neutron diGraction studies of the magnetic
form factor of metallic terbium, using both polarized
and unpolarized neutrons.

When the investigation was initiated, the accurate
measurement of anisotropic moment densities was one
of the important aims, a;, has been the case with the
similar measurements of 3d metals. It soon became
apparent that the situation is quite different in 3d and
4f elements. In the 3d case, where the unpaired spins
constitute the predominant part of the magnetic
moment, the anisotropy of the spin density is not
inAuenced by application of a magnetic field. The spin
direction follows the magnetic field, but. its spatial
distribution, determined by the crystalline field, re-
mains unchanged. On the other hand, the unquenched
orbital moment in the case of rare-earth metals causes
spin-orbit coupling to be larger than crystalline-field
effects. Consequently, when a large enough magnetic
field to align the moment is applied in a given crystal-
lographic direction, as is required for the polarized-beam
experiment, this field direction becomes the unique axis
of the moment distribution. If we visualize the moment
distribution as a pancake, the pancake turns with the
field.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

t Present address: Institutt for Atomenergi, Kjeller, Norway.

Thus the physical nature of the 4f moment distribu-
tion itself unfortunately deprives us of determination
of the asphericity by the conventional polarized-
neutron technique, since the measurement is limited
to a zone of rejections with the field direction as the
zone axis. We measure the projection of a pancake on
its base which naturally has cylindrical symmetry.
This implies, moreover, that the form-factor values
measured by the polarized beam are not necessarily
identical with those obtained by the unpolarized beam
without magnetic field. As will be shown, the present
measurements provide a reasonably accurate approxi-
mation to the spherical form factor of Tb.

Terbium crystallizes in the hcp structure with u=
3.601 A and c=5.694 A at room temperature. The
previous magnetic' and neutron' measurements estab-
lished helical antiferromagnetism below 230'K and
ferromagnetism below 220'K. From magnetization
measurements at 4.2'K Hegland et cl.' found a satura-
tion moment of 9.34 p& along the easy b axis, and the
deviation of this number from the free-ion value of
9.0 p~ has been attributed to conduction-electron
polarization. The difhculty mentioned in the previous
paragraph does not of course aGect the assessment of
this contribution to the neutron scattering, and, as we
shall see, evidence for it is provided by our measure-
ments.

II. THEORETICAL FORM FACTOR

In order to calculate the form factor to be expected
for the polarized and unpolarized-beam experiments,
we start from the basic formula for the magnetic
scattering cross section (as described in the Appendix)

(ds~ydnd, )~
~
XX~M(K) Xij ~s,

~ D. E. Begs.and, S. Legvold, and F. H. Spedding, Phys. Rev.
1317 158 (1963).' W. C. Koehler, H. R. Child, E. O. Wollan, and J. W. Cable,
J. Appl. Phys. Suppl. 34, 1335 (1963).
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is defined by rewriting (1) as

11~xI n(K) x&3 I' If„(K) I'

so that

(2)

where X is the unit scattering vector (=K/I E I) and
M(K) is the Fourier transform of the magnetization
density. The magnetic form factor f,(K) in the direc-
tion of the magnetization density

r)(K) =M(K)/I M(K) I

calculated by Slume, Freeman, and Watson4 using
Hartree-Pock wave functions.

The expressions for the form factor given here are
rather complex because we have considered in detail
the aspherical parts of the form factor. For the
polarized-beam measurements (with an applied Geld in
the z direction) only the component M, is different
from zero, and tII=90'. Substituting this in the expres-
sions for the spherical harmonics, we obtain for the
form factor

f„(K)=(—2mc/ea) s I
M(K) I, (3) f(K) =f.(&) —~. (6)

where the constants are inserted to make f„(0)=1.
As shown in the Appendix, M(K) Lor its Fourier
transform M(r) $ is the sum of spin and orbital contri-
butions to the magnetization. Hence in order to
calculate M(K) it is sufTicient to calculate separately
the spin and orbital contributions to the magnetization-
density-operator components iV, (r), M„(r), M, (r)
and then take their Fourier transforms. For terbium
we take the electronic configuration to be (4f) so that
1.=3, S=3,J=6 and the &=6 level (quantized along
the direction of magnetization) is assumed to be the
ground state. The expectation value of the Fourier
transform of the magnetization density is then calcu-
lated. by using the expression of Trammels for the
orbital operator and the expression for the spin-
magnetization-density operator given"in the Appendix.
Making use of the fact that the assumed ground-state
wave function of Tb'+ is expressible as a single deter-
minant, we 6nd

where f, (K) =is(gs)+s(js& is the spherical part of the
form factor, and

g, =—0.093(j,)+0.034(j4)+0.278 (gs) —0.102 (g4&. (7)

A~ is listed, together with f„ in Table I. We see from
these results that the aspherical contribution to the
form factor is small.

The corresponding term 6„for the unpolarized-beam
experiment is similarly complicated. Here no magnetic
6eld is applied and the orientations of the samples are
such that the c axis and the scattering vector (making
an angle P with each other) were in a plane perpen-
dicular to the c or b axes. In this case, the value of
cos'8 is taken to be —', sin'P, a result obtained by aver-

aging over assumed randomly distributed ferromagnetic
domains. The resulting 6„ is given numerically in
Table I, and is also seen to be relatively small.

Table II lists 6„, which is a unique function of
(sin8)/X, for later comparison with the experimental
values at higher scattering angles.

TABLE I. Theoretical form factor for Tb. The spherical part
f, is given by Eq. (6). The aspherical contribution is defined as
6„ for polarized neutrons and b,„ for unpolarized neutrons as
explained in the text.

3+5
(g4&LI'(&) (~) I'4 '(&)3, (4)

22

eA, 'l

~*(K)= —
I

(4 ) '" (3(g )+6(j )) J"(&)' 2mcj

Q5
(j')—&3(g ) I

Fs'(&)
3 )

(9 3+ I

—
(g4&

—(j.& J'(—&)
(11 11

where Ti (8, P) are the spherical harmonics, 8 is the
angle between the direction of magnetization and the
scattering vector and the p dependence does not appear
in M, or in. the quantity of interest, M '+M„'. The

(g;) and (j,) are radial integrals which have been

1 0 0 0.890
0 0 2 0.873

0 1 0.865
1 0 2 0.785
1 0 3 0.673
2 0 0 0.660
2 0 1 0.640
0 0 4 0 612
2 0 3 0.517
1 0 5 0.443
3 0 0 0.428
3 0 2 0 387
0 0 6 0.368
1 1 0 0.722
1 1 2 0.643
1 1 4 0.470
2 2 0 0.340
2 2 2 0.310
1 1 6 0.293
2 2 4 0 243

0.003
0.003
0.003
0.006

. 0.009
0.010
0.011
0.012
0.015
0.018
0.018
0.021
0.021
0.008
0.009
0.016
0.022
0.022
0.023
0.025

—0.002
0.003
0.000
0.002
0.005—0.006—0.004
0.012
0.003
0.015—0.010—0.006
0.021—0.004—0.Ooi
0.007—0.011—0.008
0.016—0.001

' 6. T. Trammell, Phys. Rev. 92, 1387 (1953).
4 M. Hlume, A. J. Freeman, and R. E. Watson, J. Chem. Phys.

37,'1245 (1962);41, 1878 (1964).
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III. EXPERIMENTAL PROBLEMS

A. Comparison of Polarized- and Unpolarized-Neutron
Methods

As was mentioned in the Introduction, we have used
both polarized and unpolarized neutrons for our meas-
urements. The polarized-neutron technique yields the
ratio

where p is the magnetic and b the nuclear scattering
amplitude. This method gives precise results when
p«b, since the result is not sensitively dependent upon
the incident polarization, spin-Qipping e%ciency and
beam depolarization, for which E must in practice be
corrected. For reflections where the value of p ap-
proaches that of b, i.e., close to the "crossover point, "
one has to determine these corrections with high
accuracy to determine p, while at lower angles, where
p))b, R becomes fairly insensitive to p. It is therefore
practical to use the polarized-neutron technique for
the high-angle reQections and the unpolarized technique
for the low-angle rejections. In fact, we have used
both methods for the whole angular region, but the
data have been given preference according to their
accuracy. It may be pointed out that the crossover
point" in Tb is around (sino)/X=0. 55, while in 3d
metals this point is located at much lower angles, if it
exists at all.

The integrated intensities of unpolarized neutrons
are given by the familiar expression

I=EF expI —28L(sine)/) $'Il b'+(q')p'$, (9)

where (q') depends on relative angles between the
magnetic moments and the scattering vectors for a
given domain distribution. Since our data were taken
without magnetic held, the domain distribution must
be considered as one of the experimental parameters.
Another difficulty of the unpolarized-beam experiment
is the accurate determination of the temperature
factor 8 at O'K, which was calculated from the 8
value determined at 300'K. Uncertainty in this process
could produce an appreciable error in higher-angle
rejections. A third source of error is the assumption
that the scale factor E is identical at 300'K and O'K.
These uncertainties of temperature and scale factors are
completely eliminated in the polarized-neutron tech-
nique, if we can assume that the temperature factor of
magnetic electrons is identical to that of nuclei.

B. Extinction Effects

Secondary extinction, arising mainly from the large
xnagnetic intensity, turned out to be the most serious
source of uncertainty in our measurements. Because
of the large moment of 9.34 Bohr magnetons, the
scattering cross section in the ferromagnetic state in-
creases greatly above the room-temperature value, at
least for low-order reflections. This is obviously a more

TmI.E II. The aspherical part of form factor A~ for the polar-
ized-beam experiment. f, is the spherical part as given. by Eq. (6) .
It should be noted that these values are not the same as those
calculated using the paramagnetic approximation I see Eq. (7)
of Ref. 4j.

(sing) /X

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

0.955
0.839
0.690
0.538
0.405
0.295
0.210
0.154
0.103
0.072
0.050
0.037

0.000
0.004
0.009
0.016
0.020
0.023
0.026
0.032
0.026
0.025
0.023
0.022

troublesome situation than for the 3d transition metals,
where the atomic magnetic moments are at a maximum
of the order of a few Bohr magnetons.

There are several approaches to such a problem.
One is to make measurements at diferent neutron
wavelengths and to extrapolate the data to zero wave-
length, another to diminish the size of the sample and
to extrapolate the data to zero dimensions. In principle,
with a knowledge of the mosaic spread, it is also possible
to use a theoretical extinction parameter to correct the
experimental data. However, in view of the uncertainty
of the latter approach, especially with relation to the
polarized-neutron measurements (where peak rather
than integrated intensities are measured), we decided
upon a combination of the first two methods.

There is an additional internal check for extinction
eGects in our present experiments, namely comparison
of the values obtained by polarized- and unpolarized-
beam measurements. It is well known that extinction
always gives a smaller diGraction cross section than the
true value. For the polarized-beam technique, this
results in the case of p) b in a, larger apparent p value,
since, according to Eq. (8), R is decreasing as p in-
creases. Since the theoretical values of form factors are
quite close to each other for the two Inethods, as shown
in Table I, the two sets of measurements thus give
upper and lower limits of the true form factors for p) b

This criterion was electively used to assess extinction
effects in several intense low-angle lines.

IV. RESULTS

A. Unpolarized-Neutron Data

The original single crystal of terbium (dimensions
3&(3)&13 mm') was cut into smaller pieces, and the
measurements were performed on several small crystals
with diferent sizes and orientations, as shown in Table
III. According to the way these crystals were cut rela-
tive to the crystallographic directions they may be
labeled A, B, and C crystals. The A crystal samples
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TAm, E III. Dimensions of Tb crystals. used for the neutron
diffraction experiments, in units of mm. Rotation axis corresponds
to b and a axes for 3- and A-type crystals, respectively.

e

81
B2

A2

c axis
Rotation

axis

X & X &0

X 1 X 10

X 3 X

0.5 X 2.0 X

0.9 X 1.5 X

1.5
2.5

Experiment

Polarized

Unpolarized

Unpolarized

Unpolarized

Polarized

were mounted on the spectrometer with the u axis
vertical to give reflections of the type (h0l), while the
3 and C crystals give reflections of type (hht) and
(hk0), respectively. Measurements were performed at
room temperature and at liquid-helium temperature at
two neutron wavelengths, X=1.05 A. and A, =0.70 A.

From several sets of room-temperature data the
temperature factor 8 was determined by least squares
to be 0.96&0.04)&10 '6 cm . This value, which within
our experimental limit is isotropic, corresponds to a
Debye temperature of 160'K. Using this Debye tem-
perature, one may calculate a value for 8 at 4.2 K of
0.115&(10 " cm'. After subtracting the calculated
nuclear contribution at 4.2'K from the total observed
intensities, the remaining magnetic part was put on
an absolute scale by using the nuclear scattering
amplitude of b =0.76X10 "cm.

The results are shown in Table IV and Fig. 1. In
these, the form factors have been normalized to po ——

2.512)&10 ' cm corresponding to 9.34 p~. Results
which were obviously affected by extinction are not
included in these tables. We believe that any extinction

I.2—

1.0

0 POLARIZED
o UNPOLARIZED

0.8

0.6

0.4

0.2

I

O. I 0.2 0.5 0.4 0.5 0.6 OZ

(sln8)rz (A- }

FIG. i. Tb form-factor values at 4'K in lower-angle region
from polarized- and unpolarized-neutron measurements. The
smooth curve corresponds to f,—6„.

In order to observe the intensity ratio for neutron
spin reversal in the form given in Eq. (8), it is necessary
the crystal be magnetized in a direction normal to the
scattering vector. Furthermore, if the sample is not
completely saturated, depolarization will occur within
the crystal itself. The 40-koe Geld of the superconduct-
ing magnet designed for this purpose made it possible
to achieve a magnetization close to saturation in both
the a and b directions of the terbium samples, resulting

14 A

Lt
8& ~ ill+i~ ~ 1 tJ

14 A

I4 A

Ut. ~il+li. ~d

(b)
l2 A

FIG. 2. Arrangement of the split-coil superconducting magnet.
In (a) with the coils carrying equal current, the Geld-reversal
region (black spot) is in the median plane. Thin arrows show the
Geld direction along the path of the beam, indicated by the fat
arrow. Plotted at the left is the polarization ratio R of an analyz-
ing crystal as a function of height x, which indicates severe de-
polarization in the median plane. In (b), the coils carry unequal
current and the field-reversal region moves below the median
plane, where it can be avoided by the neutron beam.

in a, depolarization of 3%%uq. To minimize the demag-
netization factor, the samples were magnetized along
their long dimensions, and small pieces of soft iron
were fixed to both ends of the samples.

The configuration of the split-coil superconducting
magnet, sketched in Fig. 2, causes additional depolari-
zation along the path of the beam. Because of the large
return field, there exists in the median plane between
the coils a toroidal volume element where all magnetic
Geld components eAectively go to zero. Within this
region the neutron beam is subject to severe depolariza-
tion, which could be measured by analyzing the polari-
zation of the beam as a function of height after it had
passed through the magnet Lsee Fig. 2(a) j. However,
by adjusting the current in each coil independently
and letting the lower coil carry less current than the
upper this zero-field depolarizing region can be forced

eEects have been experimentally reduced to the order
of the discrepancies between polarized and unpolarized
data at low angles. At higher angles the agreements
between them are quite satisfactory.

3. Polarized-Neutron Data
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to move downward out of the collimated incident
neutron beam )see Fig. 2(b) j.The polarization vector
of the neutron beam still has to perform an adiabatic
turn with the magnetic fi.eld in the region where the
vertical component changes sign, but here a horizontal

component guides it across the reversal region. A
polarization of 98/0 could be measured in the beam
after it had passed through the magnet, in fact having
turned twice in the process.

Two different crystal samples were used in the
experiments with polarized neutrons, as shown in
Table III. The measurements were performed at 4.2'K
with the crystals magnetized along their long dimen-
sions. A neutron wavelength of 0.8 A was used which
permitted measurements of the form factor up to
(sin8)/X 1.1 A '.

TABLE IV. Observed 1ow-angle magnetic-scattering amplitudes
of Tb, as measured on the speci6ed crystals. The statistical error
of the measurements is less than ~0.02.

h h l (sina)/X (A ')

0 0 6
2 2 2
1 1 6
2 2 4
0 0 8
1 1 8
2 2 6
3 3 0
3 3 2
0 0 10
2 2 8
3 3 4
1 1 10
3 3 6
2 2 10
1 1 12
3 3 8
4 4 0

0.527
0.582
0.596
0.657
0.702
0.755
0.765
0.833
0.851
0.878
0.895
0.904
0.921
0.985
1.04
1.09
1.09
1.11

0.311~0.006
0.261~0.005
0.23&~0.004
0.183~0.002
0.148~0.001
0.119~0.002
0.115~0.001
0.080~0.001
0.075~0.001
0.066~0.001
0.059~0.001
0.056+0.002
0.053w0. 005
0.035~0.001
0.022~0.001
0.0i6~0.001
0.014~0.001
0.012~0.002

TABLE V. High-angle form-factor values measured by polarized
neutrons on the Bi crystal.

1 0 0
0 0 2
1 0 1
1 0 2
1 0 3
2 0 0
2 0 1
0 0 4
2 0 3
1 0 5
3 0 0
3 0 2
0 0 6

h h l
1 1 0
1 1 2
1 1 4
2 2 0
2 2 2
1 1 6
2 2 4

0.160
0.175
0.182
0.237
0.308
0.320
0.332
0.351
0.415
0.467
0.481
0.512
0.527

(sine)/X
0.278
0.328
0.447
0.555
0.582
0.596
0.657

h 0 l (sine) /X
Unpolarized
Ai A2

0.77
0.61
0.64

0.83

0.54 0.58

0.42
0.37
0.33
0.33 0.31

Polarized
82 A3

0.82 0.86

0.74
0.61
0.66
0.61

0.57 0.56
0.46
0.39
0.40
0.36

0.33 0.31

32 Bi
0.69
0.60
0.41
0.29
0.25 0.261
0.26 0.239
0.18 0.183

magnetic-scattering amplitude. The

effective

beam
polarization was taken as 93%%uo and the spin-Ripping
eKciency 99%%uo. The results are given in Tables IV and
V and Figs. 1 and 3.

V. DISCUSSION

The present measurements failed to give accurate
form-factor values for the two inner peaks (100) and
(101),primarily due to the crystal geometry. An effort
was made to overcome this problem by the measure-
ments on a small C crystal with the dimensions of
0.4&(0.4&2 mm'. However, the distortion introduced
during the cutting process made the mosaic spread of
the crystal so wide that reliable values of the integrated
intensities could not be obtained. In addition, powder
measurements were attempted to reduce the uncer-
tainty, but here the high room-temperature background

The small A3 sample was used to study the strong
low-angle rejections, while the larger B1 sample was
used for the weaker high-angle reQections, again in
order to minimize secondary extinction eQects. Inte-
grated intensities obtained from the A3 crystal, when
plotted against calculated intensities, showed no sys-
tematic trend indicative of secondary extinction. Since
the (006) polarization ratio as measured on the 81
crystal agrees with that of the extinction-free A3
crystal, we may safely conclude that the even weaker
high-angle rejections from the B1 crystal are free of
extinction.

Polarization ratios were measured at the maximum
of the Sragg peaks. From these data normalized form
factor values were obtained using the aforementioned
values of b=0.76&(10 " cm for the nuclear scattering
amplitude and ps=2.512&&10 " cm for the forward

0.5— Tb O'K

0.4—

f 0.3

'0.2

0. 1

0.5 0.6:0.7 0.8 0.9
(s1~ey) (A-')

1.0

FIG. 3. Form-factor values in high-angle region, from polarized-.
neutron measurements only. Smooth curvt; as in Pig. 1.,
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unpolarized neutrons) is given by

, l
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and using this in (A3),

e'K' Mi r) XK)dr,——Ze'" "(&Xp') = ——e' '
IC

where

dr e'K'M~(r),
efi

the same form as the spin scattering operator.
e "ion itudina curren

to th tmso that it makes no contribution to
W ombine these results to giveing. We may corn

'

Age'I ' zx(s, xz) ——exp,(A2)

e'K'EX [M (r) XXjdr
efi

= ——exp'(K) xzj,
efi

with

eA,
M'(r) = ——Qs;3(r —r,)

mc

radient of a scalar quan. tity) the spin-
o. Th obi 1 of h

scatter, 'ng has, sas written in A, a some

appearance from p'the s in term. n e
an be transformed toshown t at e an eh the orbital terms can e

gee aan expression analogous to
Consider

(A6)

——ge'" "(&Xp') =-
E '

X +Le'K "(XXp;) +(Exp') e'~"' A3

'
h K.r,, %e can write(Xxy, commutes witI| K r, . .

-'~(e' "y'+y'e' ")2

e'I'P Lp, b (r—r,) +8 (r—r;) p~jdr2

ion for Mz(r) can. be obtainedAn explicit expression or
A5 together with the .condition,from o

the vector identity"1 2c 7' Lr&j(r) . sing e(/, )

V'M r'1 . ~7'XM(r'), 1 V

4~
I

e'"'M (r) dr.M r) =M~(r)+M'(r), and M(K) =

eiK rj (r) dr
et'

7 M. Slume, Phys. Rev. 130 1670 (1963).

("A'4)
nd E. M. Lifshitz, E/ectrodynamzcs of Coritznu-

Press Ltd. London 1960).
and M. P i ps,

bl h' C I RMagnetzsm Addison-wesley Pu is ing
Massachusetts, 1955).
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we have

Mz(r) = Iv'X, dr'
1 j(r')

4Irc
[
r-r'

/

1 r'x j(r')VV, dr', (A7)

orbital-magnetization densities in metals, where the
electrons are described by Bloch waves. On introducing
these transformations in (A1), that equation becomes

l' k'
q' +X K )(Q Iq

which, together with (A2), defines the magnetization-
density operator. This expression together with the
transformation of j(r) introduced by Trammells gives
an expression which is useful for calculations of magneti-
zation densities in ions, where angular momentum is
conserved. (A7) can be used directly to calculate

X8 (k"—k')+E; —E, i
.

2mp j
Note that only the transverse-magnetization density
ZX [M (K) X&)=M (K) —X[X M (K)j contributes
to the neutron scattering.
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Statistical Mechanics and Origin of the Magnetoelectric
Effect in Cr,O,*
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Expressions for the temperature dependence of the magnetoelectric susceptibility parallel and per-
pendicular to the trigonal axis in Cr~O& are presented. A two-sublattice model is used. The relation between
the sublattice magnetization and the temperature is derived from experimental results for the parallel
magnetic susceptibility. All statistical averages appearing in the expressions for the magnetoelectric sus-
ceptibilities are then evaluated using this susceptibility-derived result. Using this technique, quantitative
agreement with the experimental results is obtained. For the parallel case, three mechanisms that have been
previously proposed as contributing to the parallel magnetoelectric susceptibility are considered. It is
concluded that the parallel eR'ect is dominated at low temperatures by the electric-Geld-induced g shift
and at higher temperatures by the electric-Geld-induced shift in the intrasublattice exchange energy. For
the perpendicular case, three mechanisms are also considered; two of them, an electric-field-induced anti-
symmetric exchange term and an electric-field-induced g shift, have not previously been discussed. It is
concluded that the perpendicular effect is dominated by the electric-field-induced shift in the single-ion
anisotropy energy. Crystal-field aspects of the perpendicular eGect are presented, and it is argued that the
electric-field-induced g shift is actually 1—2 orders of magnitude smaller than the crystal-Geld estimate.

INTRODUCTION

r iHE possibility of a linear magnetoelectric (ME)„.effect, wherein a material exhibits an induced
magnetization which is proportional to an applied
electric field and an induced electric moment which is
proportional to an applied magnetic field, was first
pointed out by Landau and Lifshitz. ' Such an effect
can exist only in materials having an ordered magnetic
structure. Dzyaloshinski' subsequently pointed out that
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' L. D. Landau and E. M. Lifshitz, Electrodynamics of Ccn
tinuous M edi a (Addison-Wesley Publishing Company, Inc. ,
Reading, Massachusetts, 1960), p. 119.

I. E. Dzyaloshinski, Zh. Eksperim. i Teor. Fiz. 3'7, 881 (1959)
)English transl. : Soviet Phys. —JETP 10, 628 (1960)].

the ME eGect should exist in Cr203, and the electrically
induced effect was first observed in this material by
Astrov. ' This was followed by the observation of the
magnetically induced ME effect in Cr203 by Rado and
Folen. 4 Further work' 7 showed that the ME effect in
Cr203 is strongly anisotropic and temperature-depend-
ent.

The first proposal of an atomic mechanism that
could provide an explanation of the ME effect was
made by Rado. ' He indicated that the dependence of
the single-ion anisotropy energy on an externally ap-
plied field would cause an ME effect both parallel and

3D. N. Astrov, Zh. Eksperim. i Teor. Fiz. 38, 984 (1960)
/English transl. : Soviet Phys. —JETP 11, 708 (1960)].

4 G. T. Rado and V. J. Folen, Phys. Rev. Letters '7, 310 (1961).
~ D. N. Astrov, Zh. Eksperim. i Teor. Fiz. 40, 1035 (1961)

[Enslish transl. : Soviet Phys. —JETP 13, 729 (1961)].
I V. J. Folen, G. T. Rado, and E. W. Stalder, Phys. Rev.

Letters 6, 607 (1961).' S. Shtrikman and D. Treves, Phys. Rev. 130, 986 (1963).
8 G. T. Rado, Phys. Rev. Letters 6, 609 (1961).


