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Theory of s-d Scattering in Dilute Magnetic Alloys. II.
Derivation and Solution of Linear Vertex Equations

C. B. DUKE AND S. D. SILVERSTEIN

General Electric Research and Development Center, Schenectady, Ee~ York

{Received 23 February 1967)

A set of linear equations for the vertex function associated with conduction-electron scattering from a
spin-dependent impurity potential is derived from perturbation theory and is shown to lead to the Abrikosov
vertex function in the limit of a contact interaction and logarithmic accuracy. The general reduction to
quadratures of the linear equations is given for s-wave, factorizable interactions. A detailed evaluation of the
(oG-energy-shell) . vertex function is performed for that interaction which corresponds to the pole-approxi-
mation solution to the s-wave Low equation in the limit of spin-independent potentials. The Fermi factors
introduced by a spin-dependent s-d interaction lead to a (linear) vertex function with analytical properties
diGering from those of the pole-approximation solution to the coupled Low equations. The influence of
ground-state correlations in the linear equations causes the failure of inelastic, single-channel unitarity in
both spin channels (J=S&-,) for factorizable, s-wave antiferromagnetic s-d interactions with any strength
or form factor.

I. INTRODUCTION

N the previous paper, ' hereafter denoted by I, we

.. discussed the perturbation-theory' calculation of the
electronic self-energy and its associated vertex part for
a free-electron gas interacting with a dilute, random
distribution of magnetic impurities via the Hamiltonian

H;„~= —X ' p {Ji(p,P')+J2(P, P') d. .S„}
pqpq 7LI

C+',- C.,- expLi(p —p') R-) (1.1)

in which 6„, , are the matrix elements of the Pauli spin
matrices, R„ is the coordinate of the mth impurity, 8„
is the impurity spin operator, Ji(p, p) is the spin-
independent impurity potential, J2(p, p) is the effective
Coulomb exchange integral incorporating hybridization
effects, ' 4 and Cp is the free-electron annihilation
operator. In I we reviewed Abrikosov's demonstration
that in the pseudofermion representation, the one-
electron propogator can be written in terms of a proper
self-energy part and that, to logarithmic accuracy, ''
those terms in the self-energy which are linear in the
impurity concentration can be simply expressed in
terms of an electron-impurity vertex function

( P I
l(p, p'; ) I-'P')

—= (np
I

r (p, ie; o I p', i.; o) I
n'p').

The full electron-pseudofermion ("four-tail" ) vertex
function (na

I
1'Q), ie; i(e&

I
p', i(e+~r —~~); i(u:], n'p')

is shown in Fig. 3.. Its calculation is described in detail
in I, where we demonstrated that to logarithmic ac-
curacy the contribution to the self-energy linear in the
impurity concentration /V; could be written as LEq.

' S. D. Silverstein and C. B.Duke, receding ppaper, Phys. Rev.
161, 456 (1967); C. B. Duke and S. D. Silverstein, J. Appl.
Phys. 38, 1150 (1967).

A. A. Abrikosov, 'Physics 2, 5 (1965); 2, 61- (1965).'P. W. Anderson and A. M. Clogston, Bull. Am. Phys. Soc.
6, 1241 (1961).
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l'=—Psi+d S F(vi (1 2b)

The primary result obtained in I was the derivation
that if on the energy shell F (p, p'; e) satisfies the coupled
nonlinear I.ow equations of 5-matrix theory' then
Eq. (1.2a) gives the perturbation-theory self-energy
to logarithmic accuracy. In this paper we more pre-
cisely delineate the consequences of the restriction to
logarithmic accuracy by deriving and solving a set of
linear equations for the general (off-energy-shell)
1'(p, p', e) . We find that the analytic properties of the
"linear" vertex function are identical to those of the
"nonlinear" vertex function only in the absence of the
exclusion. -principle restrictions imposed by the many-
body nature of the Hamiltonian (1.1) for the spin-
dependent term J2(p', p) d S . Therefore, although the
vertex-function approximation, Eq. (1.2a), to the self
energy is only valid in Abrikosov's limit of logarithmic
accuracy, the imposition of this limit does not permit
the unique specification of the analytic properties of
"effective" electron-impurity vertex function 1'(p, p'; e).
An integral equation for the vertex I'(p, p'; e), which
does not depend on the full four-tail vertex

FQ, ie, 2coi
I p, i(e+(di ce2), ico2],—

can be written only in the limit of logarithmic accuracy,
so that the apparent lack of unique specification of the
analytic properties of I'(p, p; e) in this limit is unsatis-
factory. The ill-defined character of these properties
emphasizes the more general perturbation theory result
that no direct physical signi6cance can be attached to
them beca, use (1.2a) is valid only to logarithmic ac-
curacy. As we demonstrate in Sec. II that the linear
equations yieM Abrikosov's vertex function for a

SH. Suhl, Phys. Rev. 138, A515 (1965); 141, 483 (1966);
Physics 2, 39 (1965); Varenna Lectures (to be published); H.
Suhl and D. Kong, Physics 3, 1 (1967).
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(2.33) in I)
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contact interaction, we must conclude either that the
analytic properties of the eR'ective vertex are ill-defined
in the limit of logarithmic accuracy or that Abrikosov's
application of this limit is incorrect (see Ref. 31 of I).

In this paper we do not inquire further into Abriko-
sov's passage to the limit of logarithmic accuracy than
to demonstrate in Sec. II that the linear equation yields
the correct third-order vertex functions (fourth-order
self-energy). In Sec. III we perform the reduction to
quadratures of the linear equation for the case of a
factorizable s-wave interaction, and give a detailed
evaluation of the solution to the linear equation for an
s-d potential (J't ——0) of the form which directlv gives
the determinental-method, single-pole-approximation
solution to the (nonlinear) Low equation in the absence
of exclusion-principle restrictions. We also show in
Sec. III that the ground-state correlations included in
the linear equation lead to the fa,ilure of inelastic, single,
channel unitarity for any factorizable, s-wave, anti-
ferromagnetic s-d interaction and re/ate this result to
the variational calculations of Yosida' and Okiji. '

A linear equation for the vertex function has been
proposed independently by Solyom. " Unfortunately,
his proposed equation undercounts all the perturbation-
theory diagrams but the bare vertex and, therefore, is
inadequate even in the limit of logarithmic accuracy.

II. DERIVATION OF THE LINEAR INTEGRAL
EQUATIO1V

In this section we demonstrate that a linear equation
for the vertex function reproduces the full perturbation-
theory self-energy via (1.2) to logarithmic accuracy
through fourth order for a restricted s-d interaction
(Jr=0). (The Kondo effect 6rst occurs in the third-
order expression for the self-energy so that the fourth-
order diagrams provide the erst nontrivial test of a
diagram summation procedure. )

We proceed as in I by constructing the equation for
the vertex function directly. The four-tailed vertex
function is defined by

I'= I'p+Ar+As, (2.1)
as in Sec. 3 of I, but for the linear equation A& and A2

are given in Fig. 2. Similar to the form of the nonlinear
equation shown in Fig. 9 of I, the linear equation in its
present form suBers both from the omission of classes of

FIG. 1. The four-tail electron-
pseudofermion vertex function
( P ~ r((p, i, s(o

~
p', s(a+ca —ra )g
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-diagrams and from multiple counting of some of the
topological forms represented. There are two forms of
diagrams omitted. First, the set of nonparquet graphs
which are discussed in length in I, and second, the subset
of parquet graphs which have both entering and exiting
internal pseudofermion lines. Examples of this form are
illustrated by the fourth-order graphs F&""& and I'&""&

defined in I. This latter subset of graphs is the same
order in the logarithmic divergence as the parquet
graphs which are summed. However, the variable
transformation used to correct the inconsistent counting
agparently compensates for the missing terms to
logarithmic accuracy (see Ref. 31 in I) .

The symmetrized form of the equations for Ai and
A2, indicated in Fig. 2 are introduced for the conveni-
ence of identifying graphically the topological forms
of the vertex functions generated by the integral equa-
tion. Alternatively, we can use the unsymmetrized form
illustrated in Fig. 3. Although the unsymmetrized
version sacrifices the graphical identification of the
topological forms, it generates precisely the same terms
as the symmetrized equation because the presence
therein of overlapping cuts causes several perturbation
theory diagrams to be associated with each iterative
term in the equation. The results obtained after the
transformation of variables used to correct the counting
and the analytic continuation are identical for the
symmetrized and unsymmetrized equations. The linear
equation used by S6lyom' is just the unsymmetrized
form, without the variable substitution designed to
compensate for the incorrect counting of perturbation-
theory terms.

We proceed as in Sec. III of I by (1) writing the con-
tributions shown in Fig. 1; (2) performing the sums over
the intermediate ~ variables using the analytic prop-
erties of the vertex function given in I; and (3' setting
the external variables equa1 to X and analytically con-
tinuing e to the real axis from the upper-half complex E

plane in both terms of A~ and A~ in Fig. 1. The linear
analog of Eqs. (3.4) in I is given by
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6 J. H. Wheeler, Phys. Rev. SO, 675 {1936).
r P. B. Kantor, Ann. Phys. (N.~Y.) 33, 196 (1965).
8 K. Yosida, Phys. Rev. 147, 223 {1966).
'H. Okiji, I.S.S.P. Report No. A202, Tokyo, 1966 (unpublished); Progr. Theoret. Phys. (Kyoto) 36, 7]2 (1966)."J.Solyom, Phys. Letters 23, 305 (1966).
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In I we restored paper counting to the nonlinear integral equation by making the variable substitution 8-+)~ in the
vertex functions appearing in the integrand LI, Eqs. (3.4), (3.5)j.Here we restore the proper counting by making
the substitution in the opposite direction, viz. , $~~8 in the vertex function appearing in the kernel of the integral
equation. In I the multiple counting was removed by a variable transform which, in effect, decomposed the partial
fraction in I'&"3). In the linear case we have a fractional counting and we remove the fractional counting using this
transform to combine the terms of a similar partial fraction. The linear forms of A& and A2, which correctly count
the perturbation-theory terms, are of the form

d3

& pl~(p ~ lp' 8) l~'p'&= —— '
&& f&~plFo(»q) I

"p"&& "p" IF(q ~ lp', ) l~'p'&
2 (21r)' 8—&,

+& p IF(p, I q, ) I
"p")& "p" IF (q, p) I

~'p'&}; (23a)
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I
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'p'&= — — " ' x I& p"
I
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I
F(q, ,

I
p', ,) I

'p"&
2 (22r)' 8—&,

F'"(p p' ) = Ji(p, p') —(8 &) ' f ' " '
I~ (u ~»"'(8 e'; ) +&"'(n a')J (a Ae 4 dt's~. ~4~

sF((a-
+5'(~+1)LJ (p q) F'"(q p'; «)+F"'(p, q; )J (q, p') j}; (2.4 )

F(v) (p, p'; 8) = —(8m 1V) ' [Ji(p, q) F(v) (q, p'; 8) +F(~)(p, q; 8)Ji(q, p')
8—4

+ J2(p q) F(» (q p'; 8) +F(» (p, q; 8)J,(q, p') —tanh($, /2T) LJ2(p, q) F(v) (q, p'; 8) +F(v) (p, q; 8)J2(q, p') j},
(2.4b)

+&~p"
I F(p, ~

I q, 8)
I
n"p')&~"p

I
F,(q, p')

I
&'p"&}. (2.3b)

Qy use of Eq. (3.6) of I the linear coupled integral equations for the scalar and vector vertex functions can now
be written as

T(8) = I'+I'(8 —&8) 'T(8) (2 5)

As discussed in Sec. III, the solutions to the linear inte-
gral equation for s-wave separable potentials may
exhibit singularities for certain ranges of coupling con-
stants in the upper half of the complex ~ plane.

in which p($) = 2)8L22)8(8) +$) j'~2/2m' is the free-electron
density of states.

The linear integral equations do not manifestly pre-
clude singularities in the upper half of the complex
plane. Their structure is similar to that of the T-matrix
form of the Schrodinger equation for potential scat-
tering:

Equations (2.4) can be written in a form directly
comparable to the Schrodinger equation (2.5) for real
symmetric J& and J2 given by

J.(p, p') =Xi'"(p, p')&L- &', 1, (2.6 )
lM

i '"(P P') =J '"(P' P). (2.6b)

By partial-wave expansion of the second Born term of
Eqs. (2.4) and subsequent application of induction, one
can demonstrate

F"(p p" )=F"(p' p' ) (26 )

Therefore, Eqs. (2.4) can be written in their final form:

F(»(p p'8) = ' —(krN) 'J (p, p') " ) (4)dfl. .adler' '{Ji(p q)F"'(q p';8)+~(~+1) J2(p, q)F'"(q p'; 8)},—e8 8 fq—
(2.7a)

F(v)(p, p'; 8) = ' —(4')—'J p, p'
IJi(p, q) F'"'(q, p'; 8) +J2(p, q) F"'(q, p'; 8)

q

—tanh(], /2T) J2(p, q) F(v) (q, p'; 8) }. (2.7b)

%e next illustrate how the variable substitution
restores the proper counting of the distinct typological
forms of the vertex function to logarithmic accuracy.
The second- and third-order iterations of the incorrect
counting form, Eqs. (2.2), are

—F (12)+F(21) (2.8a)
F(128)+F(821)+1 (F(182)+F(281)+F(218)+F(812))

(2.8b)

Let us reconsider some of the examples illustrated in
Eqs. (3.10)-(3.13) of I. F('82) for a contact s-d interaction
ls given by

+fg
F (182) —( (182) (J/Q) 2

~(&)~(b) (-S) (&.)
(-&.+~)(s-s) '
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The form generated from Eqs. (2.2) is just -', of the exact
form given above. The correct counting integral equa-
tion, Eqs. (2.3), generates the form

grr)
~ J + 4&4rP(4) P(6)

—., (6—t ) ( —6+i&)

&&LN( —b) N(b)+N(4) &(—b)] (2 1o)

—e~(t„, $„.&ep. Equations (2.4) reduce to
—~(~+1)

=i~L5'(5'+1)/&]Jl'" (e)p(e),
J ' P(~,)d~,

I'&v&(e) = —1 1&s)(e)J
,~ e $—o+i8

(2.11a)

To leading order in the logarithmic divergence, these
two expressions (2.9) and (2.10) are identical. The
forms I'&''r& and I'Nr'& generated by Eqs. (2.3) are equal
to the exact values. We now solve these equations
for a cutoff s-d interaction. Jr ——0; Jr(p, p') =J,

+JP '(e)
+fg

2T e (~—+i8
These are now simple algebraic relations. At T=O, to
logarithmic accuracy, we have

I'(&) (e) 1+(2J/&) p(0)»(e~/I ~ I) +i~(J/&) p(e) L5'(5'+1) +sgn(e) 1
(2.12)

This is identical to Abrikosov's solution except for the
phase which is beyond logarithmic accuracy.

III. SOLUTIONS TO THE LINEAR EQUATIONS

A. The Factorizable Potential Model

In this section we discuss the solutions to Eqs. (2.7)
for the case in which both the scalar and vector bare
vertices are linear transformations of rank one. This
"factorizable-potential" model' is of interest because
it leads to exact solutions to Eqs. (2.7) and because for
a particular choice of model potential, we recover the
linear analog~ of the pole-approximation to be the left-
hand (energy-plane) cut used in Suhl's analysis' of the
nonlinear dispersion-theory equations. The model bare
vertex functions are specified by

superscripts will be suppressed for convenience. The
extension to a d-wave potential, more relevant for
transition-metal impurities in the electron gas, leads
to similar results for the 1=2 partial-wave component
of the vertex functions I'& ) and F& ) after the angular
integrals have been performed in Eqs. (2.7) .

In the case of only the s-wave component in Eq.
(3.1), Eqs. (2.7) reduce to a set of four coupled alge-
braic equations for the quantities

~ ( )
dq g~(q)1'

(eight

p) (32 )

( . )
q g'(q) ( 'q p) (32b)

(2n)' g, —e

In terms of the integrals

d'q g'(q)g (q)
(27r) 'Z& t=o, —«m«21+1

&& fg""(P)g '"(P') I'-(f4) I'-(f~') I, (31)

J"~(e) = (3.3)

g~ (q) g (q) t h (( /2T) (3 4)(2~)' ],—e
G;;(e; T) =

for which we subsequently consider only the 1=0
component (which causes s-wave scattering) as in the
analyses of both Suhls and Abriposov 2 Ail ($ 0) A discussion of the equations, their solution, and the

Anal expressions for I'&8' and F&~' are given in Appendix
A.

+ -%
p'

Both for the sake of simplicity, and because Suhl's
pole approximation restricts his analysis to this limit,
we consider in the main text only the case in which the
form factors of the scalar and vector vertices are equal:

g~(P) =f2(P) =g(P);

d'q g'(q)
(2~)' t,—e'

(3.5a)

(3.5b)

FIG. 2. Diagrammatic expansion of the terms in Eq. (2.1) in
the text for the linear, four-tail vertex function. This expansion
generates all topological forms through fourth order for the self-
energy (third-order for the vertex function itself).

G(e; T) = tanh (&,/2T) .
d'q g'(q)
2m re e—(3.5c)

For convenience in discussing unitarity, we write the
solutions for the vertex functions characteristic of the
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FrG. 3. Diagrammatic expansion of the terms in Kq. (2.1).
This expansion is equivalent to that of Fig. 2 after the variable
substitutions to correct multiple counting of diagrams has been
made as outlined above Eqs. (2.2) in the text.

J~(p', pl =J~g(P') a(P),

J+=Jt+SJp,

J =Jt—(S+1)Js.

(3.7a)

(3.7b)

(3.7c)

From Eqs. (3.6) and the results of Appendix A, we
obtain

I'&+&(P', P; e T) =g(P') g(P)N (e; T)/D(e; T), (3.8a)

D(e) T) =[1—J F (e) ]L1—J~F (e)]
+JsLG(e; T) —F(e)], (3 8b)

N~(e; T) -J~LI—JpP(e)]+JtJsLG(e; T)

F(e)]. —(3.8c)

From Eqs. (3.5) and (3.8) we see that even when
T=0, G(e; O' NF(e), so that the vertex functions do not
reduce to the "potential-scattering" vertices

I',.t'"(P', P;e) =J+g(P')a(P)LI —J+F(e)] ' (3~)

which would have been obtained if Eqs. (2.7) were
uncoupled by the transformation (3.6) to the represen-
tation in which the angular momentum of the coupled
impurity-spin-plus-electron system is diagonal. The
physical origin of this result lies in the fact that the
s-d interaction polarizes the ground state of the Fermi
gas in addition to scattering an "extra" electron above
the Fermi energy. This fact is reflected in the linear

. equation by the consequence that already in the second-
order term for F there is a contribution resulting from
an intermediate hole state due to the excitation of a
particle-hole state in the Fermi gas by the s-d inter-
action. The presence of both single and multiple par-
ticle-hole correlations in a trial ground-state wave
function has been shown by Yosida' and by Okijio to
stabilize a singlet electron bound state for S=& and
more complex states for larger values of S, when Jj——0,
Jg(0.

The presence of these correlations in the eGective

two angular-momentum eigenstates J=S&-,':
I'+ (p', p; e, T) =I' '(p', p; e, T)+Sl' (O', p; e, T),

(3.6a)
I'-'(p', p; e, T) = I'"'(p' p' T)

—(S+1)P"'(p p' e T) (3 6b)

p(t„) =mP/2s-'A'. (3.11b)

From Eqs. (3.8) and (3.11), any given combination of
parameters and form-factors can be examined to see if
elastic Lassociated with the equality in (3.11a)] or
inelastic single-channel unitarity is satisfied. We con-
sider in detail the case of s-d' scattering alone;

Jt ——0, J+=SJs, J = —(S+1)Js, (3.12)

for which Eqs. (3.8) give

1m[I/r&+&(P, P; ~„T)]=—~p(t, ) LI —a, (;„,T)],
(3.13a)

„T)—F(,)

g'(P) J+ 1—J+F(4)
Elastic unitarity is satisfied only in the potential-scat-
tering limit that 6=—I'". The inelastic unitarity restric-

"K.Yosida I.S.S.P. Report No. A208, Tokyo, 1966 (unpub-
lished); Progr. Theoret. Phys. (' Kyoto) 36) 875 (1966).

"See, e.g. , L. D. Landau and E. M. Iifshitz, Quanta Me-
chanics (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1966), 2nd ed. , p. 542.

ground-state wave function of the Fermi gas also signals
the failure of single-channel, elastic, energy-shell
unitarity between the "extra" electron and the im-
purity potential. The correlations give rise to additional
channels of specified singular momentum J, in which
the extra electron, particle-hole excitations, and im-
purity spin are all coupled to the desired value of J.
Algebraically, the sign change of the tanh($, /2T) term
in Eq. (2.7b) for $,(0 causes Eqs. (2.7) not to separate
into uncoupled equations in the J=S%~ channels and
thereby the failure of single-channel elastic unitarity. If
we considered only intermediate states f,)0, single-
channel elastic unitarity would be restored. The failure
of single-channel elastic unitarity is therefore basically
a consequence of the use, in a scattering problem, of the
Fermi-gas model to calculate the ground-state wave
function of the "initial" impurity-electro. x-gas system.
The utilization of a more accurate wave function which
incorporates the s—d induced correlations might restore
an appropriate elastic unitarity condition.

The Kondo-Suhl instability, ' thought to be related
to the occurrence of "singlet" bound states as discussed
by Yosida' "and Okiji, ' is associated in the linear theory
with the failure of single-channel inelastic unitarity (in
the optical-model sense) as well as single-channel elastic
u ritarity for antiferromagnetic s—d interactions (Js(0) .
The restriction of si ogle-channej energy-shell unitarity
on the vertex functions (3.8) can be derived by identify-
ing their energy-shell values with the conventional
s-wave scattering amplitude, fs(P), via

I'l+'(P, P; P„, T)~2~Pm-'fs~+l (P) . (3.10)

Then inelastic, single-channel unitarity for these energy-
shell vertex functions is given by"

Imt I/P+'(P, P; $„, T)(—s.p(t„), (3.11a)
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tion is given by

A~($p, T) &0. (3.13c)

In the limit that J2 ——0, Eqs. (2.7) reduce to the
Schrodinger T-matrix equation with the well-known
solution"

After some algebra we find

~+(4, &) =v+(k. , 2')/S
I
1+(S+1)AF(4) I',

-4-(4, &) =v-(k. , T)/(S+ 1) I
1—SJ F(4) I';

(3.14a)

(3.14b.)

r'"(P, P'; ) =J g(P) g(P') I:1—J F ( ) ) '. (3.19)

In the absence of bound states the potential-scattering
s-wave Low equation for the energy-shell vertex is
given by'

B. Results for the Effective-Range Potential

In order to construct a linear-analog to Suhl's pole-
approximation solution to the nonlinear ("I.ow")
equations, we utilize the "eGective-range" potential"
in the equal form-factor limit

g(p) = (&Eii) "pE +~F+Eiig " (3.18)

"J.R. SchrieGer, J. Appl. Phys. 38, 1143 (1967).
14 I,. deerlet and J. Gavoret, Nuovo Cimento 10, 505 (1958}."Y.Yamaguchi, Phys. Rev. 95; 1628 {1954).

q+((„, 2') = tanh(]„/22') —1—(S+1)J,I ReG((„, 2')

—tanh(~„/2T) ReF($„)g; (3.14c)

y ((,T) =1—tanh((„/2T) —SJ LReG($„, r)
—tanh ((„/2T) ReF ($„)j. (3.14d)

Therefore, at T=O, the unitarity condition (3.13c)

becomes

v~(4 o) &o. (3.15)

For,~„)0 both requirements (3 15) r. educe to

J~ReI G($„, 0) —F($„)]&0;$„)0. (3.16)

From Eqs. (3.5b) and (3.5c), we find that at T=O,
$„)0,

Re[G($„,0) —F($„)j=2F &0,
" p(x) g'(x)Cx

—6p $p
—x

(3.17)

Thus for ferromagnetic interactions (J2)0) inelastic
single-channel unitarity is identically satisfied, whereas
for antiferromagnetic interactions (J2&0) it can never
be satisfied for incident particles above the Fermi
energy ($,,)0) . These results are consistent with those
of Yosida " and Qkiji that the inclusion of particle-
hole correlations in the ground-state wave function of
the impurity plus Fermi gas stabilizes "singlet" bound
states for antiferromagnetic s-d interactions but de-
stabilizes "triplet" bound states for ferromagnetic
interactions. The results provide a counterexample to
hypothesis" that for antiferromagnetic s-d interactions
a scattering-theory analysis of the calculation of the
self-energy automatically leads to well-defined cross
sections which at low temperatures attain the maximum
value permitted by elastic unitarity.

where the 1 inside the integral is defined approaching
the cut on the real e axis from above, and $„ is the energy
associated with the (equal-magnitude) vectors p and
p. J~ is the effective inhornogeneous term which in-
cludes not only the s-wave component of the Born
term, but also contributions from additional cuts in
the full s-wave amplitude I'.' " Suhl approximates
Eq. (3.20) and its full s-C analog by the standard
replacement of J with a single pole on the negative
(E+6ip) axis:

Ji(p, p; e) =Jg'AER(e+ep+Eg) '. (3.21)

A solution to the resulting equation is well-known. to
be5, 6,15

I'(e) =LJ,XE /(&+e +E ) )L1—J-,F (e) g
—', (3.22a)

,i, (x+ei +Eii) 2(x e)—Fi, (c) = (e+eg+Eii) X

(3.22b)

As on the energy shell g(p)'g(p') =XEa(e+ep+E&)
we see that (3.19) and (3,22);.differ (on the energy
shell) only in that Fz. (e) WF(c). T'his difference arises
from the fact that the solution (3.19) to the linear
equation would lead, to a renormalized, residue at the
"Born-pole" specified by (3.21). Therefore, although
Eq. (3.20I is not rigorously valid for a nonlocal inter-
action" (of which the separable-potential model is a
particularly simple limiting case), the .effective-range
potential (3.18) does provide a vertex-function solution
to the linear' equations (2.7) which, in the absence of
s-d scattering, has an energy-shell analytic structure
identical to that of (3.22) provided Ji is sufficiently
small that there exist no negative real values 6p such that

1—JiF(eo) =0 (3.23)

is satisfied. A more detailed comparison between the
linear (Schrodinger) and unitarized nonlinear formula-
tions of energy-shell scattering theory has bee~ given
by Kantor. 7 Among his results is a demonstration that
for a local exponential potential for which (3.20) is

'6 See, e.g. , M. L. Goldberger and K. M. Watson, Collision
Theory (John Wiley R Sons, Inc., New York, 1964), p. 598.
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known to be valid, the solutions to (3.20) differ sub-
stantially from those of the Schrodinger equation.

We can now utilize the form factor (3.18) in the full
solutions (3.8), which incorporate the s-d scattering,
and compare our results to Suhl's solutions to the pole-
approximation coupled nonlinear equations. As dis-
cussed in Sec. 2, the linear vertex function may exhibit
complex poles in the upper-half e plane which are taken
as indications of a breakdown of perturbation theory.
Unfortunately, even for the simple potential Eq. (3.18)
the quantity G(e; T) cannot be evaluated analytically.
One may use one of three tractable methods for study-
ing the roots of

D(e, T) =0 (3.24)

for D given by (3.8b): (1) numerical evaluation of G;
(2 expansion of tanh($/2T) about T=O; or (3) use of
the approximate form" of the Fermi factors

tanh(x/2T) = —1;

=x/2T;

x( —2T

—2T(x(2T (3.25)

x& 2T.

&Exp (ex+Ex) '
G(e; T) = ln

e+ep+Err (e+2T) (e—2T)

e e 2T e+es'+ —ln + ln + 2+irr, (3.26b)
2T e+2T Err

in which all cuts of ln(s) are taken along the positive s
axis and ln(x+ib) is real in the 8~0+ limit.

Selecting Jr ——0 reduces (3.8b) to

Dsr=s(e; T) =1+JsG(e; T) S(S+1)Js'F'(e)—. (3.27)

If we neglect the J~'I" term as small relative to J~G and
take the T—+0 limit in (3.26) we find

ER&p e.-+Err '
lim G(», T) =
T~O ep Err

e+ep
+ln + is. , (3.28a,'

ER

» J. Karlovslry, Phys. Rev. 127, 419 (1962).

Evidently (3.25) will reproduce the exact results in the
T—&0 limit. We have utilized both methods (2) and (3)
but, for convenience, we henceforth discuss only (3) .
Using (3.25), taking 2T&(er (which must be the case
for (3.25) to be useful), and extracting p(x) —p-=

mpr/2s'6' from inside the integrals (3.5), we find

3Egp Sg
F(e) = ln + is-, (3.26a)

e+ep+ER eg+e

lim lirnG(e; T) =pkLln(Eg/els+in+ln(ep/E~)),
6-+0 T-+0
+R~~6F (3.28b)

Ds,=s(e, T) =~e=epe' ") Js(0) (3.29a)

e0 ER expL —1/(2'
~
J, ~) ). (3.29b)

Therefore, neglecting the constant term of Eq. (3.28b)
in the limit of zero temperature and a long-range poten-
tial, we recover the K.ondo-Suhl instability provided
that

S(S+1)(JsXp) ' ln'(Eg/ep) «1, (3.30)

which for a given Eg will be satisfied for suSciently
small

~
Js ~. Finite temperature corrections lead to

es(T) being the solution to

lnLEs/ep(T)) = (2pX
~
Js j) '+2Ts/3es'(T)

if (3.30) is satisfied. Thus, ep(T) (ep(0) and the zero of
D(e; T) moves toward the origin, eventually disappear-
ing at a (Kondo-Suhl) temperature Trr(es(0)/2. The
important aspect of these results is the persistence of
the pole in the (off-energy-shell or energy-shell) linear
vertex functions I'(8) and F~ ), despite the use of the
coupled equations (2.7), for sufficiently small

~
Js

~

when J2(.0.
The introduction of a nonzero J~ and smaller values

of E~ serve to shift the 7=0 pole in the complex e plane
and for some parameter combinations eliminate its
occurrence in the upper half e-plane altogether. How-
ever, Eqs. (2.7), as well as those used by Suhl and
derived in I, are only valid within logarithmic ac-
curacy. The different analytic properties of the various
energy-shell vertex functions )the solutions to the
non linear equations manifestly exhibit no poles in the
upper-half »-plane) are due to the less-divergent terms
in perturbation theory which the two vertex-functions
approximate differently. As the self-energy calculated
with either vertex function differs from the exact
results for these less divergent terms, we conclude that
the use of either the linear or nonlinear diagram summa-
tion technique for temperatures near or below the
appropriate Kondo-Suhl temperature T~ cannot be
justi6ed if the technique is restricted to logarithmic
accuracy.

1Vote added irr Proof: Kondo's has recently applied a
self-consistent adaptation of Brillouin-signer perturba-
tion theory to calculate a shift in the ground-state
energy of a dilute. alloy by a(T). Using method (2)
discussed in the text, we find that es(T) is identical
with Kondo's a(T) for a contact s—d interaction. This
result suggests that his hypotheses of logarithmic
accuracy and the geometrical character of certain series
correspond directly to the diagram summation pro-
cedure of the linear theory. It is evidently much easier
to find es(T) from the linear theory using a general
electron-impurity interaction than it is to calculate
a(T) using Kondo's method.

's J. Koudo, Phys. Rev. 154, 644 (1967); (to be published).
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APPENDIX A: SOLUTION TO THE LINEAR EQUATIONS FOR A GENERAL S-WAVE
FACTORIZABLE INTERACTION

In terms of the M;;, F... and G;; given in Eqs. (3.2) —(3.4) in the text, the linear Eqs. (2.7) become

P'&(.; p, p') =J g, (p) g, (p')+J,g, (p) M„(;p') +S(S+1)J g, (p) M„(.; p'),

( P P ) J2g»(p) g (P') +J&g~(p) M»(»; P') +Jmg2(p) M2&(» P )

(Ala)

d'q tanh(&, /2T) I' t"& (»; q, p')
2m. ' 4—»

The integral in the last equation is eliminated by multiplying Eq. (Aib) by g»(p) tanh($„/2T) )& ($„—»)
integrating over d'p and solving for the integral. We get

r( & (»; p, p') =[1+J»G»(»; T) ]-'{J2gs(p)g»(p') +Jsg»(p) M»(»; p') +M»(»; p') [J&gi(p)

+J1J2(gl(p)G»(»j T) gs(p)G21(» T~))]J ~ (Alc)

M's(» Ti P) =&'&(»i Ti P)ID(») T))
D(»; T) = [1—J&P»(») ][1—JyF»(») +J»G»(»; T) JyJ2Ap—g] S(S+—1)J2»(F»(») —J,d,„)',

As»&=F»(»)G22(j»T) —F12(»)G21(»i T) )

ApF =P»(») P2&(») F12(»)F21(») q

~»(»; T; p) =Jg, (p) P»(») [lyJG»(»i T) —J&F»(») —AJ»&& g]—S(S+1)(F»(») —JiAF& )

X[J&J»'g&(p) Ass —J»'g»(p) F»(»)],
Z„(»; T; p) =J,(P»(») —J,A-) X {g.(p)+J&P'.~(») gi(p) —P»(») gs(p)]l

X„(»;T; p) =J,Fi»(») {g»(p)+A[g&(p) F»( ) —P»( )g:(P)]{
~»(»; T; p) =S(S+1)J,'g2(p) (P»(») —AA~~) '+J&gi(p) F»(») I 1+J2G»('~ T) —J~P»( ) —J~J~A~O].

The vertex functions are obtained by inserting the results (A2) into Eqs. (Ala) and (Aic):
I'(s&(». T. P P ) g&(P)g&(P )A&(S)(» T)+[g&(P)g, (P') yg, (P)g, (P')]A, (S)(»); T)+g&(P)g, (P')As(S)(; ),

A,&8&(»; T) =D- (»; T)J,{1—J,P»(») +J;G (»; T) —JAA~O —S(S+1)J2'(»(») —J~ »»( ) l

As~ &(»; T) =D '(»; T)Jds'S(S+1)P&2(») [P»(») —Ji&ss],
(.; T) =D(.; T) S(S+1)-J,'[1—J,P ( )][P;.(.) —J A~ ],

I (»i T) pi p ) g2(p) g2(p ) Al(V)(»p T)+[gl(p)g2(p )+g2(p) gl(p )]As(V)(» j T) +gl(p) gl(p )As(V) (») T))
A &v&(»; T) =D'(»; T)J»[1—J-&P»(»)]'

As (»; T) =D (»; T)J1J2[1 J1P»(») ]F12(») p

A ' '(»; T) =JPJ»F»(») &»(»)D '(») )

The equal-form-factor limits discussed in the text are given by taking the g&(k) =gs(k) =—g(k)»mit to
I'"'(»; T; p, p') =D '(»; T)g(p) g(p')&"'(»' T)

I' '(; T; p, p') =D '( ' T)J g(p) g(P')

D(»; T'i& = [1—J&F (») ][1—J&F (») +J»G(»; T)]—S(S+1}J2»F'(»),
E(s&(». T) J,[1+J»G(»)]+F(»)[S(S+1)J '—J&»]

dsq g'(q)

(2m)' $»
—»'

(A2)

(A3)

(A4a)

(A4b)

(ASa)

(A5b)

(A5c)

(A5d)

(A6a)

(A6b)

(A6c)

(A6d)

(A7a)

(A7b)

(A7c)

(A7d)

obtain

(A8a)

(Agb)

(A8c)

(A8d)

(Age)

The last term in (Aic) is an example of a cross term which disappears in the case of equal form factors for the
scalar and vector bare vertices.

Multiplying Eqs. (Ala) and (Alc) by g;(p) (f„») '—and integrating over d'p we obtain a set of four coupled
algebraic equations for the M;;(»; p') which can be solved by standard methods. The solutions are given by (the
T dependence is now explicitly indicated)

d'q g'(q) tanh($»/2T)G»;T) =
(2s.)» $»

—»
(Agf)


