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The magnetic form factor of Tb at 4.2°K has been measured to (sing) /A=1.1 A~! by the use of both
polarized and unpolarized neutrons. The crystal was magnetized along the b and ¢ directions by the use of
a split-coil superconducting magnet providing a field of 40 kQOe. At lower scattering angles where the
magnetic amplitude p is greater than the nuclear amplitude b, the main source of experimental error is
uncertainty in the extinction correction, which was estimated by changing wavelength as well as sample
thickness. At higher scattering angles where p<b, the polarized-beam experiments yielded accurate form-
factor values. Except for a scale factor, the measurements are in good agreement with theoretical values,
suggesting a contribution from the conduction electrons which has been borne out by Fourier synthesis of
the magnetization density. A theoretical calculation has been made of the aspherical contribution to the

form factor.

I. INTRODUCTION

ETERMINATION of the neutron magnetic form
factors of magnetic elements is of great value
because their Fourier transforms give information
about the spatial distribution of the magnetic-moment
densities on an atomic scale. Much experimental and
theoretical effort in recent years has consequently been
concerned with determination of the magnetic form
factors of transition-metal elements. However, while
the form factors of 3d metals have been measured by
means of polarized neutrons with considerable accuracy,
no comparable measurements have been performed to
date on the rare-earth metals. We have therefore
carried out neutron diffraction studies of the magnetic
form factor of metallic terbium, using both polarized
and unpolarized neutrons.

When the investigation was initiated, the accurate
measurement of anisotropic moment densities was one
of the important aims, as has been the case with the
similar measurements of 3¢ metals. It soon became
apparent that the situation is quite different in 3d and
4f elements. In the 3d case, where the unpaired spins
constitute the predominant part of the magnetic
moment, the anisotropy of the spin density is not
influenced by application of a magnetic field. The spin
direction follows the magnetic field, but its spatial
distribution, determined by the crystalline field, re-
mains unchanged. On the other hand, the unquenched
orbital moment in the case of rare-earth metals causes
spin-orbit coupling to be larger than crystalline-field
effects. Consequently, when a large enough magnetic
field to align the moment is applied in a given crystal-
lographic direction, as is required for the polarized-beam
experiment, this field direction becomes the unique axis
of the moment distribution. If we visualize the moment
distribution as a pancake, the pancake turns with the
field.
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Thus the physical nature of the 4f moment distribu-
tion itself unfortunately deprives us of determination
of the asphericity by the conventional polarized-
neutron technique, since the measurement is limited
to a zone of reflections with the field direction as the
zone axis. We measure the projection of a pancake on
its base which naturally has cylindrical symmetry.
This implies, moreover, that the form-factor values
measured by the polarized beam are not necessarily
identical with those obtained by the unpolarized beam
without magnetic field. As will be shown, the present
measurements provide a reasonably accurate approxi-
mation to the spherical form factor of Th.

Terbium crystallizes in the hcp structure with a=
3.601 A and ¢=5.694 A at room temperature. The
previous magnetic! and neutron? measurements estab-
lished helical antiferromagnetism below 230°K and
ferromagnetism below 220°K. From magnetization
measurements at 4.2°K Hegland et al.! found a satura-
tion moment of 9.34 up along the easy & axis, and the
deviation of this number from the free-ion value of
9.0 wp has been attributed to conduction-electron
polarization. The difficulty mentioned in the previous
paragraph does not of course affect the assessment of
this contribution to the neutron scattering, and, as we
shall see, evidence for it is provided by our measure-
ments.

II. THEORETICAL FORM FACTOR

In order to calculate the form factor to be expected
for the polarized and unpolarized-beam experiments,
we start from the basic formula for the magnetic
scattering cross section (as described in the Appendix)

(Po/dde)a | KX[M(K) XK] |2, (1)

1D. E. Hegland, S. Legvold, and F. H. Spedding, Phys. Rev.
131, 158 (1963).

2 W. C. Koehler, H. R. Child, E. O. Wollan, and J. W. Cable,
J. Appl. Phys. Suppl. 34, 1335 (1963).
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where K is the unit scattering vector (=K/| K |) and
M(K) is the Fourier transform of the magnetization
density. The magnetic form factor f,(XK) in the direc-
tion of the magnetization density

#(K) =M (K) /| M(K) |
is defined by rewriting (1) as

| KX[3(K)XK] 2| f»(K) [, (2)

so that
f2(K) =(—2mc/eh) 5 | M(K) |, 3)

where the constants are inserted to make f,(0)=1.
As shown in the Appendix, M(K) [or its Fourier
transform M(r) ] is the sum of spin and orbital contri-
butions to the magnetization. Hence in order to
calculate M(K) it is sufficient to calculate separately
the spin and orbital contributions to the magnetization-
density-operator components M,(r), M,(r), M.(r)
and then take their Fourier transforms. For terbium
we take the electronic configuration to be (4f)% so that
L=3,5=3,J=6 and the M =6 level (quantized along
the direction of magnetization) is assumed to be the
ground state. The expectation value of the Fourier
transform of the magnetization density is then calcu-
lated by using the expression of Trammel® for the
orbital operator and the expression for the spin-
magnetization-density operator given'in the Appendix.
Making use of the fact that the assumed ground-state
wave function of Tb?* is expressible as a single deter-
minant, we find

w Q) @=(_) (- mr) e
V3
12

X =) L ) 7R

345

2@ B rewl, @

M.(K)= <—, %) (4m)t2 {(3<g0>+6<jo)) VoK)
mc

~ (2 G=vste) ¥om)

9 3 . X
+ (e ) v} 0
where Y (0, ¢) are the spherical harmonics, 6 is the
angle between the direction of magnetization and the
scattering vector and the ¢ dependence does not appear
in M, or in the quantity of interest, M,2+M,2 The
{g:;) and (j;) are radial integrals which have been

3 G. T. Trammell, Phys. Rev. 92, 1387 (1953).

STEINSVOLL ¢! al.

161

calculated by Blume, Freeman, and Watson? using
Hartree-Fock wave functions.

The expressions for the form factor given here are
rather complex because we have considered in detail
the aspherical parts of the form factor. For the
polarized-beam measurements (with an applied field in
the z direction) only the component M, is different
from zero, and §=90°. Substituting this in the expres-
sions for the spherical harmonics, we obtain for the
form factor

J(K) =f(K) =4, (6)

where f,(K) =%(go)+%(jo) is the spherical part of the
form factor, and

A,=—0.093(7.)+0.034(j;)+0.278(g:)—0.102{gs). (7)

A, is listed, together with f;, in Table I. We see from
these results that the aspherical contribution to the
form factor is small.

The corresponding term A, for the unpolarized-beam
experiment is similarly complicated. Here no magnetic
field is applied and the orientations of the samples are
such that the ¢ axis and the scattering vector (making
an angle 8 with each other) were in a plane perpen-
dicular to the a or b axes. In this case, the value of
cos?f is taken to be 3 sin?B, a result obtained by aver-
aging over assumed randomly distributed ferromagnetic
domains. The resulting A, is given numerically in
Table I, and is also seen to be relatively small.

Table II lists A, which is a unique function of
(sing) /A, for later comparison with the experimental
values at higher scattering angles.

TasrLeE I. Theoretical form factor for Th. The spherical part
fs is given by Eq. (6). The aspherical contribution is defined as
A, for polarized neutrons and A, for unpolarized neutrons as
explained in the text.

k1 /. by Ay

100 0.890 0.003 —0.002
00 2 0.873 0.003 0.003
101 0.865 0.003 0.000
102 0785 0.006 0.002
103 0673  0.009 0.005
2 00 0.660 0.010 —0.006
2 01 0.640 0.011 —0.004
00 4 0.612 0.012 0.012
2 03 0.517 0.015 0.003
105 0443 0.018 0.015
300 0.428 0.018 —0.010
302 0.3 0.021 —0.006
006 0.368 0.021 0.021
110 0722 0.008 —0.004
112 0643 0.009 —0.001
114 0470 0.016 0.007
2 2 0 0.340 0.022 —0.011
2 2 2 0.310 0.022 —0.008
116 0293 0.023 0.016
2 2 4 0.243 0.025 —0.001

4 M. Blume, A. J. Freeman, and R. E. Watson, J. Chem. Phys.
37,11245 (1962); 41, 1878 (1964).
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III. EXPERIMENTAL PROBLEMS

A. Comparison of Polarized- and Unpolarized-Neutron
Methods

As was mentioned in the Introduction, we have used
both polarized and unpolarized neutrons for our meas-
urements. The polarized-neutron technique yields the

ratio
R=(b+p)%/ (b—p)?, (8)

where p is the magnetic and & the nuclear scattering
amplitude. This method gives precise results when
p<Kb, since the result is not sensitively dependent upon
the incident polarization, spin-flipping efficiency and
beam depolarization, for which R must in practice be
corrected. For reflections where the value of p ap-
proaches that of b, i.e., close to the “crossover point,”
one has to determine these corrections with high
accuracy to determine p, while at lower angles, where
p>b, R becomes fairly insensitive to p. It is therefore
practical to use the polarized-neutron technique for
the high-angle reflections and the unpolarized technique
for the low-angle reflections. In fact, we have used
both methods for the whole angular region, but the
data have been given preference according to their
accuracy. It may be pointed out that the “crossover
point” in Tb is around (sinf)/A=0.55, while in 3d
metals this point is located at much lower angles, if it
exists at all.

The integrated intensities of unpolarized neutrons
are given by the familiar expression

I=KF? exp{—2B[ (sinf) /N P} [82+{g*)p*], (9)

where (¢?) depends on relative angles between the
magnetic moments and the scattering vectors for a
given domain distribution. Since our data were taken
without magnetic field, the domain distribution must
be considered as one of the experimental parameters.
Another difficulty of the unpolarized-beam experiment
is the accurate determination of the temperature
factor B at 4°K, which was calculated from the B
value determined at 300°K. Uncertainty in this process
could produce an appreciable error in higher-angle
reflections. A third source of error is the assumption
that the scale factor K is identical at 300°K and 4°K.
These uncertainties of temperature and scale factors are
completely eliminated in the polarized-neutron tech-
nique, if we can assume that the temperature factor of
magnetic electrons is identical to that of nuclei.

B. Extinction Effects

Secondary extinction, arising mainly from the large
magnetic intensity, turned out to be the most serious
source of uncertainty in our measurements. Because
of the large moment of 9.34 Bohr magnetons, the
scattering cross section in the ferromagnetic state in-
creases greatly above the room-temperature value, at
least for low-order reflections. This is obviously a more
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TasLE II. The aspherical part of form factor A, for the polar-
ized-beam experiment. f, is the spherical part as given by Eq. (6).
It should be noted that these values are not the same as those
calculated using the paramagnetic approximation [see Eq. (7)
of Ref. 47.

(sing) /A fa Ap
0.1 0.955 0.000
0.2 0.839 0.004
0.3 0.690 0.009
0.4 0.538 0.016
0.5 0.405 0.020
0.6 0.295 0.023
0.7 0.210 0.026
0.8 0.154 0.032
0.9 0.103 0.026
1.0 0.072 0.025
1.1 0.050 0.023
1.2 0.037 0.022

troublesome situation than for the 3d transition metals,
where the atomic magnetic moments are at a maximum
of the order of a few Bohr magnetons.

There are several approaches to such a problem.
One is to make measurements at different neutron
wavelengths and to extrapolate the data to zero wave-
length, another to diminish the size of the sample and
to extrapolate the data to zero dimensions. In principle,
with a knowledge of the mosaic spread, it is also possible
to use a theoretical extinction parameter to correct the
experimental data. However, in view of the uncertainty
of the latter approach, especially with relation to the
polarized-neutron measurements (where peak rather
than integrated intensities are measured), we decided
upon a combination of the first two methods.

There is an additional internal check for extinction
effects in our present experiments, namely comparison
of the values obtained by polarized- and unpolarized-
beam measurements. It is well known that extinction
always gives a smaller diffraction cross section than the
true value. For the polarized-beam technique, this
results in the case of p>b in a larger apparent p value,
since, according to Eq. (8), R is decreasing as p in-
creases. Since the theoretical values of form factors are
quite close to each other for the two methods, as shown
in Table I, the two sets of measurements thus give
upper and lower limits of the true form factors for p>b.
This criterion was effectively used to assess extinction
effects in several intense low-angle lines.

IV. RESULTS

A. Unpolarized-Neutron Data

The original single crystal of terbium (dimensions
3X3X13 mm?®) was cut into smaller pieces, and the
measurements were performed on several small crystals
with different sizes and orientations, as shown in Table
IT1. According to the way these crystals were cut rela-
tive to the crystallographic directions they may be
labeled A, B, and C crystals. The A crystal samples
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TasrLeE III. Dimensions of Th crystals. used for the neutron
diffraction experiments, in units of mm. Rotation axis corresponds
to b and a axes for B- and A-type crystals, respectively.

Rotation
¢ axis axis Experiment
B1 3 X 3 X 10 Polarized
B2 1 X 1 X 10 Unpolarized
Al 3 X 3 X 3 Unpolarized
A2 0.5 X 2.0 X 1.5 Unpolarized
A3 09 X 1.5 X 2.5 Polarized

were mounted on the spectrometer with the a axis
vertical to give reflections of the type (%0/), while the
B and C crystals give reflections of type (%kl) and
(kk0), respectively. Measurements were performed at
room temperature and at liquid-helium temperature at
two neutron wavelengths, A=1.05 A and A=0.70 A.

From several sets of room-temperature data the
temperature factor B was determined by least squares
to be 0.9640.04X 107 cm? This value, which within
our experimental limit is isotropic, corresponds to a
Debye temperature of 160°K. Using this Debye tem-
perature, one may calculate a value for B at 4.2°K of
0.115X107%® cm? After subtracting the calculated
nuclear contribution at 4.2°K from the total observed
intensities, the remaining magnetic part was put on
an absolute scale by using the nuclear scattering
amplitude of 6=0.76X10"22 cm.

The results are shown in Table IV and Fig. 1. In
these, the form factors have been normalized to po=
2.512X10™2 c¢m corresponding to 9.34 pp. Results
which were obviously affected by extinction are not
included in these tables. We believe that any extinction

® POLARIZED
© UNPOLARIZED

o 1 l L ! !
6 ol 02 03 04 05 06 OF

(sinB/X (A1)
Fic. 1. Tb form-factor values at 4°K in lower-angle region

from polarized- and unpolarized-neutron measurements. The
smooth curve corresponds to fy—A,.
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effects have been experimentally reduced to the order
of the discrepancies between polarized and unpolarized
data at low angles. At higher angles the agreements
between them are quite satisfactory.

B. Polarized-Neutron Data

In order to observe the intensity ratio for neutron
spin reversal in the form given in Eq. (8), it is necessary
the crystal be magnetized in a direction normal to the
scattering vector. Furthermore, if the sample is not
completely saturated, depolarization will occur within
the crystal itself. The 40-kOe field of the superconduct-
ing magnet designed for this purpose made it possible
to achieve a magnetization close to saturation in both
the ¢ and b directions of the terbium samples, resulting

ot )) -

i

(b)

" Fic. 2. Arrangement of the split-coil superconducting magnet.
In (a) with the coils carrying equal current, the field-reversal
region (black spot) is in the median plane. Thin arrows show the
field direction along the path of the beam, indicated by the fat
arrow. Plotted at the left is the polarization ratio R of an analyz-
ing crystal as a function of height x, which indicates severe de-
polarization in the median plane. In (b), the coils carry unequal
current and the field-reversal region moves below the median
plane, where it can be avoided by the neutron beam.

in a depolarization of ~3%. To minimize the demag-
netization factor, the samples were magnetized along
their long dimensions, and small pieces of soft iron
were fixed to both ends of the samples.

The configuration of the split-coil superconducting
magnet, sketched in Fig. 2, causes additional depolari-
zation along the path of the beam. Because of the large
return field, there exists in the median plane between
the coils a toroidal volume element where all magnetic
field components effectively go to zero. Within this
region the neutron beam is subject to severe depolariza-
tion, which could be measured by analyzing the polari-
zation of the beam as a function of height after it had
passed through the magnet [see Fig. 2(a)]. However,
by adjusting the current in each coil independently
and letting the lower coil carry less current than the
upper this zero-field depolarizing region can be forced
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to move downward out of the collimated incident
neutron beam [see Fig. 2(b) ]. The polarization vector
of the neutron beam still has to perform an adiabatic
turn with the magnetic field in the region where the
vertical component changes sign, but here a horizontal
component guides it across the reversal region. A
polarization of 989 could be measured in the beam
after it had passed through the magnet, in fact having
turned twice in the process.

Two different crystal samples were used in the
experiments with polarized neutrons, as shown in
Table III. The measurements were performed at 4.2°K
with the crystals magnetized along their long dimen-
sions. A neutron wavelength of 0.8 & was used which
permitted measurements of the form factor up to
(sinf) /A~1.1 A1,

TaBLE IV. Observed low-angle magnetic-scattering amplitudes
of Th, as measured on the specified crystals. The statistical error
of the measurements is less than 40.02.

Unpolarized Polarized
kB 0 I (sind)/A Al A2 B2 A3
1 0 0 0.160
0 0 2 0.175 0.83 0.82 0.86
1 01 0.182
1 0 2 0.237 0.77 0.74
1 0 3 0.308 0.61 0.61
2 0 0 0.320 0.64 0.66
2 01 0.332 0.61
0 0 4 0.351 0.54 0.58 0.57 0.56
2 0 3 0.415 0.46
1 0 5 0.467 0.42 0.39
3 00 0.481 0.37 0.40
3 02 0.512 0.33 0.36
0 0 6 0.527 0.33 0.31 0.33 0.31
h h 1 (sing)/A B2 B1
11 0 0.278 0.69
11 2 0.328 0.60
1 1 4 0.447 0.41
2 2 0 0.555 0.29
2 2 2 0.582 0.25 0.261
11 6 0.5 0.26  0.239
2 2 4 0.657 0.18  0.183

The small A3 sample was used to study the strong
low-angle reflections, while the larger B1 sample was
used for the weaker high-angle reflections, again in
order to minimize secondary extinction effects. Inte-
grated intensities obtained from the A3 crystal, when
plotted against calculated intensities, showed no sys-
tematic trend indicative of secondary extinction. Since
the (006) polarization ratio as measured on the Bl
crystal agrees with that of the extinction-free A3
crystal, we may safely conclude that-the even weaker
high-angle reflections from the B1 crystal are free of
extinction.

Polarization ratios were measured at the maximum
of the Bragg peaks. From these data normalized form-
factor values were obtained using the aforementioned
values of 6=0.76X107'2 cm for the nuclear scattering
amplitude and pp=2.512X107*2 cm for the forward
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TasrLe V. High-angle form-factor values measured by polarized
neutrons on the Bl crystal.

h k1 (sing)/\ (&) f

0 0 6 0.527 0.311+0.006
2 2 2 0.582 0.261+-0.005
11 6 0.596 0.239+4-0.004
2 2 4 0.657 0.183+-0.002
0 0 8 0.702 0.148+-0.001
11 8 0.755 0.119+0.002
22 6 0.765 0.1154-0.001
3 3 0 0.833 0.080=+0.001
3 3 2 0.851 0.075-+0.001
0 0 10 0.878 0.066--0.001
2 2 8 0.895 0.0594-0.001
3 3 4 0.904 0.056-0.002
1 1 10 0.921 0.0534-0.005
3 3 6 0.985 0.035-0.001
2 2 10 1.04 0.0224-0.001
11 12 1.09 0.0164-0.001
3 3 8 1.09 0.014+0.001
4 4 0 1.11 0.012+-0.002

magnetic-scattering amplitude. The effective beam
polarization was taken as 93% and the spin-flipping
efficiency 99%. The results are given in Tables IV and
V and Figs. 1 and 3.

V. DISCUSSION

The present measurements failed to give accurate
form-factor values for the two inner peaks (100) and
(101), primarily due to the crystal geometry. An effort
was made to overcome this problem by the measure-
ments on a small C crystal with the dimensions of
0.4X0.4X2 mm?® However, the distortion introduced
during the cutting process made the mosaic spread of
the crystal so wide that reliable values of the integrated
intensities could not be obtained. In addition, powder
measurements were attempted to reduce the uncer-
tainty, but here the high room-temperature background

Tb 4 °K

0.4 _

0.2

L[ ]
[ ] .~.
o 1 | L | L®
0.5 0.6 0.7 0.8 0.9 1.0 1.t L2
: (sin6V/A (A1)

F16. 3. Form-factor values in high-angle region, from polarized-
neutron measurements only. -Smooth curve as in Fig. 1,
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2.00

1.60— -

1.20—

pln

0.80—

040

F1c. 4. Plot of the average projected magnetization density
p(r) along several directions in the ac plane. The density has
been averaged over a rectangle 0.1¢X0.1a (the lengths shown)
and is given in units of p/A2 The peak density is 5.428 or 20.178

us/ &2,

from the paramagnetic scattering nullified the effort.
The best estimate of these form-factor values are
0.8524-0.05 for (100) and 0.814-0.05 for (101).

An obvious feature of Figs. 1 and 3 is that the
experimental values, which were deduced by normal-
izing to the observed magnetization 9.34 ug, lie con-
sistently lower than the theoretical values calculated
on the model corresponding to 9 up. One may argue
that the experimental values should be scaled upward
by normalizing to 9 wp, which is equivalent to the
assumption that the remaining 0.34 up is due to the
polarization of the conduction electrons. In order to
investigate this question independently of any assump-
tions about a theoretical form factor, we have synthe-
sized the magnetization density by Fourier inversion
of the measured scattering amplitudes.

Because of the large errors associated with the inner
two reflections, this analysis was restricted to a pro-
jection upon the ac plane, which requires only (%4kl)
data. In this projection the Tb atoms lie on a rectangu-
lar lattice separated by ¢/2 and a/2, which provides
adequate resolution for the present purposes in view
of the localized nature of the 4f distribution. Termina-
tion errors were avoided by averaging the density over
dimensions comparable with the width of the resolution
function, as first done”by Moon® with his data on

5 R. M. Moon, Phys. Rev. 136, A195 (1964).
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hexegonal Co. In Fig. 4 we plot the density averaged
over a rectangle with one-tenth the sides of the pro-
jected plane, which was determined to be sufficient to
provide convergence in (sinf) /A. Along directions in
which the atoms are clearly resolved, the density levels
off to a residual value near 0.09 uz/A% On averaging
over the area outside the localized moment and inte-
grating over the unit cell, we arrive at a figure of
0.48-£0.17 pp/atom for this uniform polarization, where
the error rises from statistical uncertainty in the
scattering amplitudes.

There is a further possible source of error in the
polarized-neutron measurements, namely the nuclear
polarization, such as observed by Shull and Ferrier®
in vanadium. It is impossible to calculate this effect
exactly without a knowledge of the nuclear-spin
scattering amplitudes of Tb, but an upper limit on
their difference is set by the fact that we deduce the
same p value within experimental error for cases
where polarized and unpolarized measurements are of
comparable accuracy. Moreover, the nuclear polariza-
tion has the effect of adding a constant to the form
factor, which is opposite to the effect of a uniform
polarization, which scales the form factor. In view of
these considerations, we believe our analysis establishes
a conduction-electron polarization at a level within the
quoted error.

It may be seen, especially in Fig. 3, that the observed
points lie on a smooth curve, corresponding to an
isotropic moment distribution. From the Fourier pro-
jections, we find that the possible anisotropy amounts
at most to 0.7% of the peak density, consistent with
the cylindrical symmetry of the moment distribution
discussed earlier. In over-all aspect, we may say that
the agreement between the observed and calculated
form factors is satisfactory.

ACKNOWLEDGMENTS

We wish to express our gratitude to Professor
F. H. Spedding, Professor S. Legvold, and Dr. L. Sill
of the Ames Laboratory who kindly provided the
excellent terbium crystal used for the experiments.
We also wish to thank Dr. W. C. Koehler, Dr. D. E.
Cox, and Professor C. G. Shull for many helpful
discussions.

APPENDIX

In this section a brief treatment of the orbital and
spin scattering will show that this scattering can be
related to the magnetization density of the scatterer.
An expression for the quantum-mechanical magnetiza-
tion-density operator will also be given.

The magnetic scattering cross section (assuming

(169(%) G. Shull and R. P. Ferrier, Phys. Rev. Letters 10, 295
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unpolarized neutrons) is given by’

=) @

mc?

X 2 e (KX (s:iXK) — éKXPi) lg) 2

2
Xé (—h— (k?—E?) —i—Eqr—Eq) . (A1)
21}10

Notation: y=—1.91 is the gyromagnetic ratio of the
neutron; | ¢) and | ¢’) are the initial and final states of
the scatter with energies E, and E,; p, is the probability
that | ¢) is occupied; r;, p;=—V;, s; are the position,
momentum, and spin operators of the ith electron of
the scatter (the latter two in units of #); m and mp
are the electron and neutron masses; the scattering
vector K=k;—k;, where k; and k; are the initial and
final neutron wave vectors; and the remaining notation
has been defined in the text. We will consider the
operator in the matrix element of (Al). The term
D e N X (84 XK) gives the spin scattering, and
—(¢/K) > ”(K Xpi) gives the orbital scattering.
The spin term can be rewritten by using the trans-
formation

ZeiK‘”si=/dr eiK"Zs,ﬁ(r—ri)

=—— /dr &M (1),
where

Ms(r) =— ;n;i;: Zsié(r—ri) (AZ)

is (to within the gradient of a scalar quantity) the spin-
magnetization-density operator. The orbital part of the
scattering has, as written in (A1), a somewhat different
appearance from the spin term. In the following it is
shown that the orbital terms can be transformed to
give an expression analogous to (A2).

Consider

— .Z'_ Keri( KX D,;) = — f_
% Z}e (KXpo) == 52
X 2 [er(KXp) +(KXp)e™]  (A3)
(K X p: commutes with K-r;). We can write
%Z (eiK-ripi_FpieiKmi)

_ %/equZ [p.6(r—r;) +6(r—1;) piJdr

= e_mh /eiK‘*j(r)dr, (A4)

7 M. Blume, Phys. Rev. 130, 1670 (1963).
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where
j() == 5= ¥ [par—r) +a(r—r)p:]

is the electronic orbital current-density operator. This
can be expressed as the sum of the curl of a vector and
the gradient of a scalar:

j(r) =cv xM*(1) +V¢(1). (AS)
MZ(r) can be identified as the orbital-magnetization-
density operator. (The term V¢ is the “longitudinal”
or “conduction” current, and ¢V xMZ is the “trans-
verse” or “molecular” current.) Substituting (AS) in

(A4), integrating by parts, and discarding surface
terms gives

/eiK"j(r)dr= —1cK

X / ¢S ME(r) dr —iK / ¢S (1) dr,
and using this in (A3),
i ) 5 me [ .. X
— T Rxp) =~ [ R (MH(x) XR) ds

which has the same form as the spin scattering operator.
(Note that the “longitudinal” current has dropped out,
so that it makes no contribution to the neutron scatter-
ing.) We may combine these results to give

e {I%x (s:XK) — éK Xpi}

mc

= ¢ TK X [M (r) XK Jdr

- ’-‘% RX[M(K)xK], (A6)

with
M (r) =MZ(r) +M+(r), and M(K)= / oM (1) dr.

An explicit expression for MZ(r) can be obtained
from (AS) together with the condition® V-MZ(r) =
(1/2¢)V-[rxj(r) ]. Using the vector identity®

VX/V’XM(r’) 1 Vf VM)

M(l') | r—r'| 4 Jr— r'l

» 8L, I. Landau and E. M. Lifshitz, Electrodynamics of Continu~
ous Media (Pergamon Press, Ltd., London, 1960).

9 W. K. H. Panofsky and M. Phllhps Classical Electricity and
Magnetism (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1955).
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we have

rI
ME(r) = —vx/li( r),! ar’

1o, [TXIE)

dr’,
Tr—r']

8¢ (A7)
which, together with (A2), defines the magnetization-
density operator. This expression together with the
transformation of j(r) introduced by Trammell® gives
an expression which is useful for calculations of magneti-
zation densities in ions, where angular momentum is
conserved. (A7) can be used directly to calculate

STEINSVOLL et al.

161

orbital-magnetization densities in metals, where the
electrons are described by Bloch waves. On introducing
these transformations in (A1), that equation becomes

&g [ye\'F 1B .
290 (;,w) ,;qu,ﬁql (¢ | EX[M(K)XK]]g) |2

72
(B2} y—
><a<2 - (K= +E, Eq>.

Note that only the transverse-magnetization density
KX[M(K)XK]=M(K)—K[K-M(K)] contributes
to the neutron scattering.
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Statistical Mechanics and Origin of the Magnetoelectric
Effect in Cr.O;*

R. HORNREICHT AND S. SHTRIKMAN
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Expressions for the temperature dependence of the magnetoelectric susceptibility parallel and per-
pendicular to the trigonal axis in Cr,O; are presented. A two-sublattice model is used. The relation between
the sublattice magnetization and the temperature is derived from experimental results for the parallel
magnetic susceptibility. All statistical averages appearing in the expressions for the magnetoelectric sus-
ceptibilities are then evaluated using this susceptibility-derived result. Using this technique, quantitative
agreement with the experimental results is obtained. For the paralle] case, three mechanisms that have been
previously proposed as contributing to the parallel magnetoelectric susceptibility are considered. It is
concluded that the parallel effect is dominated at low temperatures by the electric-field-induced g shift
and at higher temperatures by the electric-field-induced shift in the intrasublattice exchange energy. For
the perpendicular case, three mechanisms are also considered; two of them, an electric-field-induced anti-
symmetric exchange term and an electric-field-induced g shift, have not previously been discussed. It is
concluded that the perpendicular effect is dominated by the electric-field-induced shift in the single-ion
anisotropy energy. Crystal-field aspects of the perpendicular effect are presented, and it is argued that the

10 SEPTEMBER 1967

electric-field-induced g shift is actually 1-2 orders of magnitude smaller than the crystal-field estimate.

INTRODUCTION

HE possibility of a linear magnetoelectric (ME)

effect, wherein a material exhibits an induced
magnetization which is proportional to an applied
electric field and an induced electric moment which is
proportional to an applied magnetic field, was first
pointed out by Landau and Lifshitz.! Such an effect
can exist only in materials having an ordered magnetic
structure. Dzyaloshinski? subsequently pointed out that

* Research sponsored in part by the U. S. Air Force Materials
Laboratory Research and Technology Division AFSC through
the European Office of Aerospace Research, U. S. Air Force Con-
tract No. AF 61(052)-654 and was done in partial fulfillment of
the Ph.D. requirements of one of the authors (R. M. H.).

t Present address: Applied Research Laboratory, Sylvania
Electronic Systems, Waltham, Massachusetts.

1L. D. Landau and E. M. Lifshitz, Electrodynamics of Ccn-
tinuous Media (Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1960), p. 119.

2 I. E. Dzyaloshinski, Zh. Ekspenm i Teor. Fiz. 37, 881 (1959)
[English transl.: Soviet Phys.—JETP 10, 628 (1960)]

the ME effect should exist in CryOs, and the electrically
induced effect was first observed in this material by
Astrov.? This was followed by the observation of the
magnetically induced ME effect in Cr,O; by Rado and
Folen.* Further work®7 showed that the ME effect in
Cr,0s is strongly anisotropic and temperature-depend-
ent.

The first proposal of an atomic mechanism that
could provide an explanation of the ME effect was
made by Rado.! He indicated that the dependence of
the single-ion anisotropy energy on an externally ap-
plied field would cause an ME effect both parallel and

3D. N. Astrov, Zh. Eksperim. i Teor. Fiz. 38, 984 (1960)
[English transl.: Soviet Phys.—JETP 11, 708 (1960)]

*G. T. Rado and V. J. Folen, Phys. Rev Letters 7, 310 (1961).

5D. N. Astrov, Zh. Eksperim. i Teor. Fiz. 40, 1035 (1961)
[English transl.: Soviet Phys.—JETP 13, 729 (1961) 7.

8V. J. Folen, G. T. Rado, and E. W. Stalder, Phys. Rev.
Letters 6, 607 (1961).

7 S. Shtrikman and D. Treves, Phys. Rev. 130, 986 (1963).
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