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Abrikosov's perturbation-theory treatment of the s-d problem is erst reviewed and then generalized
to derive an integral equation for the vertex part of the self-energy at nonzero temperature incorporating
the eGects of the non-spin-dependent impurity potential. The equation obtained is manifestly identical
to Suhl's Low equation for the "energy-shell" scattering amplitude. Thus the analysis establishes the
connection between the Green s-function diagrammatic techniques and the S-matrix dispersion theory
used by Suhl. It is demonstrated explicitly that the Low equation reproduces the vertex function perturbation
series at best to logarithmic accuracy in third and higher orders for a contact s-d interaction. Therefore,
the Low equation itself may be derived from perturbation theory for T& Tz, where T& is the Kondo tem-
perature.

I. INTRODUCTION
"N the early theoretical studies of metals doped with„.magnetic impurities, the simple model of a contact

s-d exchange interaction' 4 between the conduction
electrons and the localized orbitals was sufhcient to
explain qualitatively many of the anomalous electronic
properties of the magnetic alloy systems. These calcula-
tions were characteristically second-order perturbation
theory with results independent of the sign of the ex-
change integral.

The next important theoretical steps in the under-
standing of the alloy systems were investigations into
the criteria for the formation and stabilization of the
localized moment itself. ' 8 With particular reference
to the Anderson model' and its subsequent solution
in the Hartree-Fock approximation, three important
parameters determine the existence or nonexistence of
localized moments for various impurity systems. These
parameters are the density of states, the intra-atomic
Coulomb repulsion between opposite spin electrons on
the same localized orbital, and the mixing or hybridiza-
tion interaction between the rigid conduction band
wave functions and the localized orbitals. For certain
ranges of these parameters, in particular for small
hybridization, the Hartree-Fock ground state of the
system exhibits a stable localized moment at zero tem-
perature. Indeed, the model and its solution appeared
quite convincing except for perhaps a few added re-
strictions imposed by going beyond the Hartree-Fock
analysis. '
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27 {1956);J. Friedel, Can. J. Phys. 34, 1190 (1956); J. Phys.
Radium 19, 573 (1958); Nuovo Cimento Suppl. 7, 287 (1958);
A. Blandin and J. Friedel, J. Phys. Radium 19, 573 (1958).' P. W. Anderson, Phys. Rev. 124, 41 (1961).' P. A. WolG, Phys. Rev. 124, 1030 (1961).

8 A. M. Clogston, B.T. Matthias, M. Peter, J. J. Williams, E.
Corenzwit, and R. C. Sherwood, Phys. Rev. 125, 541 (1962).

9 J. R. SchrieGer and D. C. Mattis, Phys. Rev. 140, A1412
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Rondo's" calculation of the anomalous resistivity
greatly revived interest in the 6eld. For the simple
model of a contact interaction only, he found that in
higher orders of perturbation theory for the scattering
amplitude starting with the second Born approxima-
tion, there occurs a noncancellation of the Fermi factors
which ultimately leads to a logarithmic divergence of
the scattering amplitude at the Fermi surface and a
lnT term in the resistivity. For an antiferromagnetic
exchange interaction, the Zener-Ruderman-Kittel-
Kasuya-Yosida (Z-R-K-K-Y) model extended to the
next order in the perturbation-theory calculation of the
resistivity gives results which reproduce qualitatively
the anomalous resistance minimum observed experi-
mentally. ' The need for an antiferromagnetic exchange
as opposed to the characteristically ferromagnetic
atomic s-d exchange can be satisfied from the deforma-
tion of the wave functions due to the hybridization in
the Anderson model "'4

The necessity of extending Kondo's calculation be-
yond low-order perturbation theory was immediately
recognized. Three different approaches have been
followed by Abrikosov" Suhl, " and Nagaoka. "Each
of these calculations concluded that the divergence in
the scattering amplitude disappears, but at the same
time for an antiferromagnetic exchange at temperatures
T&T~, the original Kondo explanation of the re-
sistance minimum is appropriate. The temperature
TK Tp exp (—E/2 Jp (0) ) enters the theory in a
natural way for a cutoff s-d mode1 Li.e., approxi-
mate the nonlocal exchange integral J(p, p') =J for
$„$o P (—eo, +et )) p(0) is the density of states at
the Fermi surface, and Tp is the Fermi temperature.

"J.Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).
"G, J. van den Berg, in ProoeeChngs of tho IXth Ittternattonal

Conference on Low-Temperature Physics (Plenum Press, Inc. ,
New York, 1965), p. 955."P. W. Anderson and A. M. Clogston, Bull. Am. Phys. Soc.
6, 1241 (1961)."J. R. Schrieffer and P. A. WolG, Phys. Rev. 149, 491 (1966).

"A. A. Abrikosov, Physics 2, 5 (1965);2, 61 (1965).
' H. Suhl, Phys. Rev. 138, A515 (1965); 141, 483 (1966);

Physics 2, 39 (1965); Varenna Lectures 1966 (to be published)."Y. Nagaoka, Phys. Rev. 138, A112 (1965).
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An important question to ask is whether T~ is in itself
a meaning physical temperature or rather an artificial
radius of convergence introduced by the nature of the
approximations used in obtaining the solutions. Low-
order perturbation calculations" of the susceptibility
valid for T& T~ indicate that the s-d exchange inter-
action acts to introduce a compensating electron
polarization in the neighborhood of the impurity which
serves to reduce the net moment. More detailed calcula-
tions" using approximate solutions to the self-consistent
equations of motion, which perhaps are meaningful for
T&Tz, imply that the susceptibility saturates in the
low-temperature region. Extended conjectures based
on these latter calculations suggest that some of the
alloy systems which are traditionally treated as non-
magnetic in the sense of the Anderson-Hartree-Fock
analysis can be interpreted alternatively in terms of a
complete compensation of the impurity moment by
the conduction electron polarization. It must be
stressed, however, that these latter theoretical con-
jectures have no unequivocal experimental support,
altbough the work of Geballe et al."and Knapp ' can
be interpreted in light of the compensation effect.

The calculations "predicting" complete compensa-
tion of the impurity moment must at present be con-
sidered speculative because of the nonuniqueness of
the truncation procedure in the equation of motion
approach. To ensure a proper choice, the solutions must
conform to some rigorous limiting value which is pre-
determined by the solution to a soluble model. The
success of the Gorikov-Abrikosov" treatments of super-
conductivity are partially due to the fact that their
particular truncations and solutions were designed to
reduce to the original BCS result for the ground state.
The solutions which they obtained below the super-
conducting transition temperature are not simply
related by analytic continuation techniques to those
characteristic of the normal state. In the s—d problem,
the only thing we know with some reliability (beyond
low-order perturbation theory) is Abrikosov's" high-
temperature solution. Both Fisher" and Hamann24 have
shown that the corrected solutions to Nagaoka's'~
truncation procedure reduce to Abrikosov's high-
temperature results for Tp&)T&T~. Here Tp is the
Fermi temperature. For T& TJ-„a different solution is
obtained. The agreement with Abrikosov's high-tem-
perature results are encouraging but the low-tempera-
ture solutions cannot be resolved unequivocally until

'eK. Yosida and A. Okiii, Progr. Theoret. Phys. (Kyoto)
34) 505 {1965}."J.R. Schrie6er, J. Appl. Phys. 38, 1143 (1967)."T.H. Gehalle, 3. T. Matthias, A. M. Clogston, H. J. Wil-
liams, R. C. Sherwood, and J. P. Maita, J. Appl. Phys. 37, 1181
(1966).

s' G. S. Knapp, J. Appl. Phys. 38, 1267 (1967).
"A. A. Abrikosov, L. P. Gorkov, and J. E. Dzyaloshinslt;i,

Methods of Qttaetttra Field Theory il Statisticat Physics (Prentice-
Hall, Inc. , Englewood CliBs, New Jersey, 1963).

23 K. Fisher, Phys. Rev. 158, 613 |',1967).
'4 D. R. Hatnann, Phys. Rev. 158, 570 (1967).

they are either verified experimentally or theoretically
determined by comparison with an exact solution of a
soluble model for the ground state.

In an attempt to extend the original Kondo calcula-
tion to all orders in the logarithmic divergence, Abri-
kosov" made use of the finite temperature field-theoretic
methods which have been proven successful in the
studies of Fermi-liquid theory, electron-phonon inter-
actions, etc. The virtue of this approach lies in its direct
contact with perturbation theory so that the conse-
quences of any approximations made can be immedi-
ately determined by comparison with the relevant
low-order perturbation terms. Abrikosov, like Kondo,
considered a contact interaction only in the dilute
concentration limit. He found that he could sum the
perturbation series if he restricted his solution ab initio
to the domain of logarithmic accuracy. For the model
chosen, the irreducible self-energy has an expansion
of the form

+a„s 1n"-s + ~ a„„
6p

+c' b„s ln" ' + ~ 0„„+.~ ~ ~ . (1.1)
6p

The consideration of very dilute systems eliminates all
the terms of order c' (concentration) and higher.
Logarithmic accuracy, in addition, implies the correct
evaluation of only the leading term in the logarithm
for each order in perturbation theory. Therefore, for
the eth order of perturbation theory we presumably
can calculate the coeKcients a„2, but a„3 and all higher
coeKcients are undetermined. Abrikosov's expression
for the self-energy is in the form J ln '

~

e ~/Ttr, while
the corresponding transport coeflicient go as 1n 'T/T».
Hence, the solutions appear to be singular at T~. The
reason for this is that we have discarded all terms of
lower order in the logarithmic divergence by the original
restriction to logarithmic accuracy. Given the freedom
of logarithmic accuracy cb irido, the specific nature of
the incorrectly determined terms can alter the analytic
structure of the resulting solutions drastically. We
therefore conclude that the constraint to logarithmic
accuracy limits the applicability of the solutions to the
high-temperature regime, T& T~.

In this paper, we first review and generalize the
Abrikosov perturbation-theoretic treatment of the s-d
problem. We derive the integral equation for the vertex
part of the self-energy at finite temperature incorporat-
ing the effects of the non-spin-dependent impurity
potential. The results obtained are identical to Suhl's"
Low equation for the "on-shell" scattering amplitude,
thus establishing the connection between the Green's-
function diagrammatic techniques and the S-matrix
dispersion theory used by Suhl. We demonstrate



S. D. SILVERSTEIN AND C. B. DUKE Z6I

explicitly that the Low equation reproduces the vertex
function perturbation series to logarithmic accuracy in
third order, but at best gives the fourth and higher
orders to logarithmic accuracy in the sense of Abri-
kosov's treatment. Therefore, from the point of view
of perturbation theory, where the approximations are
rather explicit in contrast with those made in the formal
scattering treatment, " the Low equation itself may be
derived in the region T)T~. Hence, the analytic
continuations"" of the solutions to the Low equation
to low temperatures, T & T~, although well defined, are
based on the use of the Low equation in a temperature
region where it does not correctly represent the sum
of the perturbation-theory diagrams. We furthermore
show in a subsequent paper that a linear equation can
be constructed which sums the relevant perturbation-
theory diagrams to logarithmic accuracy and whose
solutions exhibit a diferent analytic structure from
those of the nonlinear equation. However, the vertex
functions which satisfy either the linear or nonlinear
integral equations are related to the self-energy only
in the limit of logarithmic accuracy; whereas the above
remarks indicate that the passage to this limit does nor
sufIice to uniquely define their analytic properties.
These two facts suggest cause for a reappraisal of the
applicability of the analytically-continued solutions
of the Low equation to calculate either equilibrium or
transport properties near or below T~.

II. GREEN'S-FUNCTION PERTURBATION
THEORY FOR DILUTE MAGNETIC

IMPURITY SYSTEMS

The contents of this section will be devoted primarily
to a review and minor extension of the Abrikosov"
analysis of the s-d problem. Finite temperature tech-
niques will be used throughout.

We consider the e6'ect of a dilute, random distribu-
tion of magnetic impurities on the electronic properties
of a metallic or semiconductor system, and assume that
each of the impurities possesses a well-defined magnetic
moment in the host matrix. The interaction of the
impurities with the conduction electrons is charac-
terized by an interaction Hamiltonian of the form

X;„t———X- Y' {Ji(p', p)8. +Js(p', p)d. S.}
un'

&&C, .'C,.expI s(p —p') R„g. (2.i)
Here d are the matrix elements of the Pauli spin
matrices; R„ is the eth impurity coordinate; S is the
impurity spin operator; Jr(p', p) is the standard im-

purity potential which mixes the Bloch states due to
the nonperiodicity of the lattice; and Js(p', p) is the
eHective Coulomb exchange integral between the con-

"The three major approximations in the scattering theory are:
single-channel unitarity, single-particle intermediate states, and
the pole approximation. to the left-hand cut in the Mandlestam
representation.

26 H. Suhl and D. Iong, Physics 3, l7 (1967)."H. Suhl, Phys. Rev. Letters 1'7, 1140 (1966).

duction and localized states incorporating hybridization
eGects, "'4

An important difference between the above interac-
tion and the one, for example, between electrons and
phonons is the appearance of the dynamical operator
S„which does not obey simple boson of fermion com-
mutation relations. The coupling of the electrons to
operator is the cause of the logarithmic divergences
which appear in higher orders of perturbation theory.
The angular momentum commutation relations,

I S„', S„&J=is;;ss '"o„„., (2.2)

preclude the standard diagrammatic expansion in which
the problem is divided into all possible two particle
contractions via Wick's theorem. There have been a
variety of "effective" Wick-type theorems developed
to accommodate spin operators. "Abrikosov's "pseudo-
fermion" representation is particularly convenient as it
reduces the problem to one similar to the traditional
diagrammatic calculations and, moreover, allows one
to take into account the complications introduced by
the cross terms in the simultaneous consideration of
both exchange and nonspin-dependent potentials.

Abrikosov introduces the following representation
for the impurity spin operators:

s„'=a.I.t~.,(p'
I
s'

I p). (2.3)

Here (P'
I

S'
I P) are the matrix elements of the spin

matrices:

A summation convention will be used throughout for
all repeated Cartesian and Zeeman indicies. The a„st'
and a„p are the creation and annihilation operators for
a pseudofermion field. They satisfy the equal-time
anticommutation relations,

f~.s & v ted=5 &e' (&u, & p I=o (25)
It is a simple matter to show that the angular momen-
tum commutation relations Eq. (2.2) are satisfied by
the pseudofermion representation.

We are interested primarily in the limit of dilute
concentrations of magnetic impurities. The contribu-
tions to the self-energy from multiple scattering from a
single impurity are linear in the concentration while the
terms involving multiple scatterings from diferent
impurities are proportional to higher powers of the
concentration. It sufFices, therefore, to consider the spin
states associated with a single impurity. We charac-
terize the spin. .state of the impurity by the occupation
numbers of the pseudofermions. The general state in
occupation number space is -represented by

I e-a, e-8+i, ' ', rs8—i, n8), (2.6)

where each of the e's take on the values 0 or 1. Hence
there are 2" +'& orthogonal basis states associated with

'8 See, for example, B. Giovannini, Sci. Papers Coll. Gen. Educ.
Univ. Tokyo 15, 49 (1965).
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the occupation number space of a single spin in the
pseudofermion representation. The manifold of occupa-
tion number space relevant to the computation of the
spin averages are the 2S+1 singly occupied states (the
2S+1 permutations of

~
1, 0, 0, . ~ ~, 0)). The spurious

degrees of freedom are contributed by the vacuum state
~
0, 0, . ~ ~, 0), and the states of higher than single

occupation, e.g., there are (2S+1)!/L(2S—1)!2!]
doubly occupied states (permutations of

~

1, 1, 0,
0)), and in general (2S+1)!/((2S+1—m)!m!) states
within the manifold corresponding to m occupied
pseudofermions. Here, 0&m&2S+1, where m is an
integer. In the absence of a magnetic Geld the degree
of degeneracy of each manifold is the binomial coeK-
cient as illustrated. Abrikosov has devised a method
of eliminating these spurious states. To do so, he assigns
an arbitrary positive single-particle energy X to the
pseudofermions. The singly occupied states have an
energy ),, the doubly occupied an energy 2X, and the
mth an energy m). The thermodynamic probability
for occupation of the mth manifold is

(2S+1)! e "~(

(2S+1—m)!m! Z, (T)
' (2 7)

where the partition function Z, (T) is given by
2s+1 (2S+1) (

Z (T) Q
'

xm(r —$1—y —x(rj(28+n
0 (2S+1—m)!m!

(2.8)

In order to obtain the correct spin average, one includes
an additional normalization factor e"' /(2S+1) and
"freeze-out" the spurious states relative to the singly
occupied states by always taking the limit X/T-+~
when performing spin averages. After the limit is taken,
the results are independent of the initial choice of X. This
procedure does not "freeze out" the physically relevant
states relative to the vacuum as the operation of any
product of spin operators on the vacuum state gives
zero. The vacuum must, however, be included to pre-
serve the cyclic invariance of the trace in performing
the averages. The correct average of any function of
single spin terms is therefore generated by

~) /T

(f(S)) = lim
x(r 2S+1

+S
XTrt exp( —P Xnp"/T) f(ap tap(P'

~

S
~ P)) j. (2.9)

—S

The interaction Hamiltonian Eq. (2.1) can be expressed
in terms of the pseudofermion representation as

~;.a= —& ' g {A(p', p)4-&p p+J2(p, p)~--'Sp p'I

Xat . „pCaptC, exp/i(p —P') R $, (210)

where the non-spin-dependent impurity potential is
diagonal in the extended pseudofermion space.

In discussing the expansion of the self-energy, we
restrict consideration to a subset of self-energy graphs.

8 (i(y)

Fo

FIG. 1. Graphical representation of the free-electron propagator,
free pseudofermion propagator, and the bare vertex function.

G '(p, ie) =8 ./ie —$, , e = (2n+1) m. T; (2.11)

e pseudofermion propagators,

Bpp' (i~) =&pp'/'((d» (o= (2l+1)~T; (2.12)

all possible orderings of m J~ electron-pseudofermion
vertices, each represented by a triangle; and (e—m) Jm

vertices, each represented by a circle, as illustrated in
Fig. 1. The ) in the denominator of the pseudoferrnion
propagator corresponds to the arbitrary positive single
particle pseudofermion energy used to eliminate the
spurious states. As we recall, the elimination of the
spurious states is always accomplished by taking the
limit X/T-+~ after all sums over Matsubara fre-
quencies have been performed. The generation of the
perturbation expansion with both J~ and J2 is rather
cumbersome. It will su%ce, for simplicity, to consider
presently the perturbation expansion for J&——0. The
generalization to the full nonlocal Hamiltonian will be
given later.

The lowest-order term in the expansion of the Green's
function is represented by the diagram in Fig. 2. In the
absence of a magnetic Geld, all diagrams exhibiting a
pseudofermion loop of the form given in Fig. 2 will be
zero as they arise from an equal time contraction of two
pseudofermion operators and are always proportional

Ke do not consider the higher-order perturbation graphs
incorporating renormalization of the pseudofermion
propogator. In terms of a restricted s-d contact-inter-
action model, these graphs contribute terms of at least
two orders lower in the logarithmic divergence for a
given order of perturbation theory than the graphs
considered. The self-energy graphs which are linear in
the concentration are characterized by single closed
pseudofermion loops, while multiple closed pseudo-
ferrnion graphs exhibit powers in the impurity concen-
tration equal to the number of closed loops. Hence, the
multiple closed loop pseudofermion graphs will not be
considered.

In the eth order of perturbation theory there will be
various combinations of graphs corresponding to
m J~'s and (I—m) J2's.In an Nth order term in the expan-
sion of the self-energy, the diagrams mill be composed
of (e—1) free-electron propagators;
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Fro. 2. Lowest-order term in the expansion of electron Green's
function.

to terms of the form

2 &P I

s' IP)g»(z~) =g(~) Tr(s') =o. (2.13)

It is convenient to develop a simple nomenclature
from which the subset of self-energy and vertex-func-
tion graphs considered can be speci6ed. We specify the
self-energy graphs by the symbol Zg, &,3,...„)&"'&" '&&

where (ir, zz, ~,.z„) is an arrangement of the integers
(1, 2, 3,. ~ ~ I). In the self-energy graph, the electron
propogates from 1~2—+3—+ ~ e, while the pseudo-
fermion line propogates from i~~i2—+is—+ ~ ~ i„. The
(zz 1)!—topologically distinct self-energy graphs for
the eth order of perturbation theory are generated by
the (I—1)! noncyclic permutations of the pseudo-
fermion indices. Each graph is invarient under a cyclic
permutation. To illustrate this nomenclature, we con-
sider the example of Z(]23)&"'& given in Fig. 3. Note, we
always label the vertices with 1 starting at the left. The
lower index denoting the electron propogation is sup-
pressed with the convention that the electron always
propogates from 1—+2—+3 ~ e. We can illustrate the
rules for computing the perturbation graphs by writing
down the expression for this specific self-energy term:

~X/T

Z .&"'&(p p', ze) = hm n o'o'cr n'
~g- 2S+1

As an example of the method of calculation of the
self-energy expressions at finite temperature, we review
the second-order self-energy calculation. The only
contributing second-order graph is shown in Fig. 4(a) .
The second-order self-energy contribution is

~X/T
, &r@(p, ze) = lim —

&cr
I

cr'crr
I
cr')

x/z'~~ 25+1

X
(l2)

(a)

X
(123)

(b)

g (132)

(c)

I'
E

(12N) ( II32)

(e)
Y

h /~e~

. E, cPpXTr(S'S') —,T' ZX,J (P, p') J (p', P)
c z —r&z ~ (2zr)

(zcdr —X) (zcoz —X) Lz (e+coz —cur) —(p~] . (2.15)

The spin term is given by

(cr
I

crccr&'I oc') tr(5'S') =8 5(5+1)(25+1). (2.16)

The sums over the Matsubara frequencies co~, co2=

XTr(S'5 5') —,8, ,
~

(1342) (!2e3)

(g)

d'Pzd'Pz

, Jz(p, Pr)~z(pz, Pz)~z(pz, P) T'
2zr '

X Z S'( )O'( )O'(' )
y

(1521)
g

(1423)

Cd/Cd 2rd3

XG'Q)r, z(e+coz —cot) jG'Lpz, z(e+coz —cor) j. (2.14)

Ke note that the order of the components of the 5's
relative to the o's is specified by the labelling on the
self-energy term. The i, j, k, indices refer to the Car-
tesian axis, where repeated indices are summed. In
addition, there are (—1) factors for each closed fermion
loop and each order of the interaction. The 8» comes
from the average over the random positions of the
impurities.

(LI g
(t)2

/
P, f P, &+" " ~~ P g+"2-Idl ) P

~
(132)

Fro. 3. The Z(p, «) c"'& perturbation graph,

Fxo. 4. The topologically distinct forms of the self-energy
graphs considered through fourth order in the interaction.

(2zz+1)zrT are now performed in the conventional
manner. "For the ~2 sum we have

T Q L(icdz —X) (z(e+coz cur) —(p )j—'—

(2.17)
I(lt) zz (i (—e )+co—r(, )

z (e—
cor ) —

$&1+X

As e—coz=2hrT, we obtain zz(i(e —coz)+(~ )=zz($r ).
We note that the residue from the pole of the pseudo-
fermion propagator is proportional to N(X) which goes
as e "lr in the limit X/T~ro. The contribution arises
from the spurious pseudofermion states and will be
"frozen out. "We will retain the term here and discard
it at the end of the calculation. More involved calcula-
tions ape considerably simplified by only picking up the
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pole contribution with the nonvanishing residues. The
remaining sum in Eq. (2.15) can now be calculated:

L~(X) —e(& ))2' Q I (i(og—)&.) (i(e—(vg) —] +)&.)) '

p, f, tl

Mls P (II2) P

Pro. 6. The "fOur taBed" vertex
function

i~P I ILI&ie; ~i I I&',

i(e+~ii —~i) ~ ~ij I ei P )

Le()&) R(( ') jL'N(X) N(ie $ 'yX) j
ie

Taking the limit X/T~~ using

lim n(ie ]p—+X) = lim n(iirT $p—+))
X/T~~ ) /T~rx

—i e& lre—e~ r, (2.19)
we obtain

E;
Zo2&(p, ie) = lim 8 S(S+1)—,

X/T~~ g2

Similarily, Zo2'& is given by

J 3

Z &"s&(p, e) =8~~. — 1V,2S(S+1)

p(6) p(6) ~(-b)
1 ' (s-s) ( -~.+ ~)

The total contribution in 3rd order is just the sum of
these two expressions,

ds IX,~2(p p')~~(p' p) (i —4) '. (2 20)
—~s'&e~, 27/')

(J&'
Zs (P, e) =b ~

I

—
I

E~2S(S+1)
&F+51it2& &F

We 6nally analytically continue, i e +e+i8 t—o obtain the
retarded self-energy. For a contact interaction J(p, p') =

i i i
1 '

~ Ir r

(b)

(c) (4j
I'IG. 5. Examples of fourth order self-energy graphs omitted.

The forms: (a) and (b) are quadratic in the concentration; (c)
and (d) are two orders lower in logarithmic divergence.

j with cutoffs t„t, e( —e&, +e&;), the self-energy re-
duces to

Z&"& (p, e)——ib S(S+1)i&i";(J/E)'p(0) ir;

p(0) =Pem/2m'. (2.21)

The third-order self-energy is the lowest order in
which the logarithmic divergence appears. It will
sufFice here to consider only the relevant diagrams for
third and fourth order as shown in Figs. 4(b), 4(c), and
4(d)-(i), respectively, and illustrate the final result
of the third-order self-energy calculations. The com-
putations of higher-order vertex functions and self
energies will be given in Appendix A. The third-order
self-energy Z&"2&, Eq. (2.16), is given for a contact inter-
action by

V
l, (I2)

V
p (I23)

'E rv'

p
(I32)

X p(k )p(b) «nh(b/»)
2.24)

(& -& ) ( -&+ ~)

The term of leading order in the logarithmic divergence
is attained by going to the zero temperature limit and
projecting out the density of states terms at the Fermi
surface,

Z» (p, e)——iir8 (J/S)'E~S(S+1)p'(0)

x4 »(I ~ I/e~) .

In addition to the six fourth-order graphs generated.
by the 3! permutations of the pseudofermion indices,
there are four graphs which are not included. These are
illustrated in Fig. 5. The graphs in Figs. 5(a) and 5(b)
are examples of those diagrams exhibiting multiple
closed pseudoferrnion loops. These graphs are both
quadratic in the impurity concentration, where each
closed pseudofermion loop contributes a factor of the
concentration. The graphs illustrated in Fig. 5(c) and
5(d) are the lowest-order contributions incorporating
a renormalization of the pseudoferrnion propagator.
These terms are at least two orders lower in the loga-
rithmic divergence than the graphs which we have
retained.

+3
Z. &"e&(p, e) = —8. ~

—
I

X;2S(S+1)
) n

]'
t V

p i p
1 2

qp&eigi&qii (—$y $2) (e 51+$8)

~(2I3) l, (3I2)

F&G. 7. The topologically distinct forms of the vertex function
through third order in the interaction.
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Vertex Part of the Self-Energy

In the calculation of the self-energy, we have gen-
erated the perturbation-expansion term by term but as
yet have not developed a procedure to sum the graphs
to infinite order. To facilitate this sum, we introduce the
renormalized vertex which is represented by the graph
in Fig. 6.

The renormalized "four-tailed" vertex function given
in Fig. 6 corresponds to the sum of all possible graphs
in which an electron line y, e, ir enters and y', e+~or —coz,
n' leaves; and a pseudofermion line cur, P enters and
i s, P' leaves. We represent this vertex function by

( P I
I'(y, z; z

I
y', z( + — ); z ) I

'P'& (2 2S)

Our notation designates the entering and exiting lines

by the left- and- right hand sides of the brackets, respec-
tively. Ke now want to establish a nomenclature to
specify the various topological forms of the vertex
function which enter the perturbation expansion. We

label the mth-order vertex function by the symbol

(erg
I Fo s 3, , )&'& 'z

&&(y~ zeiz~,
I y ~ z(e+~, &u,) ~ z~,) I

rrP ) (226)

Here the line (y, e, ix) enters at 1, then propogates
1—+2~ ~ zz, where it exits as y', e+cot —coz, ix'. The
pseudofermion line enters at i~, then propogates from
i&—&i2—+ ~ ~ i„. In the eth order of perturbation theory
there are e t topologically distinct vertex-function
graphs corresponding to the eI arrangements of the
pseudofermion indices relative to the fixed electron
indices. We suppress the electron indices with the
convention that the electron always follows the path
1-+2—+3~ ~ e. To illustrate this nomenclature, we
consider examples through third order given in Fig. 7.

It can be shown that there is a one-to-one corre-
spondence between each of the e ~ vertex functions in
the Nth order, and each of the mt topologically distinct
self-energy graphs in the (zz+1) th order,

e) /F 3 /

z...& ' ' - »(y, z.) = hm — &'r'Z & pll'. (y, y')
I

"P")8'(z )O'(z )
&/r ~ 2~+1 ~t~z ~r&z ( ~)

)(G Q ~ z(e+~s —&gl) g(ir 0 I
I ' "

I y z(e+Ms —Mt) l zMy
I y, zei zMsl

I
~ i )' (2.27)

This implies that the self-energy can be expressed in
terms of the renormalized vertex by the graph illus-
tra, ted in Fig. 8(a), where

n 1 Perm(iI, ig, ~ ~ ~ in)

11(A. , i2, "- izz) ~

) (2.28a)

Z(y, z) = g
n=2 Perm(i2. , is, "'izt)

gil, iz, "in)
(y zs) .

(2.28b)

'9 G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 42, 1658 (1962)
(English transl. :Soviet Phys. —JETP 15, 1151 (1962)j.

However, in order for Fig. 8(a) to be meaningful in
summing all orders, we must obtain an integral equation
for the full vertex function incorporating the variable
dependence of all "four tails. " No one has yet been
successful in obtaining an integral equation for the full
vertex function. Abrikosov circumvented this difficulty
by considering the self-energy with both vertices
"dressed" as illustrated in Fig. 8 (b), but with a variable
restriction on the functional dependence of the dressed
vertices. He arrived at this result by adopting Eliash-
berg's" relations for ImZ~(y, e) used in the study of
the damping of elementary excitations in a Fermi
liquid. The expression for the imaginary part of the
self-energy is equivalent to the optical theorem for the
"on-shell" scattering amplitude. It is interesting to
note that Eliashberg's derivation depends, in part, on
the fact that ImZ~(y, e)~ez for small e. This behavior

is exhibited by each term of the perturbation expansion
in the interaction between the elementary excitations. "
Such a behavior is not exhibited for impurity scattering
in metals, and moreover, for s-d exchange scattering
the individual terms in the perturbation expansion of
ImZs(y, e) diverge. Hence the applicability of the Fermi
liquid relations to the s-d problem are not clear in a
general sense. Abrikosov asserts that the double-dressed
vertex graph correctly reproduces the self-energy to
logarithmic accuracy. We have verified this assertion
explicitly through fourth order in the contact s-d model.

If one were to accept the, diagram in I'ig. 8(b) lit-
erally without restricting the variable dependence of
the vertices, it is-a trivial matter to show from the
previous discussion as illustrated by Eqs. (2.27),
(2.28), that multiple counting of self-energy graphs
occur, arising first in third order. These counting diffi-
culties can be remedied to logarithmic accuracy by
fixing the pseudofermion frequency variables appearing
in the vertex function at the pole of the free pseudo-
fermion propagator ice~, ico2~A, . The expression for the

(b)

FIG. 8. (a) Proper self-energy represented by a single "dressed"
vertex. (b) Self-energy represented by a double "dressed" vertex

~ J. M. Luttinger, Phys. Rev. 121, 942 (1961).
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self-energy is given by
EXIT $3q

Z (p t6) —llm N Tp'b (A@1)g (~2) G Lq, 1(6+%2 Ml) )
KIT~~ 2 S+1 ullGI2 (2~)

x(~pIr(p, t.;J Iq &'» I~"JJ'&(~"J3'Ir(q t~'J I»t'» I~'~&. (2.29)

The sums over the frequencies can now be performed in the standard manner and the results analytically c»-
tinued to the region of real e to obtain the retarded self-energy,

xE;
ImZ (p, e) =-

2S+1
(2.30)

The unitarity result
~

r ~' is obtained by accounting
for the overlapping cut structure in the external energy
variable when performing the analytic continuations. ""
(See Appendix B.) The J, 's in. the vertex functions have
been suppressed as the symmetric formr (p, e, JN.

~

p', e, J )
is independent of ) . From rotational symmetry we can
write the general vertex in the form

r=r~»+ (~ 8) r«&. (2.31)

From this form we obtain

ImZ..(p, ie) = ——,'(E;)p(e) d&,dQp. ,b(gq —e)

&CI r"'(p ~
I q ~) I'+S(S+I) I

r'" (p ~
I q, ~& I').

(2.33)

The problem to which we now address ourselves is the
one of obtaining an integral equation for the vertex
function which sums the perturbation series.

p, e,a
~t
P 6+|di ftJga

r
g, C+IJJ,-IJJ, a

QJi,P

, 64 tiJ, -IJJP

1

iud, a p, t. ,a

Fxo. 9. Graphical equations for the electron vertex p, I, and
the hole vertex p, 2,

'1 L. D. Landau, Nucl. Phys. 13, 181 (1959).+ J; S. Langer; Phys. Rev. 124, 997 |';1961)..

&~p I r(p ~+&t'
I q ~+t~)

I

~"p"&(~"0"
I

yr*(p, .+ts
~ q, +ts)

~

n'p&

= (2S+1)8 .p[ r (p, e
i q, c) ['+S(S+1) i

&&r«& (p, e,
i q, c) p). (2.32)

Inserting this into Eq. (2.30) we obtain the result

III. GREEN'S-FUNCTION DERIVATION OF SUHL'S
NONLINEAR LOW EQUATION FOR THE

VERTEX FUNCTION

I' = rp+Ag+A:. , (3.1)

Here I"0 is the bare vertex. The A1 is called the electron
vertex because the single-particle intermediate state
lies above the Fermi energy. We can call A2 the hole
vertex because the intermediate energies lie below the
Fermi energy. The integral equation, (3.1), is not
correct for two reasons: First, the restriction to single
particle-hole intermediate states precludes ab initio,
the inclusion. of any of the set o& non "parquet" graphs,
a simple example of which is given by the fourth-order
graphs I'&'4'3&; I'~3'42&, as illustrated in Fig. 10. For the

In this section we derive the nonlinear Low equation
for the vertex function by Green's-function methods.
The derivation is'-an extension of that of Abrikosov
incorporating, in addition, the generalization to finite
temperature and the use of the general nonlocal inter-
action described by Eq. (2.10) . The resulting equation.
is identical to the nonlinear Low equation derived by
Suhl using formal scattering theory. The primary
advantage of a Green's-function derivation is that we
establish direct contact with perturbation theory. Thus,
the consequences of any approximations can be deter-
mined readily by direct comparison with the exact
perturbation-theory results. Ke demonstrate that the
Low equation reproduces perturbation theory to loga-
rithmic accuracy in third order, but at best gives the
fourth and higher orders to logarithmic accuracy when
interpreted in terms of a contact-cuto8 s-d model. The
accuracy of the imaginary part of the self-energy in
terms of the Green's-fun. ction. expression Eq. (2.33), or
alternatively in terms of the scattering amplitude in
Suhl's treatment is similarly restricted.

In the mth order of perturbation theory for the s-d
exchange term, there are m~ distinct topological forms
for the vertex function, each being associated with the
ef distinct permutations of e spin operators. We seek
an integral equation which will generate all of the
distinct forms with each appropriately counted once.
Let us first consider the integral equation given by Eq.

, (3.1) and. by the diagrams in Fig. 9:
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Pro, io. Example of a fourth-
order "nonparquet" graph.

cutoG s-d model, the nonparquet graphs within each
order of perturbation theory are of a lower order in the
logarithmic divergence. Hence, the use of single-particle
intermediate states restricts the validity of the iterative
results in fourth and higher orders to logarithmic

accuracy. A second, more important aspect of the
integral equation we have written is that the topological
forms generated are multiply counted in higher-order
iterations. This difhculty can also be remedied, but the
restoration of proper counting, which brings us directly
to the Low equation, further imposes the restriction to
logarithmic accuracy in the iterative solution.

Let us 6rst write out the expressions for A~ and A2

from the diagram in Fig. 9:

d3
~p

I
~,(p, ze; z»

I
p', z(e+cv, —»); z»

I

~ p &-T g (2~)'

xg'(no) O'I q, z(e+» co) ]—&np I rQ, ze; z»
I q, z(e+cez —co]; zar]

I
ce"p"&

X &~"p"
I rLq, z(e+» —~); zcd

I
p', z(e+» —»); z~z]

I
ce'p'); (3.2a)

(exp
I Az(p ze'z»

I p z(e+» —»)'z»
I

cl p)=T g (2~)'

xg'(z")O'Lq z(e+~ —»)](~p"
I r&, ze z& lq z(e+&—»)'z»]cz"p'&

x( "plriq, i(+ — );i I
p', i(+ )—;z ] I

'p"). (32b)

We now perform the s™over the Matsubara indices, ~ = (2m+1) n. T. To do so, we must erst analyze the analytic
st,.ucture o: the integrand as a function of the complex variable s=ico. In the complex s plane there is a simple pole
at s=P, and a line of singularities along Iml s i(e+—») ]=0, which are co attributed by the pseudofermion and
electron Green s functions, respectively. In addition, there are series of multiple overlapping cuts along the lines
Ims=0; Im(s —ie) =0, and Irn(s i(»—or&) )—=0, which are contributed by the vertex functions appearing in the
integrand. This cut structure can be verified by an examination of the perturbation expansion of the vertex func-
tions as illustrated in Appendix A. An important point to realize when performing the sum is that the contributions
from the latter three cuts are all weighted by an additional e "I factor relative to the contribution from the
electron propogator. These contributions are reduced to zero when the spurious states are frozen out in the limit
X/T—+~ ~ Hence, only the contributions from the electron propagator are of nonzero weight. The sum can now
be simply performed. We obtain

p, ze; »
I
p', z(e+» —») i z»71~ p &

=— d'q I(—&,)

(2~) ' ie $e X—+iw—z

x(~p I rtp, ie; icoz
I q E z(e+») —4]1~"p"&&~"p"

I rLq, („z(e+»)—(~ I
p', i(e+» ») z~z]

I

~"—p'& (33a)

d'q n($, )
zip, ze; z»

I
p', z(e+» —»); z»

(2n-) ' ie—$.+X—zzc'z

x(~p" I re ze z(e+» —(.) I q, (. z»] I~"p'&(~"pl rt.q, g, z»l p' z(e+» —») z(e+») —~.] ice'p"& (33b)

The e(&.) 's in the above equations are Fermi factors, (exp(i, /T)+1)
As we recall from Sec. II, the vertex function relevant to the computation of one retarded self-energy was the

analytically continued form

r(p, e
I p, e) = lim rQ, ie; i»

I
p', i(e+» »); i»]-

'c(01,sro Q~X~O
4~4

We note that we have set A. =0 only after all spurious pseudofermion states are "frozen out" of the problem. The
results are, of course, completely independent of the initial choice of X. Taking these limits, Eqs. (3.3) become

&~p
I
~z(p, e

I
p', e)

I

~'0'&=—

( I ~z(p, ~
I
p', e) I

~'p'& =—

'. ( plr(p, +'~;Olq, ~.; -~,) I
"p"&

d'q rs( —(,)
2m 'e $.+it'—

X(~"P"
I r(q, t, e —t. Ip' e —z'l 01~'P'&; (3.4a)

',, &~" ir(p, +'~; -~.
l q, ~.;0) I

'P'&
d'q e(&,)
2~ 'e —e z8

X(~"P
I
I'(q, &„0 I

p', e —zb; e —4) I

ce'P" &. (3.4b)
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The unitarity form, I I', exhibited in Eq. (3.4) arises
from the consideration of the overlapping cut structure
when performing the analytic continuations to obtain
the retarded functions" (see Appendix 8). The equa-
tion as it stands still suffers from multiple counting
of the various topologically distinct vertex forms. As we

will demonstrate explicitly from examples in third
order, these counting inconsistencies can be remedied

by placing the vertex functions appearing in the inte-
grand of Eqs. (3.4) on the energy shell of the inter-
mediate electron-hole propogator which reduces Eqs.
(3.4) to the form

~(P I Ai(p, 3
I
p', ~) I

~'P'& =—

&~P I Az(p ~
I
p' ~) I

~'P'&=

'„. X(PII"(p, 4lq, 4) I

"P"&

&&( 'P"
I
1*(p', ~, I q, ~.) I

'P'&;

d3 ',, ~( P" II(p, ~, lq, ~,) I-"P')
2zr 3 3—~ zI)'

x( "P
I
I'*(p', 4lq S.) I

'P"& (3.»)
From rotational symmetry, F can be divided into a scalar and a vector form

I (s) +.((l.S) I (v (3 6)

I'")(p, 3
I
p', z) = ~ (p, p') ~ p(f~) dQp. ~d$~

42)-X
e —$~+z8

X{1'"'(p,4 I q, 4) I'"'(p', 4 I q, 4)*+S(S+1)I'"'(p, 4 I q, 4) I'"(p', 4 I q, 4)*I; (3 7a)

(v)~, , ~2(p p) ~ ~), " p(4)d" d4
e f,+i8-

&&{I'"'(p,4 I q, 4) I'"'(p', 4 I q, 4)*+I'"'(p, k. I q, 4) I'"'(p', 4 I q, 4)*
—«nh(4/») I'(v)(p, 4 I q, 4) I'(v)(p', 4 I q, 4)*I.

Making use of Eqs. (3.1), (3.5), and (3.6) with the full nonlocal interaction (2.10), we obtain the coupled
nonlinear integral equations for the scalar and vector vertex functions'.

These coupled integral equations are manifestly iden-
tical to those derived by Suhl. It is important to note
the consequence of the step in derivation which restored
the proper counting, viz. putting the vertex functions
in the integrand on the energy shell. This procedure has
forced the vertex function to exhibit zzo singularities
off of the real 3 axis. From Eqs. (3.7) we see that the
vertex function exhibits a line of singularities inhni-
tesimally displaced below the real axis. We emphasize
that this procedure generates the third-order graphs
to logarithmic accuracy, but at best gives the fourth
and higher orders to logarithmic accuracy" in terms of a

»Abrikosov has asserted that his calculation generates the
leading order in the logarithmic divergence for all orders of per-
turbation theory. At present we have been unable to construct
an a priori proof of his assertion for all orders. Our suspicions are
further aroused by an apparent parodox presented by the linear
theory derived in the succeeding paper. The linear integral equa-
tions for the vertex function omit a certain class of "parquet"
diagrams, the lowest-order examples being p(2'4» and p(3412) jn
fourth order. Nonetheless, the linear equation when solved for
the contact s—d model gives the exact answer to logarithmic
accuracy as that obtained by Abrikosov. We conclude that either
Abrikosov's solution for the vertex function is not valid in fourth
and higher orders, even to logarithmic accuracy, or alternatively
the counting tricks used in the linear theory compensate for the
omitted parquet diagrams. It appears that a partial resolution
can be reached by an explicit calculation of the twenty-two par-
quet fourth-order vertex functions.

restricted s-d cutoG model. Therefore, from the point
of view of perturbation theory, the absence of singu-
larities of I'(p, z

I
p', e) in the upper half of the complex

e plane is a consequence of a variable substitution
designed to compensate within logarithmic accuracy
for the incorrect counting of certain diagrams.

In conclusion, we illustrate how the variable sub-
stitution 3~)~ in the kernel of the integral equation
restores the proper counting. For simplicity let us
consider only a contact s-d interaction. We 6rst discuss
the topological forms generated by Eqs. (3.1) and
(3.2) . In second order we find

2
—I'(12)+I'(21) (3.8)

d~ d~ 1(lma) (3 10)

In third order we find

P3 —2 ( P(123) + P(321))+P(132)+P(231)+P(213)++(312) (3 9)

We now demonstrate how the variable substitution
cancels the additional factor of two for the diagrams
P|'23' and &&32".The six topologically distinct third-order
vertex functions can be written in the form
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The factor c,I,
~' "' corresponds to the spin-term coeK-

cient for the particular )me form. For example,

(122l —(&i&&'&2) (SiSjSk)

=o S[S(S+1)+1]—S(S+1). (3.11)

The expressions for all the vertex functions are given in
Appendix A. To illustrate the counting, we consider the
following examples of the integrals for I(' "'.

lo2@ = (3 12a)
[2(»+Ml) $1—Q[2 (»+Ml) —

$2

t122&
+( b) (b)

(3 12b)[i(»+Ml) —$1 X]( iM2+$1 $2+le)

The discrepancy in the phase of I&"'& and I("@from the
exact perturbation theory results does not alter the
leading order term in the logarithmic divergence. The
lower-order terms are, however, aQected. In fourth order
the situation is much more complicated. The results
obtained for the fourth order vertex functions are at best
accurate to logarithmic accuracy. "

Ke have shown that the iterative solutions to the
nonlinear Low equation reproduces the exact perturba-
tion theory for a contact s-d interaction at best only
to leading order in the logarithmic divergence. The
correction terms of lower order in the logarithmic
divergence arise both from the omitted nonparquet
graphs, and from the corrections to the energy-shell
approximation procedure used to restore the proper
counting of the most divergent terms alone.

I&21@ = . (3.12c)
[2(»+M1) $2 ll]( 2M1+$2 $1+it)

APPENDIX A: PERTURBATION- THEORY
CALCULATION OF VERTEX FUNCTIONS

AND SELF-ENERGY

We now analytically continue these forms, i» +»+i8, — In this Appendix, we first compute the third-order
iM1, iM2 +7+i' (s—ee Appendices A and 8) to obtain vertex functions and then use these results together

with Eq. (2.27) of the text to compute the fourth-order
~( —6) 22( —6)I(u3) ~ [(» $1+i') (» $2+9)

(h —6+i~)
Re(z) =0

(3.13a)

(3.13b)

(3.13c)

Im(z- g8) =0

—Im(z-2is)=0

Im (z-is)
-.—Im(z)=0

The integral equation previous to the variable substitu-
tion [e.g. , Eq. (3.4)] generates two of the forms of Io22&

as shown in Eq. (3.9). The act of substitution of pu

for» in the vertex functions of the integrand of Eq. (3.4)
to obtain correctly counted forms in Eq. (3.5) yields
for the sum of the two contributions

——Im(z+ i(&+ 3 ))=p

Im(z ii(~ ~23 ))=0

Im(z+i(c+ j3))=0

FIG. 11. The mapping of the integrand of Eq. (B2) into the
complex 2 plane, and the closed contours C„ taken to calculate
the integral.

which is identical to the exact form (3.13a). Similarly,
the Low equation generates the exact perturbation-
theory term for I""',but incorrect phases on the terms
I&"" and I(:"@.The last forms generated by the Low
equation are JI =0; J2(p, p') J for $p, $p'Q ( —»p, +»p).

self-energy. We consider the simplest case of a contact
s—d interaction:

n(&1)n( —
&2)

(»—6+i~) (b h+27l)
(3.15)

More elaborate integral equations for either the vertex
function or the self-energy must reproduce both the real
and imaginary parts of these results before it can be
asserted that such equations possess an analytic struc-
ture compatible with that resulting from perturbation
theory.
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TABLE I. Tabulation of the third-order vertex functions.

(123) (o'o/os) {$4$'$4) =cZ S[S(S+1)+1)—S($+1)

I'~"[ZZ; Zcoc I Z(o+coc —coz); Zcozg

~(-s)~(-& )
[z(4+coc) b —X]—[z(4+c c) —b—}c]

2zz( —b) zz( —b)'
(4—b+zS) (b—b)

(321) (oco/o") (S~ScS'}=c1 S[S(S+1}+1j+S(S+1) (r ) (r )
[z (4 coz) 51+}c3[z(4 co2) b+)cg

»(b)~(b)
(4-b+@)(b—b)

(231) (ccco/o") (S'S"S') = d S[S(S+1)—1g—S($+1) .(b).(-b)
[4 (4 co2) kl }cj(zcol+ b b }c)

~(S)~(-b)
(4—b+z~) (b b+—z&)

(132) (oco/os) {ScS"S/) = c1.S[S($+1)—1j+ S(S+1) I(-b)zz(b)
[z (4+col) —b —}cg{—zco2+b —b+X)

~(S)~(~2)
(4-b+z~) (b-b-z~)

(312) (o.*o/os) (S"$4$/} = cZ S[$($+1)—1)—S($+1) zz(-b) zz(b)
[z {4 co2) b+Xj(zco2+ b b }c)

~(-r)~(s)
(~—4+~~) (6—6+~~)

(213) (o'o'o") ($'$'$") =~.S[$($+1)—1]+$($+1)

a Principle-value integrals are implied when phases are not specified.

zz(b) I(-b)
[z (4+col) b Xj( zcol+b b+}c)

zz(b) zz( b)—
(e—b+zb) (p —p

—i&)

We designate the third-order vertex function by

I'™)I:P"''M1 IP' ('+ 1 0)'

L=c,c" "' — p(b) d&1 ~ p((s) d)sI" "'t&'zo, zcoz
I
z(o+coz —coz); zcozj. (A1)—Cp&gj&tp

The expressions for c,c&'""&, Il™)Iio; zcoz
I

i(0+co&—cos); icos] and its retarded form I&'""1(0), (icoz, ia»~}&+i5) are
given in Table I.

The fourth-order proper self-energy can now be obtained by using Eq. (2.27) of the text, i.e.,
&) /T d3q

(1,&+z,m+1,o+3) (p,,) l;m
' JT'2 P g0(zco )g0(zco, )GOI q z(,+co, co,)]

1p'~m 25+ 1 CV ~Cccs (2Zr)

X (np
I

(d S) I'" "1Lq, i(o+coz —coz); zcos
I P, zo, zcoz]

I
n p). (A2)

It suKces to illustrate one specific example and tabulate the results for the remaining contributions to the self-
energy:

~X/T (J 4

Z &»s41(p, io) = lim — (nP I
(&1 S)' In'P)E; I

— T'Q p($1)41 p(b)dies
1/@~co 2S1'1 cc Ccc 2 ~ ZP(Z ccczc

zz( —
& ) zz( —$ )

X I (zcoz —)&) (zcos —)&) Lz(o+coz —&os) —&1]I '. . . (A3)L'(+ .) —~.—) jL'(+ .) —b —) 3
The co2 sum is readily performed leaving an co& sum in the form

3

-TZI/(' -~) IIL(+ )-a-}j-'. (A4)

In performing the co& sum and subsequently analytically continuing to obtain the retarded function, we must ac-
count for the overlapping cut structure due to the $; integrations. This sum is a specif&c example of the general
result considered in Appendix B.We obtain

&»s4'(0) =5 S(S+1)$5(5+1)+1](JiI&I ) 4IcI;
—~S&$s&eS

P(6)41 "P(b)4s

~(-4)
X g (0—&1+i') ' Q (AS)
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The integrand of the above expression can be written in a more convenient form, after a suitable change of variables,
as

L3/(~. -b) (~.-b) —'~(~.-~ ) ~(~1—~ )]. (A6)
e $—1+i()

A lack of specifications of phase, as illustrated by the first terms in the bracket of Kq. (A6), denotes a principal-
value integral.

The contributions from the remaining fourth-order self-energies are evaluated in a similar manner. %e obtain

, ( mi, ,n)o(e+g) — g, (o,n, m, l) ( e Q) (A7)
where

4

z . (1~2)( e+i8) =() .s(s+1)Ls(s+1) —1j — E;
—p&(;( ~ (4 b) (6 b)

and

X{2
(-b) (b)
e $g+i8—

I(—$1)I(b) az(b) +N($1) zz( —b) zz( —b)
(AS)

e+6 —b—b+z&

"324) (e+ii)) = —8 S(S+1)(S(S+1)—1$(J/1V) 41V; p(b) db' ' p(b') db

{
1

X
2 3 1 3

228(b)zz( b) zz( $1)zz( b)zz(b) +zz($1)zz(b)B( b)
e (1+—i8 e+b —b—6+z()

—"(b) ( —b)~(b-b)~(b-b)
(A9)

e —$1+1()

Therefore, the total remaining part of the self-energy is given by

, (1243) (e) +Z, (8421) (e) +.g, (1824) (e) +Z, (4231) (e)

=2()nn S(S+1)LS(S+1)—1j(J/1V) 41V,
&$oa& (oF e—$1+Zi)

0

'""'(e)+& """(e)—=—i~3S(S+1)LS(S+1)+13 —
i &'p(e) p(b) db p(b) db

—CP —eg

XL1/(b —e) (b—e) +1/(b+e) (b+e) ]=—zzr6S(S+1) LS(S+1)+1/(J/1V) 4',p(0) ' 1na(i e i/ea) . (A11)

In the evaluation of the remaining contributions, (A10), the relevant integrals are of the form

E1r 0

p(b) db p(b) dbms(b e) (b—e))—'= —p(0) ' ln' (A12)

and

zz( —b) zz(b) +zz(b) zz( —b)x L(6—b) ' —(b b) '3—~'~(6)~( —6)~(b—b)~(b —b) (A10)
(4—b)

Finally, we compute the leading terms in the logarithmic divergence. The leading order in the logarithmic di-
vergence is contributed by the imaginary parts of all terms considered. First, consider the contribution from Z("34)

and Zt'432'). Taking the imaginary part, setting 7=0, and projecting out the density of states at the Fermi surface,
we obtain

Hence,

ep p(o)'
p(b) db p(b) dbms(b —$3) (e —b) ] — lil

0 2 Ep
(A13)

'""'(e)+Z """(e) +Z ."""(e) +Z """(e) zzr(') 6S(S+o—n1) [ S(S+1)—1)(J/X) 'Ep(0) ' ln' . (A14)

The complete fourth-order result to logarithmic accuracy is the sum of (A11) and (A14),

&4,„(e)——izr()„„.12S(S+1)(J/iV)'iV;p(0) ' ln'(i e {/er) . (A15)
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APPENDIX 3: MATSUBARA SUMS AND ANALYTIC CONTINUATIONS OF INTEGRALS
CONTAINING OVERLAPPING CUTS

In this Appendix, we illustrate the analytic continuation methods used to account for the overlapping cut struc-
ture which is often encountered in the Matsubara sums. As a general example, we consider an integral of the form

I(ie) =T
co= (2n+1) n'T

N1 g N2

d&" d&-&u. ," &-) II. II('+' —g) '.
~=g ZM—

(81)

Here f;=f;($1 $2 ~ ~ $2) and gi ——g&($&, $&
~ ~ ~ $„) are real linear combinations of the various $;. We convert this sum

to a contour integral in the complex a = i&a plane. The in.tegrand in (81), viewed as a function of the complex vari-
able a=i&a possesses Xi, overlapping cuts along the line Imz=0; and Eq overlapping cuts along Im(a+6) =0. In
performing the ~ sum, we must separate the overlapping cuts. I(ie) can be written as a contour integral

NI ¹—P (2~i) ' dhm(s) d~ d~~~J(b, ~~„~) ~II (s—y —iqS) 'II (a+i. g+—itS) '
C~ j=l j=l

(82)

In Eq. (82), n(s) is the fermi function and the closed contours C„are indicated schematically in Fig. 11. The
overlapping cuts have been displaced from each other by integral multiples of ib. The contour integral reduces to
the sum of the line integrals along the cuts, for which we obtain the contributions

+~ N1

() II(+ —g) 'Il( f+ ~—) 'l'l ( f' ~)—'~( f-)—
j)m

N2

+ Z ( — ) II ( — —f) 'II ( —
g

—~) 'll ( —g+ ~) '&( —g) (83)

which is equal to

l(k l)k

¹ N1 IVg X1 ¹

Z (f-) II(f- g+ ) —'III'- f+ ~( i—)7 '+ Z—(g — 7') II(g f )'—II—Lg
—

g
—~(&—i)7 '.

m=1 jism

(84)

We next perform the analytic continuation to obtain the retarded function I"(e) accounting for the overlapping
cuts due to the $, integrations in (82) . Consider a general function of the form

« ~ ~ ~ d~.~(~," ~.) II (.-f;)-, (85)

which exhibits X overlapping cuts at Ims=0. F(s) can be expressed in terms of the Cauchy integral

ds F(s')Fs)= | c„27lz s s
(86)

where the contours C„are taken around the displaced cuts in a fashion analogous to that indicated in Fig. 11.The
contributions from the line integrals are given by

F() = db "d4&(b "4) Z( —f-) 'IIV- f+ ( i)a7 '. — — (87)

The above result is independent of the sign of 6, because the overlapping cuts can be displaced in any order relative
to each other. We analytically continue to obtain the retarded function

F (~) = d(& d$ h((&, ~ ~ ~ ( }g (e f +is} 'I—I [j —f+i(m —j)87 '.
jism

The technique illustrated above is applied to (84) to obtain, after some algebra, the result

(88)

"~ "i N(f ) —e(g —i~2') "~
s'() = fa(".a()((„"() x ZZ "

. IIV. i'+i(~ i)~j 'IILg —
g

—)()—))~3 '.
lg 1 m ) 0+fg| gk+ 1() jism l&k

(89)


