Optical Spectrum of Antiferromagnetic Cr_2O_3

J. P. VAN DER ZIEL

Bell Telephone Laboratories, Murray Hill, New Jersey (Received 20 March 1967; revised manuscript received 12 May 1967)

The sharp absorption spectrum of antiferromagnetic Cr₂O₃ is investigated. The molecular-field approximation to the exchange interaction is shown to be inapplicable to the ${}^{2}E$ states. A modified exchange interaction is introduced via an effective Hamiltonian, and the resulting transitions are interpreted in terms of exciton theory. Reasonable agreement with experiment is found. With a magnetic field parallel to the c axis, a new line not present in zero field is observed. This absorption is explained by the exciton theory. The 3.75-cm⁻¹ separation between the satellite line and the line from which it borrows its intensity is a Davydov splitting. No electric field effect for fields up to 100 kV/cm is found. Finally, the low-temperature fluorescence spectrum is discussed.

I. INTRODUCTION

N a recent letter, the optical absorption spectrum I n a recent letter, the operation $4A_2$ to 2E transitions of Cr³⁺ in resulting from the 4A_2 to 2E transitions of Cr³⁺ in antiferromagnetic Cr₂O₂ was discussed.¹ It was found that the molecular-field approximation does not properly account for the observed splittings of the ${}^{2}E$ state. We discuss here the nature of the exchange of the excited state and present a more detailed discussion of the experimental results.

As found by McClure,² the main features of the spectrum are similar to chromium-doped Al₂O₃. The absorption lines were initially investigated at high resolution by Wickersheim,3 and the Zeeman effect was measured by Stager.⁴ We have essentially repeated their experiment, but have a significantly different interpretation of the results. In Cr₂O₃ the optical absorption is best described in terms of Frenkel exciton theory.^{5,6} In Sec. II the exciton spectrum resulting from the ${}^{4}A_{2}$ to ${}^{2}E$ single-ion transitions is derived. This is done first using the molecular-field approximation for the ground and excited states. It is the lowestorder approximation to the isotropic exchange interaction $J_{12}\mathbf{S}_1$ \mathbf{S}_2 . Here \mathbf{S}_1 and \mathbf{S}_2 are the spins on ions 1 and 2, respectively. Van Vleck⁷ has shown, however, that the isotropic exchange is only valid in certain limited situations. It is warranted when the ion has a half-filled shell, and when the ion is in its state of maximum multiplicity. This is the case when the chromium ions are in the ${}^{4}A_{2}$ ground state, but does not apply for the exchange interaction between an ion in the ${}^{2}E$ state and the ${}^{4}A_{2}$ state, even though these states

arise from the same t^3 strong-field configuration. It is not surprising that the results of the molecular-field approximation fail to agree with the experimental results shown in Table I. An exchange interaction capable of explaining the four transitions given in Table I is then introduced. The experimental absorption data are compared with theory in Sec. III, and the fluorescence from Cr₂O₃ is discussed in Sec. IV.

II. EXCITONS IN Cr₂O₃

The theory of excitons in antiferromagnetic crystals has received an extensive discussion by Loudon.⁸ His work is an extension of the exciton theory of molecular

TABLE I. Absorption data for the sharp lines at 4.2°K.

Line	<i>ν</i> cm ^{−1}	$\int \sigma_{\perp} d\nu \\ (10^{-20} \mathrm{cm})$	$\int \sigma_{ } d\nu \\ (10^{-20} \mathrm{cm})$	
1	13 747.0	11.2	0.3	
2	13 769.5	0.9	5.0	
3	13 909.5	0.6	3.2	
4	13 931.4	6.3	<0.2	

crystals.^{5,6} Only the features of the theory directly applicable to the present case will be reviewed here. The fundamental principle is that stationary states of the crystal belong to the irreducible representations of the crystal space group. The crystal ground state transforms as the Γ_1^+ representation. The exciton functions corresponding to $\mathbf{k} = 0$ of the Brillouin zone, which are important in optical absorption, transform as representations of the factor group of the space group.

The number and symmetry of the excitons resulting from a particular single-ion transition are found using group theory. In antiferromagnets the irreducible representations of the site wave functions which have the same energy, but are located on opposite sublattices are Kramers conjugates. The ground-state-site wave function does not transform as the totally symmetric representation. An ion is excited from its ground state $|g\rangle$ to the state $|e\rangle$ by the site transition operator

⁸ R. Loudon (unpublished).

¹ J. P. van der Ziel, Phys. Rev. Letters 18, 237 (1967).
² D. S. McClure, J. Chem. Phys. 38, 2289 (1963).
³ K. A. Wickersheim, J. Appl. Phys. 34, 1224 (1963).
⁴ C. V. Stager, J. Appl. Phys. 34, 1232 (1963).
⁵ A. S. Davydov, *Theory of Molecular Excitons* (McGraw-Hill Book Company, Inc., New York, 1962).
⁶ The theory of Frenkel excitons has been reviewed by D. S. McClure [Solid State Phys. 8, 1 (1959)] and by R. S. Knox [Solid State Phys. Suppl. 5, 1 (1963)].
⁷ J. H. Van Vleck, Rev. Univ. Nac. Tucuman, Ser. A: 14, 189 (1962). Anisotropic exchange interactions observed in the spectra of the rare-earth garnets have been discussed by K. A. Wicker-

of the rare-earth garnets have been discussed by K. A. Wicker-sheim and R. L. White [Phys. Rev. Letters 8, 483 (1962)], and P. M. Levy [Phys. Rev. 135, A155 (1964)].

FIG. 1. The structure of Cr₂O₃.

 $|e\rangle\langle g|$. The **k**=0 excitons are formed from the appropriate linear combination of single-ion excitations. The character of the exciton transition operator for the symmetry operation R, in terms of the character of the site $\chi^{s.g.}(R)$, is obtained by combining the transition operator characters of all the sites in a unit cell according to

$$X_{j}(R) = \sum_{a} \sigma_{a}(R) \chi_{j}^{s.g.}(R),$$

$$\sigma_{a} = 1 \quad \text{if } R \text{ is an operation of the } a\text{th site group.}$$

= 0otherwise. (1)

The reduction of $X_i(R)$ into the irreducible representations of the factor group of the space group gives the exciton levels resulting from a single-ion transition having a final energy E_{i} .⁹ Since the ground state is totally symmetric, these representatives also give the symmetry of the exciton states.

 Cr_2O_3 has the corundum structure shown in Fig. 1.¹⁰ The lattice may be considered as an array of antiferromagnetically ordered Cr2O3 molecules with a unit cell containing two molecules.¹¹ The chromiums between the same two planes of oxygens, for example ions b

and e, are related by inversion followed by inversion of the spin. Although not clearly shown in Fig. 1, chromiums are opposite sides of an oxygen plane, such as a and b, are inequivalent as a result of a small unequal rotation of the oxygen triangles from the neighboring Cr₂O₃ molecules around the chromium ion, thus reducing the site symmetry from C_{3v} to $C_3=3$. The point f at the center of the cell has symmetry $C_{3i}=\overline{3}$. In the paramagnetic phase the crystal symmetry is $D_{3d}^6 =$ $R\overline{3}c1'$. The time reversal operator K denoted in the space group symbol by 1', is a member of the group.¹² Below the antiferromagnetic transition, K is no longer a symmetry element, and the inversion operation I is replaced by the antiunitary operation of inversion followed by time reversal, KI. The magnetic structure is described by the magnetic space group $R\overline{3}'c'$. The irreducible representations of the magnetic group are obtained by considering the representations of the subgroup which contains only unitary operators.13 The group $R\overline{3}'c'$ has the symmetry elements $\{E \mid 0\}, 2\{C_3 \mid 0\},$ $3\{c_2' \mid \tau\}, \{KI \mid 0\}, 2\{KS_6 \mid 0\}, \text{ and } 3\{K\sigma_d \mid \tau\}.$ The unitary subgroup is R32. This group is also the group of the k vector at the center of the Brillouin zone, and the representations of both groups will be designated by the same symbols. Analysis of the magnetic group shows that, with the addition of the antiunitary operator $\{KI \mid 0\}$, the properties of the representations of R32 in the magnetic group $R\overline{3}'c'$ are the same as the time-reversal properties of the representations of R321'.¹³ In particular, no new degeneracy is introduced for the single-valued representations.

The character table for the site symmetry C_3 , the $\mathbf{k}=0$ point of the paramagnetic group $R\overline{3}c$, and the group R32 are shown in Tables II and III.¹⁴ The rep-

TABLE II. Character table for the point group $C_3=3$. The pairs of representations (C_1, C_2) and (S_1, S_3) are Kramers degenerate. $\omega = \exp(i \pi/3)$.

		E		C_3	C_3^{-1}		
A	Γ_1	1		1	1		
C_1	Γ_2	1		ω^2	$-\omega$		
C_2	Γ_3	1		$-\omega$	ω^2		
S_1	Γ_4	1	-1	$\omega - \omega$	$-\omega^2 \omega^2$		
S_3	Γ_6	1	-1	-1 1	-1 1		
S_5	Γ_5	1	-1	$-\omega^2 \omega^2$	ω —ω		

¹² B. A. Tavger and V. M. Zaitzev, Zh. Eksperim. i Teor. Fiz. **30**, 564 (1956) [English transl.: Soviet Phys.—JETP **3**, 430 (1956)]; N. V. Belov, N. N. Neronova, and T. S. Smirnova, Trudy Inst. Krist. **11**, 33 (1955) [English transl.: Soviet Phys.— Cryst. **2**, 311 (1957)]. Magnetic symmetry has been discussed by W. Opechowski and R. Guccione [*Magnetism*, edited by G. T. Pada and H. Subl. (Academic Press Inc. New York 1966). Vol. by W. Opechowski and R. Guccione [Magnetism, edited by G. I. Rado and H. Suhl (Academic Press Inc., New York, 1965), Vol. IIA, p. 105] and by Y. Le Corre [J. Phys. Radium 19, 750 (1958)]. ¹³ J. O. Dimmock and R. G. Wheeler [Phys. Chem. Solids 23, 729 (1962)] and J. O. Dimmock [J. Math. Phys. 4, 1307 (1963)] have discussed the irreducible representations of the propulsion convertion.

nonunitary groups.

¹⁴ G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups (McGraw-Hill Book Company, Inc., New York, 1962).

⁹ H. Winston, J. Chem. Phys. **19**, 156 (1951). ¹⁰ P. P. Ewald and C. Hermann, Z. Krist. **1**, 240 (1931); S. Geschwind and J. P. Remeika, Phys. Rev. **122**, 757 (1961). ¹¹ B. N. Brockhouse, J. Chem. Phys. **21**, 961 (1953); D. E. Cox, W. J. Takei, and G. Shirane, Phys. Chem. Solids **24**, 405 (1963). (1963).

R32	$R\overline{3}C$	$ \begin{array}{c c} \{E \mid 0 \\ \{E \mid 0 \} \\ \{E \mid 0 \end{array} \end{array} $	$2\{C_3 \mid 0\}\ 2\{C_3 \mid 0\}$	$\begin{array}{c c} 3\{C_2' \mid \mathbf{r} \\ 3\{C_2' \mid \mathbf{r} \} \end{array}$	${I \mid 0}$	$2\{S_6 \mid 0\}$	$3\{\sigma_d \mid \tau\}$	
Γ_1	Γ_1^+	1	1	1	1	1	1	
	Γ_1^-	1	1	1	-1	-1	-1	
Γ_2	Γ_2^+	1	1	1	1	1	-1	
	Γ_2	1	1	-1	-1	-1	1	
Γ_3	${\Gamma_3}^+$	2	-1	0	2	-1	0	
	Γ_3^-	2	-1	0	-2	1	0	

TABLE III. Character table for the point $\mathbf{k}=0$ of the groups R32 and $R\overline{3}C.^{\mathbf{a}}$

^a $\tau = \frac{1}{2}(t_1+t_2+t_3)$.

resentations are identified both by Mulliken and Bethe notation. For clarity we shall use the Mulliken notation when discussing the site symmetry and reserve the Γ nomenclature for the $\mathbf{k}=0$ excitons. From Table III we find that the representations $\Gamma_i^{\pm}(i=1, 2, 3)$ of the group $R\bar{3}c$ reduce to Γ_i in the group R32. In the antiferromagnetic phase the excitons no longer have a definite parity. Although the exchange interaction has important effects on the splitting of the exciton levels, its effect on the coupling of the exciton levels to the optical radiation field is small. In considering optical absorption processes we shall thus describe the excitons by their paramagnetic space group representations, keeping in mind, however, the effects of the reduction in symmetry in going to the antiferromagnetic phase.

The selection rules for radiative transitions are obtained from the transformation properties of the multipole moments given in Table IV. The change in the crystal quantum number $\Delta \mu$ is given in the last column.

FIG. 2. Derivation of the exciton spectrum based on the molecular-field model. The crystal-field levels (a) are split by the molecular field as shown in (b, c) for the two sublattices. The transitions combine to form the excitons (d).

Both ${}^{2}E$ and ${}^{4}A_{2}$ transform as $D_{3/2}$ in O_{h} , and split under the combined action of the trigonal field and spin-orbit interaction into two pairs of degenerate levels transforming as the representations $2S_{3}$ and S_{1} , S_{5} . The molecular field acting on the spatially quantized spins on the two sublattices yields the splitting pattern shown in Figs. 2(b) and 2(c).

Electric dipole transitions are not allowed between ${}^{4}A_{2}$ and ${}^{2}E$. In symmetry C_{3} , the transition operators originating from the lowest-energy single-ion levels transform as $S_{3} \times S_{3}^{*} = A$, $S_{1} \times S_{3}^{*} = C_{2}$, and $S_{5} \times S_{3}^{*} = C_{1}$. The electric dipole transitions shown in Figs. 2(b) and 2(c) are obtained when the additional selection rule for the crystal quantum number is applied.

From Eq. (1) the single-ion A transition operator results in four $\mathbf{k}=0$ excitons having symmetry Γ_1^{\pm} and Γ_2^{\pm} . The C_1 and C_2 transition operators combine to yield Γ_3^+ and Γ_3^- excitons. The group-theoretical arguments used here are somewhat different from those used in Ref. 1. There the exciton levels were incorrectly stated to be doubly degenerate. The interpretation of the experimental results is unchanged if we identify the Γ_1 , Γ_2 , Γ_3 excitons of Ref. 1 with the Γ_1^- , Γ_2^- , Γ_3^- excitons of this paper. Electric dipole transitions are allowed to Γ_3^- for σ -polarized radiation, and to Γ_2^- for π polarization. From consideration of the magnetic space group, much weaker electric dipole absorption is also expected to the states labeled Γ_2^+ and Γ_3^+ in Fig. 2(d). The energies of the excitons originating from the same single-ion transition are sep-

TABLE IV. Transformation properties of the multipole moments.

Representation				
Polarization	3	R3C	R32	$\Delta \mu$
σ, a	C_1	Γ_3	Γ_3	1
σ, a	C_2	Γ3-	Γ_3	-1
π	A	Γ_2	Γ_2	0
π, a	C_1	Γ_8^+	Γ_3	1
π, a	C_2	Γ_3^+	Γ_3	-1
σ	\boldsymbol{A}	Γ_2^+	Γ_2	0
	Polarization σ, α σ, α π π, α π, α σ	PolarizationReg σ, a C_1 σ, a C_2 π A π, a C_1 π, a C_2 σ A	PolarizationRepresenta 3 σ, a C_1 $\Gamma_3^ \sigma, a$ C_2 $\Gamma_3^ \pi$ A $\Gamma_2^ \pi, a$ C_1 Γ_3^+ π, a C_2 Γ_3^+ σ A Γ_2^+	PolarizationRepresentation 3 R32 σ, a C_1 $\Gamma_3^ \Gamma_3$ σ, a C_2 $\Gamma_3^ \Gamma_3$ π A $\Gamma_2^ \Gamma_2$ π, a C_1 Γ_8^+ Γ_3 π, a C_2 Γ_3^+ Γ_3 σ A Γ_2^+ Γ_2

arated by the Davydov splittings, which result from the exchange of excitation between translationally inequivalent ions. As shown in Sec. III, the splittings are expected to be at most several wave numbers. Thus only two strong lines are predicted by the above theory, while four lines are observed. This difficulty was previously encountered by Wickersheim³ with the single-ion molecular-field approximation. The presence of the two additional absorption lines does not appear to be due to the mixing of the $S_z = \pm \frac{3}{2}$ ground-state functions. The wave function $0.96 \left| \frac{3}{2} \right\rangle + 0.2 \left| -\frac{3}{2} \right\rangle$ reduces the sublattice magnetic moment to the experimentally observed¹¹ 2.76 μ_B from its spin-only value of $3\mu_B$. The ratio of the upper to lower σ -polarized absorption cross sections is 0.042, an order of magnitude smaller than the experimental value of 0.56 obtained from Table I. A similar result obtains when mixing of the $S_z = \frac{1}{2}$ with $S_z = \frac{3}{2}$ is considered. Pratt and Bailey¹⁵ were able to explain the temperature dependence of the susceptibility using the Oguchi pair method, but by applying this theory to the ${}^{2}E$ state they also obtained only two transitions with an appreciable dipole moment to these levels from the lowest level of the ground state.

The energy separations between the upper and lower σ and π polarized lines are 184.4 and 140 cm⁻¹, respectively. This effectively rules out the possibility that the upper lines may be magnon side bands of the lower-energy absorption lines since, as will be shown from the fluorescence data of Sec. IV, the sidebands would be expected to be about 250 cm⁻¹ above the sharp lines.

Electric dipole transitions to the upper ²E levels would occur if the selection rules of the crystal quantum number, $\Delta \mu = \pm 1$ for σ transitions and zero for π transitions, are relaxed. Since the selection rules are quite valid for ruby with magnetic field parallel to the threefold axis,¹⁶ there appears to be no *a priori* reason for discarding them for Cr₂O₃ in the molecular-field approximation.

Transitions to the upper levels may be obtained by mixing the two S_3 -symmetry excited single-ion states and the S_1 and S_5 states. We shall generalize the molecular-field approximation to take into account the effects of a non-S-orbital state on the exchange. We apply the effective Hamiltonian method used by Tanabe and Kamimura¹⁷ for the ²E state of ruby, and shall follow their phase conventions and definitions. The effective Hamiltonian contains only terms which have matrix elements within the excited state. For the ²E state, the spin operator can appear linearly and the allowed orbital functions transform as the irreducible representation A_1 , A_2 , and E of the octahedral group. In the trigonal site symmetry, the Hermitian functions having real matrix elements are $V(A_1)$ and the two components of the *E* representation, $V(u_+)$ and $V(u_-)$. The function transforming as A_2 is a pure imaginary operator and is denoted by $T(A_2)$. Since the ions near the excited ion are in the ${}^{4}A_{2}$ state, the exchange field enters linearly in lowest order.⁷ These factors are combined to yield a $\Re_{\rm eff}$ transforming as the symmetric representation of the point group C_3 , and which is invariant under time reversal. In its most general form, the $\Re_{\rm eff}$ which operates on the wave functions $|u_++\frac{1}{2}\rangle$, $|u_+-\frac{1}{2}\rangle$, $|u_-+\frac{1}{2}\rangle$, and $|u_--\frac{1}{2}\rangle$ is

$$5C_{eff} = \lambda S_{z}T(A_{2}) + g_{||}\beta H_{z}S_{z} + g_{||}'\beta H_{z}T(A_{2}) + g_{||}^{E}\beta H_{z}[V(u_{+})S_{-} + V(u_{-})S_{+}] + g_{\perp}^{E}\beta [H_{+}V(u_{+})S_{+} - H_{-}V(u_{-})S_{-}], \quad (2)$$

where λ , $g_{||}H_z$, $g_{||}^{|}H_z$, $g_{||}^{E}H_z$, and $g_{\perp}^{E}H_{+}$ are empirical parameters determined by experiment. The first term is the zero-field splitting of the ${}^{2}E$ state and is caused by the combined action of the trigonal field and the spin-orbit interaction. The second term is the molecularfield contribution, the third includes spin-orbit and crystal-field contributions, and the possible effects of exchange on the orbital function. The Zeeman spectrum of Al₂O₃: Cr³⁺ is accurately described by the first three terms. The remaining terms express the effect of the exchange field on the combined spin and orbital functions. Using the u_+ , u_- basis functions of E, one has, on absorbing all numerical factors in the empirical parameters, the two-dimensional matrices

$$T(A_{2}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$V(u_{+}) = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix},$$

$$V(u_{-}) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$
 (3)

The eigenvalues and eigenfunctions of \mathcal{K}_{eff} are

$$E_{1} = -\frac{1}{2}\lambda + (\frac{1}{2}g_{||} - g_{||}')\beta H_{z} - (1/\sqrt{2})g \bot^{E}\beta \mid H_{+} \mid \cot\theta,$$
(4a)

$$E_4 = -\frac{1}{2}\lambda - (\frac{1}{2}g_{||} - g_{||}')\beta H_z + (1/\sqrt{2})g \bot^E \beta \mid H_+ \mid \cot\theta,$$
(4b)

with

$$\Psi_1 = |u_+ - \frac{1}{2}\rangle \cos\theta - |u_- + \frac{1}{2}\rangle e^{i\eta} \sin\theta, \qquad (5a)$$

$$\Psi_4 = |u_+ - \frac{1}{2}\rangle \sin\theta + |u_- + \frac{1}{2}\rangle e^{-i\eta} \cos\theta, \quad (5b)$$

where $e^{i\eta} = H_+ / |H_+|$, and

Ň

$$E_2 = \frac{1}{2}\lambda + (\frac{1}{2}g_{\parallel} + g_{\parallel}')\beta H_z - (1/\sqrt{2})g_{\parallel}^E\beta H_z \cot\phi, \quad (6a)$$

$$E_{3} = \frac{1}{2}\lambda - (\frac{1}{2}g_{||} + g_{||}')\beta H_{z} + (1/\sqrt{2})g_{||}^{E}\beta H_{z} \cot\phi, \quad (6b)$$

$$\Psi_2 = | u_- - \frac{1}{2} \rangle \cos\phi + | u_+ + \frac{1}{2} \rangle \sin\phi, \qquad (7a)$$

$$\Psi_3 = \left| u_{-} - \frac{1}{2} \right\rangle \sin \phi - \left| u_{+} + \frac{1}{2} \right\rangle \cos \phi, \tag{7b}$$

¹⁵ G. W. Pratt, Jr., and P. T. Bailey, Phys. Rev. 131, 1923 (1963). ¹⁶ S. Sugano and I. Tsujikawa, J. Phys. Soc. Japan 13, 899

^{(1958).} ¹⁷ Y. Tanabe and H. Kamimura, J. Phys. Soc. Japan 13, 394

where the phases θ , ϕ are

$$\tan 2\theta = \sqrt{2}g_{\perp}E \mid H_{+} \mid /(g_{\parallel} - 2g_{\parallel}')H_{z}, \qquad (8)$$

$$\tan 2\phi = \sqrt{2}g_{||}^{E} / (g_{||} + 2g_{||}').$$
(9)

Considering only the first three terms of \mathcal{K}_{eff} , the ${}^{4}A_{2}(S_{z}=-\frac{3}{2})$ state has a σ -polarized transition to $^{2}E(u_{+}-\frac{1}{2})$ and a π -polarized transition to $^{2}E(u_{-}-\frac{1}{2})$. With the complete \mathcal{R}_{eff} the states are mixed and transitions are now allowed to all four states with absorption strengths given by

$$\sigma_1 = \sigma \cos^2 \theta \qquad \pi_1 = 0, \tag{10a}$$

$$\sigma_4 = \sigma \sin^2 \theta \qquad \pi_4 = 0. \tag{10b}$$

$$\pi_2 = \pi \cos^2 \phi \qquad \sigma_2 = 0 \qquad (10c)$$

$$\pi_3 = \pi \sin^2 \phi \qquad \sigma_3 = 0, \tag{10d}$$

where σ and π are the dipole strengths from $S_z = -\frac{3}{2}$ to the ${}^{2}E$ levels in the absence of exchange.

The exciton spectrum corresponding to these singleion transitions is shown in Fig. 3 for the case the last terms of \mathfrak{M}_{eff} are large compared to the first three terms and $g \mathbf{1}^{E} | H_{+} | > g_{||}^{E} H_{z}$. There are now two σ - and two π -polarized transitions, and as in the molecular-field approximation the twofold degenerate Γ_3^- exciton is split by a magnetic field, but the nondegenerate $\Gamma_1^$ and Γ_2^- excitons are not.

III. ABSORPTION

The absorption data shown in Table I were obtained using a 1-m Czerny-Turner spectrometer and a S-20 response photomultiplier. Samples, in the form of oriented plates, were prepared from boules grown by R. A. Lefever. The absorption lines of these crystals were found to be about 5 cm^{-1} higher in energy than the values given by Wickersheim.³ Some additional measurements were made on thin c-axis platelets which were grown by H. J. Guggenheim using a flux technique. The absorptions of the upper and lower σ -polarized lines for these crystals were found to be, respectively, 1.8 and 1.0 cm⁻¹ higher in energy than the values shown in Table I, and the linewidths were smaller. The variation in peak absorption energy appears to depend on the degree of long-range crystal perfection. The deviation from perfect polarization results mainly from a slight variation of the *c*-axis direction throughout the crystal such as is often found in Verneuil grown crystals. X-ray measurements also indicated the presence of several small crystallites. The axial spectrum of the flux-grown crystal, however, was very well polarized.

The Cr₂O₃ cross sections may be compared to the values obtained by Nelson and Sturge¹⁸ for Al₂O₃:Cr³⁺. Taking into account the theory of Sec. II and the depolarization, it is the total σ - and π -polarized cross sections of Table I, 1.9×10^{-19} cm and 0.85×10^{-19} cm, respectively, which are to be compared to one-half their

FIG. 3. Modification of the exciton spectrum introduced by the exchange interaction discussed in the text. Only the electric dipole active excitons are shown. The order of the levels depends on the values of the empirical parameters. Transitions to the Γ_1^- excitons, labeled π' , become allowed in a magnetic field.

ruby values for the $S_z = \pm \frac{3}{2}$ state, namely 1.7×10^{-19} and 0.38×10^{-19} cm. The near equality of the cross sections, although interesting, is not significant since both the position and the strength of the ${}^{4}T_{2}$ bands from which the ${}^{2}E$ lines borrow their intensity through spin-orbit coupling are not the same for the two crystals.

Using the theory of Sugano and Tanabe,¹⁹ the ${}^{2}E$ cross sections can be calculated from McClure's absorption data for the ${}^{4}T_{2}$ band.² With $\zeta' = 153$ cm⁻¹,²⁰ the cross sections are found to be 10.2×10^{-19} cm for σ and 6.25×10^{-19} cm for π polarization. The poor agreement can be only partially attributed to the uncertainty of the ${}^{4}T_{2}$ absorption data, and to a lesser extent to the ${}^{2}E$ absorption results. The major cause for the discrepancy probably results from not including the phonon-assisted contribution to the ${}^{2}E$ cross section. Since the ²E levels are relatively closer to the ⁴ T_2 band than is the case for ruby, the transition in Cr_2O_3 is expected to be relatively more sensitive to the crystal field.21

In the above, we have implicitly assumed that the absorption cross sections are given by the single-ion values. The empirical parameters of 3Ceff can be found if we assume the energy levels are given by the singleion values, Eqs. (4) and (6). The latter implies equal band shifts⁵ of all the excitons. In view of the assumptions made, the values shown in Table V, obtained from the experimental data given in Table I, should be regarded with some caution. It does indicate, however, that the last terms of \mathcal{R}_{eff} clearly predominate over the molecular-field term.²²

¹⁸ D. F. Nelson and M. D. Sturge, Phys. Rev. 137, A1117 (1965).

 ¹⁹ S. Sugano and Y. Tanabe, J. Phys. Soc. Japan 13, 880 (1958).
 ²⁰ S. Sugano and M. Peter, Phys. Rev. 122, 381 (1961).

²¹ M. D. Sturge (private communication)

²² From the second and fourth lines of Table V, we obtain $g_{||}'=-0.24$ ($g_{||}/2$). This is consistent with the calculation of R. M. Macfarlane [Bull. Am. Phys. Soc. **11**, 243 (1966)] if we interpret these quantities as true g values, and accept reasonable values for the trigonal field parameters [M. D. Sturge (private communication)].

FIG. 4. Field dependence of the low-energy absorption lines at 13 747.0 cm⁻¹ (σ) and 13 769.5 cm⁻¹ (π) for *H* parallel to the *c* axis. The field-dependent satellite absorption near 13 765 cm⁻¹ is shown by the dashed line.

As shown in Table IV, electric and magnetic dipole transitions to the Γ_1 exciton (magnetic group) are not allowed. They may occur if the symmetry is lowered. For example, a magnetic field applied parallel to the c axis removes the symmetry operations $\{KI \mid 0\}$, $\{KS_6 \mid 0\}$, $\{C_2' \mid \tau\}$ and introduces a unique sense of rotation about the c axis. The symmetry of the magnetic space group and its unitary subgroup is reduced to R3. The character table for the $\mathbf{k}=0$ point is found from Table II. The Γ_1 and Γ_2 excitons reduce to the exciton Γ_1 of R3, and π -polarized transitions to both are allowed. In the paramagnetic space group the magnetic moment transforms as Γ_2^+ , and transitions to Γ_1^- become allowed. In this approximation, electric dipole transitions to Γ_1^+ and Γ_2^+ are forbidden.

We consider now the combined effects of the interaction leading to the Davydov splitting and the magnetic field. The four-exciton wave functions resulting from the A single-ion transitions, in terms of the one-

FIG. 5. Field dependence of the energy separation between the Γ_1^- and Γ_2^- excitons.

site exciton wave functions are

$$\phi_{1} = \phi(\Gamma_{1}^{-}) = \frac{1}{2} [\phi_{a}^{\pi} + \phi_{b}^{\pi} - \phi_{c}^{\pi} - \phi_{d}^{\pi}],$$

$$\phi_{2} = \phi(\Gamma_{2}^{-}) = \frac{1}{2} [\phi_{a}^{\pi} - \phi_{b}^{\pi} + \phi_{c}^{\pi} - \phi_{d}^{\pi}],$$

$$\phi_{3} = \phi(\Gamma_{1}^{+}) = \frac{1}{2} [\phi_{a}^{\pi} + \phi_{b}^{\pi} + \phi_{c}^{\pi} + \phi_{d}^{\pi}],$$

$$\phi_{4} = \phi(\Gamma_{2}^{+}) = \frac{1}{2} [\phi_{a}^{\pi} - \phi_{b}^{\pi} - \phi_{c}^{\pi} + \phi_{d}^{\pi}].$$

$$(11)$$

Here ϕ_a^{π} , ϕ_b^{π} , ϕ_c^{π} , and ϕ_d^{π} are linear combinations of antisymmetrized products of single-ion wave functions with the excitation distributed, respectively, over the a, b, c, and d sites of Fig. 1. The wave functions have the symmetry of the paramagnetic space group. Since the dipole moments parallel to the c axis on sites a and c are opposed to the direction of the dipole moments of the sites b and d, only ϕ_2 has a dipole moment with the ground state.

The Hamiltonian may be separated in two parts,

$$\mathfrak{K} = \mathfrak{K}' + \mathfrak{K}'', \tag{12}$$

where \mathfrak{H}' and \mathfrak{H}'' have, respectively, off-diagonal and diagonal matrix elements with the one-site excitons. The term \mathfrak{H}' gives the Davydov splittings. From symmetry, we obtain $\mathfrak{H}_{ab}'=\mathfrak{H}_{cd}'$, $\mathfrak{H}_{ac}'=\mathfrak{H}_{bd}'$, and $\mathfrak{H}_{bc}'=\mathfrak{H}_{cd}'$, $\mathfrak{H}_{ac}'=\mathfrak{H}_{bd}'$, and $\mathfrak{H}_{bc}'=\mathfrak{H}_{cd}'$.

TABLE V. Experimentally determined values of the parameters appearing in $\Im C_{\text{eff}}$ [Eq. (2)].

$g_{\perp}^{E}\beta \mid H_{+} \mid /\sqrt{2}$	88.2 cm ⁻¹	
$(\frac{1}{2}g_{ }-g_{ }')\beta H_z$	25.8 cm^{-1}	
$g_{ }{}^{E}\beta H_{z}/\sqrt{2}$	68.5 cm ⁻¹	
$(\frac{1}{2}g_{ }+g_{ }')\beta H_z$	$15.4 \mathrm{cm}^{-1}$	

 \mathfrak{K}_{ad}' . \mathfrak{K}' has only diagonal matrix elements with the wave functions of Eq. (11).

$$3C_{ii}' = \frac{1}{2} \begin{pmatrix} + & - & - & - & + \\ - & + & - & - & + & - \\ 3C_{ab}' & 3C_{ac}' & 3C_{ba}' & 3C_{ba}' & 3C_{ba}' & 3C_{ca}' \\ + & + & + & + & + \\ - & - & + & + & - & - \end{pmatrix},$$
(13)

where i = 1, 2, 3, 4.

The magnetic field dependence of the excitons is contained in 3C". Its matrix elements are related by

$$\mathfrak{K}_{aa}'' = -\mathfrak{K}_{bb}'' = \mathfrak{K}_{cc}'' = -\mathfrak{K}_{dd}''$$

 \mathfrak{IC}'' has off-diagonal matrix elements with excitons $\Gamma_1^$ and Γ_2^- . The eigenvalues of the Hamiltonian, Eq. (12), are

$$E = \frac{1}{2} \{ \Im \mathcal{C}_{11}' + \Im \mathcal{C}_{22}' \pm [(\Im \mathcal{C}_{11}' - \Im \mathcal{C}_{22}')^2 + 4(\Im \mathcal{C}_{12}'')^2]^{1/2} \}.$$
(14)

A similar result obtains for the Γ_1^+ and Γ_2^+ excitons. The term in \mathcal{IC}'' is found not to have matrix elements with excitons of different parity. Matrix elements of Eq. (11) between the exciton states which are separated by the exchange interaction are of second order, and have not been included. Using the wave functions, Eq. (11), the electric dipole moments parallel to the c axis to the exciton levels are

$$(\phi_i \mid Z \mid \phi_0) = \frac{1}{2} \begin{pmatrix} + & + & - & - \\ + & - & + & - \\ Z_{a0} \quad Z_{b0} \quad Z_{c0} \quad Z_{d0} \\ + & + & + & + \\ + & - & - & + \end{pmatrix}.$$

The dipole moments of sites b and d are opposed to the direction of the moments on sites a and c. A positive dipole moment is taken to be parallel to the defined positive direction of the crystal trigonal axis. With the wave functions Eq. (11) we have $Z_{a0} = -Z_{b0} =$ $Z_{c0} = -Z_{d0}$ and a dipole moment exists only to the $\Gamma_2^$ exciton.

The wave functions Eq. (11) transform correctly under the operations of the antiferromagnetic group. Using these symmetry operations we have $Z_{a0} = -Z_{b0}$ and $Z_{c0} = -Z_{d0}$. Thus, in addition to the Γ_2^- absorption there is a possible absorption to the state labeled Γ_2^+ which results from the incomplete cancellation of the site dipole moments. This is of course consistent with the reduction in symmetry $(\Gamma_2^{\pm} \rightarrow \Gamma_2)$ given in Table III. Transitions to Γ_1^{\pm} remain forbidden. The difference between Z_{a0} and Z_{c0} results from the exchange interaction; for Cr_2O_3 this is expected to be negligible. This is the justification for using the paramagnetic space group representations.

Figure 4 shows the field dependence of the energy levels of the lower excitons. The field was produced by a superconducting solenoid. We identify the lower exciton as Γ_3^- by its linear splitting. The Γ_2^- exciton is seen to shift to higher energy and an additional π polarized absorption line appears on the low-energy side of this absorption. The latter is the behavior expected of the Γ_1^- exciton. The field dependence of the energy separation between the Γ_1^- and Γ_2^- excitons is shown in greater detail in Fig. 5. The square of the energy separation is plotted as a function of the square of the applied field. The line is a plot of the equation

$$(E_2 - E_1)^2 = 14.1 + 2.06H^2 \text{ (cm}^{-1})^2,$$
 (15)

where *H* is in units of 10 kOe. Comparing with Eq. (14) and taking note of the limits of experimental error, we find a Davydov splitting of $\Im c_{22}' - \Im c_{11}' = 3.75(\pm 0.25)$ cm⁻¹. The square root of the slope yields

$$2\mathfrak{K}_{12}''/H = 0.143 \text{ (cm}^{-1}/\text{kOe}).$$
 (16)

It is of interest to obtain a numerical estimate of the matrix elements of 3C' and thus find the mechanism responsible for the splitting. The interactions which result in the exchange of excitation between ions is of central importance in theories of sensitized luminescence, and have been discussed by Dexter.²³ More recently, Imbusch²⁴ has applied the theory to energy transfer processes in Al_2O_3 : Cr³⁺. We shall extend his work to the case of Cr_2O_3 .

Consider first the splitting due to the exchange interaction $J_{12}\mathbf{S}_1\cdot\mathbf{S}_2$. This term has no first-order matrix elements between the ²E and ⁴A₂ levels. A matrix element is obtained only by including the spin-orbit interaction, coupling both the ⁴A₂ and ²E to the ⁴T₂ state. Using $J_{12}\mathbf{S}_1\cdot\mathbf{S}_2=250$ cm⁻¹, $\zeta'=153$ cm⁻¹,²⁰ and the ⁴T₂ energy of 16 500 cm⁻¹ from Ref. 2, the matrix element

$$J_{12}\mathbf{S}_1 \cdot \mathbf{S}_2\{(\zeta')^2 / [E({}^4T_2) - E({}^2E)] [E({}^4T_2) - E({}^4A_2)]\}^2$$

is of the order of 10^{-4} . As this is four orders of magnitude too small, we rule out the exchange interaction as the dominant mechanism.

We next consider the contributions obtained from the multipole moments of the electrostatic interaction. Between ions a and b we have

$$\begin{aligned} \Im \mathcal{C}' &= -d_i{}^{(a)} d_j{}^{(b)} \nabla_i \nabla_j \mid R \mid^{-1} \\ &+ \frac{1}{2} (d_i{}^{(a)} Q_{jk}{}^{(b)} + d_i{}^{(b)} Q_{jk}{}^{(a)}) \nabla_i \nabla_j \nabla_k \mid R \mid^{-1} \\ &+ \frac{1}{4} Q_{ij}{}^{(a)} Q_{kl}{}^{(b)} \nabla_i \nabla_j \nabla_k \nabla_l \mid R \mid^{-1} + \cdots, \quad (17) \end{aligned}$$

where *i*, *j*, *k*, *l* refer to the Cartesian coordinates, and the summation convention is implied. The dipole moment of ion *a* is $d_i^{(a)} = e \sum r_i^{(a)} r_i^{(a)}$ and the quadrupole moment is $Q_{ij}^{(a)} = e \sum (r_i^{(a)} r_j^{(a)} - \delta_{ij} | \mathbf{r}^{(a)} |^2/3)$. The sum is over the electrons of the ion.

In a solid the interaction between well-separated ions is reduced by the dielectric shielding of the intervening medium. However, for the case of near-neighbor pairs, the situation may not be as simple. Thus for the order-of-magnitude calculation given below, we will *not* include the effects of shielding.

The first term gives the dipole-dipole interaction. The matrix element of \mathcal{H}' includes matrix elements of the dipole moment, the latter may be expressed in terms of the electric dipole oscillator strength

$$|\langle d \rangle|^2 = (3\hbar e^2/2m\omega)f_d.$$

The matrix element of the dipole-dipole term approximately is

$$V_d \approx 3\hbar e^2 f_d / 2m\omega R^3. \tag{18}$$

Substituting the measured electric dipole oscillator strength of the Γ_2^- level, $f_d = 2.5 \times 10^{-8}$, and the nearest-neighbor distance of 2.65 Å,² we obtain $V_d \approx 10^{-3}$ cm⁻¹. This is again too small.

The quadrupole-quadrupole interaction is given by the third term in Eq. (17). Imbusch has shown that, for Cr^{3+} in Al_2O_3 , a quadrupole matrix element exists between ${}^{4}A_2$ and ${}^{2}E$ if the spin-orbit interaction of the ${}^{4}A_2$ with the ${}^{2}T_2$ level is taken into account. The quad-

²³ D. L. Dexter, J. Chem. Phys. 21, 836 (1953); Phys. Rev. 126, 1962 (1962).

²⁴ G. F. Imbusch, Phys. Rev. 153, 326 (1967).

FIG. 6. Integrated absorption cross section of the satellite line as a function of the field. The curve is calculated from Eq. (20) using the parameters discussed in the text.

rupole oscillator strength

$$f_{q} = (m\omega/3\hbar) (\pi/\lambda)^{2} \sum_{i \neq j} |\langle Q_{ij} \rangle|^{2}$$

for Cr^{3+} in Al_2O_3 is calculated by Imbusch to have the value 1.5×10^{-11} . The matrix element of the quadrupolequadrupole interaction is approximately

$$V_{q} \approx 3\hbar\lambda^{2} f_{q} / 4\pi^{2} m \omega R^{5}.$$
⁽¹⁹⁾

With the above value of f_q , V_q is found to be 0.25 cm⁻¹ for the nearest neighbors. This is somewhat smaller than the estimate given in Ref. 1. However, there is an additional numerical factor in the numerator of V_q which results from the derivatives of $|R|^{-1}$. This important factor depends on the relative values of the quadrupole matrix elements. It is estimated to increase the splitting approximately tenfold. The matrix element of the dipole-quadrupole interaction [the second term in Eq. (17)] has a value intermediate between V_d and V_q . The higher-order multipole interactions may be shown to be negligibly small. As has been found²⁴ for Al₂O₃: Cr³⁺, the quadrupole-quadrupole coupling appears to be the predominant energy-transfer mechanism.

Neighbors more distant than the first also make important contributions to the splitting. Referring to ion a in Fig. 1, the nearest neighbor is of the type a-b. There are three second neighbors of the type a-d where a and d are in different unit cells, and three third neighbors a-b with b in yet another cell from the secondneighbor ion d. The separation between neighbors increases only slowly from the first to the fifth. An accurate numerical evaluation of the Davydov splitting thus requires the inclusion of a large number of terms. In addition the angular dependence of the quadrupole interaction should be taken into account. Such a calculation is beyond the scope of the present paper.

Another test of the theory is obtained from the field dependence of the integrated absorption cross section. For the Γ_1^- exciton we have

$$\int \sigma(\Gamma_{1}^{-}) d\nu = \int \sigma_{0}(\Gamma_{2}^{-}) d\nu \frac{\{1 - [1 + (\epsilon H)^{2}]^{1/2}\}^{2}}{\{1 - [1 + (\epsilon H)^{2}]^{1/2}\}^{2} + (\epsilon H)^{2}},$$
(20)

where $\sigma_0(\Gamma_2^{-})$ is the Γ_2^{-} zero-field cross section, and

$$= (25\mathcal{C}_{12}'')^{-1}(5\mathcal{C}_{22}' - 5\mathcal{C}_{11}')H, \qquad (21)$$

evaluated from the splitting data is 26.2 kOe. As shown in Fig. 6, a reasonably good fit is obtained by taking $\int \sigma_0(\Gamma_2^{-}) d\nu = 5 \times 10^{-20}$ from the zero-field measurement. At 50 kOe about 25% of the zero-field Γ_2^{-} absorption has been transferred to the satellite.

The value of $2\mathfrak{IC}_{12}''$ enables us to calculate the field dependence of the two sublattices. Using Eqs. (11), (12), and (16), the difference in energy is

$$\Im \mathcal{C}_{aa}'' - \Im \mathcal{C}_{bb}'' = g_{\text{eff}} \beta H = 2\Im \mathcal{C}_{12}''.$$
 (22)

Substituting from Eq. (16) gives $g_{eff} = 3.06$.

Figure 7 shows the field dependence of the upper excitons. The Γ_3^- exciton is split by the field; however, no satellite is found near the Γ_2^- exciton. A careful comparison of the Γ_2^- line shape, with and without field, indicated no change in the absorption strength or linewidth. With a 50-kOe field, the center of gravity shifts by less than 0.5 cm⁻¹ from the zero-field value.

These observations are in qualitative agreement with the theory. Assuming the Davydov splittings are about the same for the upper and lower π -polarized lines, the magnitude of $\Im_{12}^{\prime\prime}$ determines the coupling between the Γ_1^- and Γ_2^- excitons. Using Eqs. (7a) and (7b), the energy shifts of the site-*a* exciton will be larger for the lower than the upper π excitons if $\phi < \frac{1}{4}\pi$. Consequently the coupling $\Im_{12}^{\prime\prime}$ will be larger for the lower excitons. From Eq. (9) and Table V we obtain $\phi = 38.7^{\circ}$.

In another experiment, an electric field was applied

FIG. 7. Field dependence of the higher-energy absorption lines.

parallel to the c axis. This lowers the symmetry by destroying the center of inversion and the twofold axis. The glide plane remains, however, and the magnetic symmetry is reduced to R3c'. The unitary subgroup is R3. In first-order perturbation theory, π -polarized transitions become allowed to the Γ_1 exciton, and the Γ_1 and Γ_2 energy levels will have a quadratic field dependence. The Γ_3 exciton splits linearly with the applied field.

Aluminum strip electrodes were evaporated on the opposite faces of samples which were typically 115 μ thick. The light transmitted between the electrodes was measured at increasing field strengths, up to the field resulting in electrical breakdown and the destruction of the crystal. With a field of 100 kV/cm, the upper limit on any additional integrated absorption cross section was estimated to be less than 0.05×10^{-20} cm, and any shift or broadening of the absorption lines was less than the experimental limit of 0.2 cm⁻¹.

A linear electric field effect has been observed in Al₂O₃:Cr³⁺.²⁵ A field of 100 kV/cm is found to produce a splitting of 0.53 cm⁻¹. A linear splitting occurs because the net shifts of the levels of ions which are located on sites related by inversion are equal, but in opposite directions. The theory of this effect, based on an electronic mechanism, shows that the splitting is related to the value of the absorption cross section of the lines.26

In Cr_2O_3 , the shift of the Γ_3 exciton levels may be reduced to the shift of two chromium ions, one in the excited state, and the second, on the other sublattice, in the ground state. The two levels are shifted by equal amounts, but in opposing directions, giving a net splitting. Just as for the single ions in ruby, the Γ_3 exciton splitting is equal to the difference between the shift of single-ion excited and ground-state levels. When the linear splitting is much smaller than the linewidth, it is manifest as a quadratic broadening of the line shape.²⁷ The upper limit of the lower-energy Γ_3 exciton splitting of 0.8 cm⁻¹ is obtained from the experimental limit of the broadening, and the Gaussian linewidth of 2 cm^{-1} .

IV. FLUORESCENCE

Figure 8 shows the near-infrared emission spectra of crystals grown by the Verneuil and flux techniques. In both cases the spectrum consists of a sharp line followed by a number of broad bands. The emission is obviously sample-dependent, and in both cases, the sharp line emission is shifted to lower photon energy

FIG. 8. Fluorescence from two Cr₂O₃ crystals at 4.2°K. Top: Verneuil-grown crystal from R. A. Lefever. Bottom: Flux-grown crystal from H. J. Guggenheim.

as compared to the ${}^{2}E$ absorption. No absorption is found to correspond to any of the emission wavelengths. These observations indicate that the fluorescence is not an intrinsic property of the crystal, but, as has also been observed in the antiferromagnetic transition-metal fluorides,²⁸ is the result of impurities. Neither is the emission solely characteristic of the impurities, rather it is thought that the impurities perturb the levels of nearby chromium ions via the electrostatic interaction, creating impurity-trap levels which lie below the ${}^{2}E$ levels. If, as is observed here, the emission wavelength is relatively close to the absorption, the chromium ions will be only slightly perturbed, and the emission will be quite characteristic of these ions. In particular the emission should yield information about the exchange splittings of the ground state.

Wickersheim³ has observed the absorption from the $S_z = -\frac{1}{2}$ excited level of the ground state. It is displaced 245 ± 20 cm⁻¹ to the long-wavelength side of the lowest-energy, low-temperature absorption line, and was only observed above 100°K. The two emission spectra of Fig. 8 show emission in bands at, respectively, 248 and 252 cm⁻¹ from the sharp line. In each case the sharp line and its associated band are thought to originate from the same trap level. For the Verneuil grown crystal, the emission intensity from the 0-248cm⁻¹ pair decreases with increasing temperature, but the intensity of another pair, at 535-784 cm⁻¹ from the line labeled 0, increases. Since the energy separation between the latter pair is 249 cm⁻¹, this emission is thought to originate from a different trap level. A similar effect was observed for the emission lines labeled

²⁵ W. Kaiser, S. Sugano, and D. L. Wood, Phys. Rev. Letters
6, 605 (1961); M. D. Sturge, Phys. Rev. 133, A795 (1964).
²⁶ J. O. Artman and J. C. Murphy, J. Chem. Phys. 38, 1544 (1963); in *Proceedings of the First Conference on Paramagnetic Resonance, Jerusalem, 1962*, edited by W. Low (Academic Press Inc., New York, 1963), Vol. II, p. 634; M. G. Cohen and N. Bloembergen, Phys. Rev. 135, A950 (1964).
²⁷ E. Royce and N. Bloembergen, Phys. Rev. 131, 1012 (1963).

²⁷ E. Royce and N. Bloembergen, Phys. Rev. 131, 1912 (1963).

²⁸ R. E. Dietz, L. F. Johnson, and H. J. Guggenheim, *Physics of Quantum Electronics*, edited by P. L. Kelley, B. Lax, and P. E. Tannenwald (McGraw-Hill Book Company, Inc., New York, 1966), p. 361.

FIG. 9. Fluorescence from the flux-grown crystal with the magnetic field parallel to the c axis. Above the spin-flop field of 58 kOe, the spectrum shifts to higher energy by 25 cm⁻¹.

701 and 955 cm⁻¹ in the flux-grown crystal. Each type of impurity perturbs the excited states of the chromium ions in its own way, producing trap levels at various energies, but does not appear to appreciably affect the energy separation of the terminating levels of the fluorescence. The temperature dependence of the fluorescence indicates the existence of interesting thermaliza-processes between various traps present in the same crystal.

We have not been able to identify the specific impurities causing the traps. Analysis of the Verneuilgrown crystal showed it contained 0.1% Al, 0.01%Mg, and traces of transition metal ions other than chromium.

Additional evidence that the fluorescence is closely associated with the chromium ions is obtained from the field dependence of the emission. As shown in Fig. 9

for the flux-grown crystal, in the low-field region the sharp line splits linearly with the field, but the broad band is field-independent. The high-field Bitter magnet was used for the experiment. The spectrum uniformly shifts by 25 cm⁻¹ to shorter wavelengths and the splitting of the sharp line disappears when the field is increased beyond its spin-flop value of 58 kOe. Similarly in absorption, the ${}^{2}E$ lines shift and the splitting disappears. These results enable us to identify the sharp line as terminating on the chromium-ion ground state and the band separated by about 250 cm⁻¹ as terminating on the first excited ground-state level. In terms of the exciton description, the latter is termed the magnon sideband of the sharp line. In this emission process, a filled trap is emptied, and a spin wave is excited. Magnon sidebands have previously been found in the absorption and emission spectrum of MnF2.29,30 It should be observed that the characteristics of the emission sidebands are similar for both materials, however in contrast to MnF₂, a magnon sideband is not observed in the absorption spectrum of Cr_2O_3 .

ACKNOWLEDGMENTS

The author wishes to acknowledge several discussions with M. D. Sturge, G. F. Imbusch, and C. G. B. Garrett during the general course of this work and also a discussion with R. E. Dietz concerning the fluorescence data. The Verneuil-grown crystals were grown by R. A. Lefever of the Sandia Corporation, and the flux-grown crystals were prepared here by H. J. Guggenheim. The technical assistance of K. A. Ingersoll and C. R. Staton is appreciated. H. W. Dail gave valuable assistance in the operation of the Bitter magnet.

²⁹ R. L. Greene, D. D. Sell, W. M. Yen, A. L. Schawlow, and R. M. White, Phys. Rev. Letters 15, 656 (1965).
³⁰ R. L. Greene, D. D. Sell, and R. M. White, report presented

³⁰ R. L. Greene, D. D. Sell, and R. M. White, report presented at the Conference on the Optical Properties of Ions in Crystals, Baltimore, Maryland, 1966 (unpublished); D. D. Sell, R. L. Greene, W. M. Yen, A. L. Schawlow, and R. M. White, J. Appl. Phys. **37**, 1229 (1966).