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unit circle as the temperature is reduced below the
critical temperature. These analytic continuations prob-
ably correspond to metastable states.

Ke conclude that every physical point in the p-T
plane is regular, except the critical point, and that
standard Pade-approximation procedures to the p series
should be pleasantly convergent. However, the rate of

convergence near the critical point is so deceptive that
it is prudent to adopt a bounding summation procedure.
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The transitions induced by temperature and pressure between the face-centered cubic (fcc) and the
body-centered cubic (bcc) phases in the alkaline earth metals —Ca, Sr, and Ba—are analyzed by computing
the differences in Gibbs free energy between the two phases in the framework of the nearly-free-electron
and harmonic approximations. At the absolute zero of temperature and pressure, the observed fcc in Sr
and bcc in Ba were found to have the lower internal energy; in Ca, however, identical analysis led to lower
energy in bcc rather than the observed fcc. An fcc-bcc transition characterized by a change in the sign
of the difference in free energies in Sr at O'K was found at a critical pressure P, 10 kbar; at zero pressure,
it was found at a critical temperature, T, 150'K. Both these results agree only qualitatively with, the
observed P, 36 kbar and T, 830'K. Ca and Ba, already bcc at absolute zero, showed no phase transition.

I. DTTRODUCTION

ECENTLY, the changes in the electrical properties
and the crystal structures of the alkaline-earth

metals —Ca, Sr, and Ba—under pressure have attracted
considerable attention. EGorts have, however, been
focused primarily on the change of the resistance with
pressure and its implications for the electronic band
structure of the alkaline-earth metals. ' ' From these
studies, particularly the most recent extensive band-
structure calculations in the face-centered cubic (fcc)
and body-centered cubic (bcc) phases by Vasvari et at.,'
it has become clear that the band structures near the
Fermi surface are basically nearly-free-electron-like, as
previously obtained by Harrison, ' but do not have the
simple form of s-p bands suggested. by Mott' and
Drickamer. ' A computation of the high-pressure elec-
trical resistance E. by Vasvari and Heine' on the basis
of the band structure in the fcc phase has shown that
the high resistance and the negative itR/BT in Ca and

*This work was supported by the Advanced Research Project
Agency through the Center for Materials Research at Stanford
University.

' N. F. Mott, Phil. Mag. 13, 989 (1966).' H. G. Drickamer, Solid State Phys. 17, 1 (1965).' B.Vasvari, A. O. E. Animalu, and V. Heine, Phys. Rev. 154,
535 (1967).

4 B.Vasvari and V. Heine (to be published).
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don) 84, 761 (1964).' W. A. Harrison, Phys. Rev. 131, 2433 (1963).

Sr can be understood in terms of a high-pressure semi-
metallic state with vanishingly small Fermi-surface
area, rather than the semiconducting state obtained
by Altmann and Cracknell. ' In a slightly different vein
from these developments, Jerome et al rhave rece.ntly
developed a theory of the transition from semimetallic
states characterized by small energy gaps or small band
overlaps to a new state, which they have called excitonic
insulator, and for which considerable studies have been
reported in the Russian literature.

In this paper we shall make a quantitative study of
the transitions in the crystal structures. In pure Ca
and Sr, which crystallize in the fcc phase at O'K,
temperature-induced transitions to the bcc phase have
been observed at 721 and 830'K, respectively. ' Pres-
sure-induced transitions were first reported by Bridg-
man, ' " and the phase boundaries measured by
Jayaraman et al.s up to pressures of 45 kbar. In Ca, the
transition temperature T, rises with pressure: BT/itp~
+3.3'C/bar at 1 atm; in Sr, T. drops with pressure:
itT/BP 10'C/bar. In Ba—, which crystallizes in the
bcc phase at O'K, temperature-induced transitions have
not been observed, but a pressure-induced transition

7 D. Jerome, T. M. Rice, and W. Kohn (to be published).
8 A. Jayaraman, W. Element, Jr., and G. C. Kennedy, Phys.

Rev. 132, 1620 (1963).
e P. W. Bridgman, Proc. Am. Acad. Arts Sci. 72, 187 (1938);

74, 425 (1942)) 81, 169 (1952).
'e P. W. Bridgman, Phys. Rev. 60, 351 (1941).
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F(Q, T) =U TS. — (1.2)

At the equilibrium between two phases, the phase
boundary is determined as a function of P and T by

(1.3)AG=—G —Gp=0,

where G and Ga are the values of G in the n and the

P phase, respectively. For slight departure from thermo-

dynamic equilibrium, EG&0 implies that the P phase
has the lower free energy and is therefore more stable
than the n phase. If the system was originally in the
o. phase, then the temperature T, at which (1.3) is

satisfied is the transition temperature for an es-P phase
transition. Our task will primarily be to compute (1.2)
as a function of volume and temperature in a metal
from statist. ical mechanics, in an independent-particle
model.

Recently, Harrison'3'4 and Pick and Sharma" have

employed the pseudopotential method in the nearJy-

free-electron approximation for computing the internal

energy due to the electronic band structure and the
electrostatic interaction between the ions at O'K. They
have, however, neglected the phonon contribution to
the free energy, which even at absolute zero makes a
contribution to the difference in internal energy that is

of the same order (typically 10 ' Rys per ion) as the
electrostatic contributions, and tends to stabilize the
"softer" bcc lattice. This extra contribution at O'K will

be included in the present analysis.
At 6nite temperatures, there has been practically no

first-principles computation of the entropy difference

between phases of crystal structures. However, Zener"

has given some qualitative and, in essence, entropy-

» J. D. Barnett, R. B. Bennion, and H. T. Hall, Science 141,
534 (1963).

j2 F. P. Bundy and H. M. Strong, Solid State Phys. 13, 81
(1963).

'3%'. A. Harrison, Phys. Rev. 129, 2503 (1963).
'4 W, A. Harrison, Phys. Rev. 136, A1107 (1964).
» R. Pick and G. Sarma, Phys. Rev. 135, A1363 (1964).I C, gener, Phys. Rev. /1, 846 (1947).

to the hcp (hexagonal close-packed) phase has been
reported. "However, in this paper we shall be primarily
concerned with the fcc—bcc transitions, for which the
P-V diagrams" and phase boundaries' are relatively
well established experimentally. The relevant experi-
ments will be summarized later in Fig. 7.

The thermodynamic function which determines the
relative stability of two phases n and P at finite temper-
atures T' and pressures P is the Gibbs free energy:

G(I', T) =H TS, — (1.1)

where H= U+I'0 is the enthalpy, U being the internal

energy and 0 the volume; and S is the entropy. It is

sometimes convenient also to consider the Helmholtz
free energy P, which is a function of volume and temper-
ature, and coincides with the Gibbs function at P=O:

based arguments to explain the tendency to bcc at
high temperatures in the transformation between n
brass (fcc) and P brass (bcc) . Such qualita, tive argu-
ments assume, of course, that the enthalpy at O'K is
lower in the low-temperature phase. In a first-principles
calculation, we have to show that a single model will

give the lower enthalpy in the low-temperature phase
and the lower free energy in the high-temperature
phase. In this respect, our two recent papers"" have
gone a long way in reducing the difFicult parts of the
problem to the barest essentials, for we can absorb all
the dependence of the internal energy of structures and
the energy of the vibrating ions on the pseudopotential
in a single functional, namely, the Cochran G func-
tion, ""which may be determined experimentally from
the phonon spectrum"" of the metal. Since, however,
the phonon spectra of the alkaline-earth metals have
not been measured, we shall be content to evaluate the
G function from the Heine —Abarenkov model poten-
tiaP'" as described in Refs. 17 and 18, with slight
modifications, if necessary, in order to obtain physically
meaningful and convergent results. Then it becomes a
straightforward matter to compute the phonon spectra
in the fcc and bcc phases using the programs set up in
Ref. 17 and to evaluate the thermodynamic functions,
entropy, specific heat at constant volume, and free
energy by the Houston method" as applied originally
to cubic structures by Horton and Schiff. '4

The conduction electrons, of course, do contribute
to the entropy at finite temperatures. But, as is well
known, the electronic contribution to the high-temper-
ature specific heat is very small compared with the
phonon contribution. In any case, it is practically inde-
pendent of the rearrangement of the ions at constant
volume, and so does not contribute to the difference in
free energy. We shall therefore drop it completely from
our subsequent discussion.

We begin in Sec. II by finding expressions for the
separate contributions to the free energy. The calcu-
latioii of the phonon spectra will be discussed in Sec.
III. In Sec. IV, numerical results will be compared with
experiment. In a survey of this type based on the
nearly-free-electron and harmonic approximations, the
errors are presumably of the same order as the energy
differences, 10 ' to 10 4 Ry per ion, which we are

'7 A. 0. E. Animalu, F. Bonsignori, and V. Bortolani, Nuovo
Cimento 448, 159 (1966).

's A. O. E. Animalu, Proc. Roy. Soc. (London) A294, 376
(1966).

'9 W. Cochran, -Proc. Roy. Soc. (London) A27'6, 308 (1963).
'0 R. A. Cowley, A. D. B. Woods, and G. Dolling, Phys. Rev.

150, 487 (1966).
"V.Heine and I. Aharenkov, Phil. Mag. 9, 451 (1964).
"A. O. E. Animalu, Tech Rep No. 3, Solid State Theory

Group, Cavendish Laboratory, Cambridge, England 1965 (un-
published) .

sa W. V. Houston, Rev. Mod. Phys. 20, 161 (1948).
24G. K. norton and H. SchifF, Proc. Roy. Soc. (London)

A2SO) 248 (1959).
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computing, and it would be too optimistic to expect
quantitative agreement with experiment. It is, however,
interesting in itself to investigate what ingredients
would be required in practice to understand the relation
between the electronic structure and the pressure-
induced transitions in the crystal structures of simple
metals.

II. THE FREE ENERGY

PpiI = Uph TSpiI) (2.1)

where the internal Uph reduces to the "zero-point"
energy at O'K:

There are two types of contributions to the separate
terms U and S in the Gibbs free energy for a metal.
These are the contributions due to the Fermi —Dirac
assembly of conduction electrons and the contributions
due to the. Bose—Einstein gas of phonons arising from
the quantized modes of vibration of the ion cores.
Even at O'K, the ions execute "zero-point" vibrations,
so that the electronic states are, in general, coupled to
the ionic motion. The adiabatic principle enables us to
decouple the two systems to second order in the ionic
displacement and to compute the total energy of the
conduction electrons in a fixed configuration of the ions.
This is the harmonic approximation, which is valid in
the limit Bt&/TF((1, BD being the Debye temperature
and Tr the Fermi degeneracy temperature. (B&/Tr
0.0042, 0.0037, and 0.0027 in Ca, Sr, and Ba, respec-
tively, at zero pressure. ) In this limit, the phonon
frequencies depend only on the volume and not on the
temperature, and the phonons may be considered as
statistically independent.

The phonon contribution to the Helmholtz free
energy is given by the well-known expression"

termined in the harmonic approximation by solving
the dispersion equation

ZL~ "'8"-D"(q) je.."=0, (2.»)

co (Qs) =coe —cote & (2.5b)

where co'=3l 'D~ and aug'=3f 'D The dependence
of the solution on the pseudopotential is now given in
terms of Cochran's G function by the expression":

( ~'(q) )~.= .'Z, "
G(q+H)

(q+H) i, (q+H) „
q+H '

—co„' Q ", G(H), (2.6)H'
where H is a reciprocal lattice vector and the G function
will be defined below. The ion plasma frequency is
given by

where M is the ionic mass, and e„,& is the component
along the tt axis (tt= 1, 2, 3) of the unit polarization
vector e„. The quantity Dq„(q) is. the Fourier com-
ponent of the dynamical matrix, which is a sum of
three contributions":

(i) A Coulomb part Dc arising from the direct
Coulomb interaction between the ions.

(ii) A (repulsive) Coulomb part D~ arising from
the exchange overlap between the ions,

(iii) An electronic part D~ due to the polarization
of the conduction-electron gas by the vibrating ions.
DE depends on the pseudopotential carried rigidly by
the ion, 'i.e., on the electron —phonon coupling matrix. ""
In a cubic crystal, Eq. (2.5a) factors in the principal
crystallographic directions L100j, L110j, and L111),so
that the solution (neglecting D~) reduces to the .form

Ut, b=-', Q fico'„ (2.2)
~„=L4~(Ze) '/mnjrt' (2 &)

and the entropy is given by

ftcoqal
St,b= —k Q ln 1—exp

kT j

kT exp(ftco„/kT) —1

It is customary to write a single expression:

&,b=kT g ln 2 sinh
2kTj

(2.4)

Here ~q, is the phonon frequency, q being the phonon
wave vector and s the polarization index. co~, is de-

's N. F. Mott and H. Jones, The Theory of the Electrt'cat Proper
ties of Metals and Alloys (Dover Publications, Inc. , New York,
1936'), p. 2.

U.=&.e+&b.+I'-te (2.8)

"T.Toys, J. Res. Inst. Catalysis 6, 161 (1958);6, 183 (1958)."L, J. Sham and J. M. Ziman, Solid State Phys. 15, 221
(1963)."L.J. Sham, Proc. Roy. Soc. (London) A283, 33 (1965).

(co„=6.4, 3.9, 2.8X10te sec ' in Ca, Sr, Ba at zero
pressure). Upon using the phonon spectra computed
in the three crystallographic directions, the evaluation
of (2.2), (2.3), and (2.4) is immediate by Houston's
method"" as described in Sec. 5 of Ref. 17 for the
phonon specific heat at constant volume. This will be
elaborated on later in Sec. IV.

In the one-particle (Hartree —Fock) approximation,
the internal energy U, of the conduction electrons in
a fixed configuration of the ions, together with the
electrostatic interaction between the ions at O'K, can
be separated, in a nonunique way by following the
procedure due to Harrison" ' and Pick and Sharma, '
into three parts:
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E„= Z"'e—'y/E„ (2.10)

per ion, where R, =(30/4~)'~' is the radius of the
atomic sphere LR,=4.123, 4.494, 4.661 atomic units
(a.u.) in Ca, Sr, Ba at zero pressure]. The parameter
y is the Fuchs" constant with values 1.79172 (fcc),
1.79186 (bcc), and 1.8 (point ion in an atomic sphere) .

(ii) Eb, is the electronic band-structure energy, which
depends on the pseudopotential and the detailed con-
figuration of the ions. We give it, as in Eq. (2.6), in
terms of Cochran's 6 functions which we have related
in Ref. 18 to Harrison's energy —wave-number char-
acteristics. It has the form

(i) E„ is the electrostatic energy of point ions of
effective valence

Z*=Z(1+(lr
~ gi

~
k),„) (2.9)

immersed in a uniform compensating background of the
conduction electrons, where p is the projection operator
introduced by Pick and Sharma which orthogonalizes
the valence states to the core.

the internal energy. The term "free-electron energy" is
perhaps not appropriate, since E&, may depend on how
the core energies are treated in setting up the pseudo-
potential, in which case it may depend on the arrange-
ment of the ions. A critique of the above separation
procedure has received exhaustive treatments re-
cently. ""In the model potential, of course, the core
energies of the appropriate ions are taken from the
atomic spectrum, which eliminates the uncertainties in
u priori Hartree-Fock calculations, and in this case E~,
is independent of core rearrangement in the separation
procedure.

If we collect terms, we obtain finally for the internal
energy at O'K due to the electrons in a fixed configu-
ration of the ions, and to the electrostatic interaction
between the ions, the expression

, /~
~4~&' g, S*(q)S(q)

G( ) +E
2ZQ ~ q'

(2.14)

per ion. Here

4~Z*'e', S*(q)S(q)
2ZQ, q'

S(q) =E—' g exp( —iq R,) =8,,H

(2.11)

(2.12)

where we have pulled out the dependence of the electro-
static and band-structure terms on Z*. It is important
to observe that the part which depends on the arrange-
ment of ions contains Z* as a factor. Since the G function
can be determined from experiment, there are no
serious objections to the use of Z* in computing energy

differences. As discussed earlier in connection with Eq.
is the structure factor which takes completely into
account the dependence of the terms on the positions
of the ions at sites R, :It vanishes unless q =H, where H
is a reciprocal-lattice vector. The G function for the
Heine —Abarenkov model potential is

4~Ze'(1+oeff) f(q) —1

where V~(q) is the unscreened Fourier component of
the model potential evaluated at the Fermi wave
number, and U(q) L V~(q)/e(q) j is the screened
potential, e(q) being the Hartree dielectric function
with modifications for exchange through the factor
1 f(q) and for th—e orthogonalization charge through
the factor 1+a,fg, as discussed in Ref. 18. In view of
Shaw' s" recent reformulation of the model potential,
(2.13) can only be considered as approximately correct.
Note that G(0) = 1, so that the G function may be said
to be properly normalized.

(iii) Ef, is the free-electron energy, which depends
only on the volume, and so does not contribute to
differences in the internal energy between different
arrangements of the ions at constant volume. This
term will not concern us further; it is needed, for
example, if we wish to evaluate the absolute value of

"K.Fuchs, Proc. Roy. Soc. (London) AIS1, 585 (1935).
'OR. W. Shaw, Jr. thesis, Stanford University, 1967 (unpub-

lished).

(1.3), we are only concerned with the zero and sign of
the difference in Gibbs function. Consequently, the
precise value of Z* is unimportant, and we have used
Z directly. A similar argument applies to the renormali-
zation of the plasma frequency in (2.7) as discussed in
Ref. 17, i.e., we use (Zt:) ' here instead of (Ze*) '.

The Anal expression for the Gibbs free energy in the
nearly-free-electron and harmonic approximations is

G(p, T) =U,+F,g+pQ,

where U, and F„z are given by (2.1) and (2.14) .

(2.15)

III. THE PHONON SPECTRA

» S. H. Vosko, Phys. Rev. 153, 683 (1967)."L.Kleinmann, Phys. Rev. 146, 472 (1966).

In this section we shall discuss the computation of
the phonon spectra in Ca, Sr, and Ba as a function of
0/00, where Qo is the atomic volume at zero pressure.
Since this is sensitive to the choice of the pseudo-
potential form factors v(q) required for evaluating the
G function appearing in (2.6), a realistic choice of v(q)
has to be made in order to obtain numerical results
with any physical content. We have therefore performed
the calculations in two models.

The first (model A) is the straight Heine-Abarenkov
model potential with the parameters in Ca, Sr, and Ba
taken from Table 1 or Vasvari et al. ,' and their variation
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with volume incorporated simply by changing the
atomic volume 0 and the orthogonality correction
cr ff = s (R,/R, ), where R, has been defined in (2.10)
and R, is the ion core radius. The physical content of
the results is found to be unchanged by including the
damping factor of exp[ —0.03&&(q/2k&)'$ multiplying
V(q) suggested by Animalu and Heine, " and so we
have dropped the factor altogether.

The second (model B), to which the successful results
outlined in the abstract pertain, is the modification of
model A described in Ref. 17. It consists of replacing
Ap with Z/Rsr in order to make the l&2 angular
momentum components of the model potential coe-
tielols at R~. This was found" to be more effective in
reducing any ripples in the convergence of sums like
(2.6) and (2.11),and to be as satisfactory in reproduc-
ing the electronic band structure and Fermi surfaces as
model A. The differences between v(q) in the two
models is illustrated for Sr with As=0.88 (model A)
and with A& replaced by Z/Rir=0. 56 (model B) in
Fig. 1. The two agree closely at small q, but at large

q the smoother form of model B de6nitely leads to
more satisfactory results in the phonon spectrum and
in the internal energy differences at O'K (to be dis-
cussed in Sec. IV). We have, however, retained both
models, partly because of their respective successes in
other connections, '~" and partly because the bulk of
the computation was initially performed on model A.

For definiteness we have tabulated the Coulomb
frequencies or,s(qs) appearing in (2.5) in Table P4"
for the fcc and bcc structures in units ~„=1, since in
this unit, it is the same for all fcc and for all bcc struc-
tures, and the variation with volume can be incorporated
easily by scaling pp„' with a factor (Q/Qp) ', using the
values of o~v at Q/Qp ——1.0 given in (2.7). We have
neglected the exchange overlap contribution to (2.5),
as in Ref. 17, since the core (cf. R./R, ) is as small in

MOOEL POTENTIAL IN Sr, Q/Go*I. O

PIG. 1. The screened-model potentials in Sr at 0/00=1.0.

» A. O. K. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965).
3' S. H. Vosko, R. Roger, and G. H. Keech, Can. J. Phys. 43,

1187 (1965)."L. J. Sham, thesis, University of Cambridge, 1963 (un-
published) .

5.0— 100 I IO
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(&.5 I.O 0.5
q (2W/a el)

0.5

PIG. 2. Phonon dispersion in fcc Ca at 0/Op=1. 0. Note: The
longitudinal and transverse branches are labeled according to the
polarization vectors defined in Table I. — (backscattering),
——— (forward scattering), —~ —~ — (mean longitudinal sound ve-
locity).

"D.Bohm and T. Stever, Phys. Rev. 84, 836 (1951).
3' K. A. G. Schneidner, Jr., Solid State Phys. 16, 275 (1964).

the alkaline-earth as in the alkali metals and Al, over
the range Q/Qp &0.7 for which (2.5) is positive.

For the electronic part we observe first that the
experimental Debye temperature (OD ——230, 171, 113'K
in Ca, Sr, and Ba at Q/Qp=1. 0) is appreciably lower
than the theoretical Einstein temperature [Re ——

(ft/k)pp„/&3=277, 172, 122'K in Ca, Sr, and Ba at
Q/Qp= 1.0j in Ca and Ba, but OD es in Sr. Oz repre-
sents the (unscreened) restoring force when a single
ion is displaced from its mean equilibrium lattice site,
whereas 8~ includes the screening action of the con-
duction-electron gas. We would therefore expect the
electronic contribution in (2.5) to be more appreciable
in Ca and Ba than in Sr. This is, in fact, the case
(model B), as we shall also see in Sec. EV by comparing
the absolute magnitudes of similar contributions to the
internal energies at O'K. Secondly, we find (model A)
that the form factors v(q) = (k+q ~

v
~
k) are strongly

nonlocal, i.e., depend strongly on the relative orien-
tations of the initial electronic state k and the final
state k'=k+q. We have shown in Fig. 2 the enormous
differences between calculations performed with k
parallel to k' (fortvard scattering for q)2k') and k
antiparallel to k' (back scattering); the ratio of the
corresponding elastic constants is nearly 3. The Bohm-
Stever" speed of sound is [(-';Er)Z/Mj'~'~3. 9&&10'
cm/sec, and the measuredsr mean speed of sound is
[3(1—o) /(1+o )xp$'i ~4&& 10 cm/sec, a being the
Poisson ratio, p the compressibility, and p the density.
Each gives a mean longitudinal elastic constant lying
between the two extremes of forward scattering and
back scattering. However, we have used the back-
scattering v(q) with

~
lr ~=kr throughout the calcu-

lation, since this corresponds to the minimum in the
energy denominator's in G(q). Other nonlocal effects,
e.g. , in the screening, were ignored. The summation in
(2.6) was carried to equal distances of ( +26) (2v./ap)
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TABLE I. co s in units of ~~'. Longitudinal branches of ~ s in each of the three directions [100],[110j,and [111j are denoted by I,
and transverse branches by Ti and T& (or by T when T& and T..are identical). In the [100j direction, q= q(1, 0, 0), the polarization
vectors are ez= (1, 0, 0), er= (0, 1, 0), or (0, 0, 1); in the [110jdirection, q=q(1, 1, 0), ez=(1, 1, 0)/VZ, eri=(1, —1, 0)/u2, err=
(0, 0, 1); in the [111)direction, q= q(1, 1, 1), er, = (1, 1, 1)/VS, er = (1, —1, 0) /v2', or (1, 1, —2) /+6.

(e/2m) q

(a) fcc

q=q(l, 0, 0)
L T

q=q(1, 1, 0)
T1 T2

q=q(1, 1, 1)
L T

0.1
0, 2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.9926
0.9710
0.9370
0.8934
0.8442
0.7940
0.7479
0.7107
0.6865
0.6781

0.0037
0.0145
0.0315
0.0533
0.0779
0.1030
0.1261
0.1447
0.1567
0.1609

0.9916
0.9645
0.9141
0.8354
0.7259
0.5895
0.4395
0.2993
0.1981
0.1609

0.0009
0.0043
0.0120
0.0260
0.0472
0.0748
0.1053
0.1336
0.1537
0.1609

0.0075
0.0312
0.0739
0.1386
0.2268
0.3357
0.4551
0.5671
0.6483
0.6781

0.9912
0.9682
0.9399
0.9172
0.9086

0.0044
0.0159
0.0300
0.0414
0.0457

(b) bcc

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.9904
0.9553
0.8971
0.8174
0.7203
0.6132
0.5075
0.4171
0.3558
0.3340

0.0059
0.0234
0.0525
0.0923
0.1409
0.1944
0 ' 2473
0.2925
0,3232
0.3340

0.9892
0.9553
0.9127
0.8777
0.8642

0.0015
0.0056
0.0110
0.0155
0.0173

0.0113
0, 0412
0.0784
0.1089
0.1206

0.9862
0.9267
0.7986
0.5897
0.3340
0.1235
0.0561
-0. 1399
0.2730
0.3340

0.0080
0.0377
0.1018
0.2062
0.3340
0.4393
0.4730
0.4311
0.3646
0.3340
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Fro. 3. Phonon dispersion in Ca. (a) 0/Os=1. 0;
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TABLE II. u& (model B) (in units of co~) in Sr at 0/Qo='1. 0. The polarization directions are exactly as in Table I. The table gives the
evaluated expression (2.5) .

(tr/2s) q

(a) fcc

q=q(1, 0, 0)I T
q=q(1, 1, 0)

Tl
q=q(1, 1, 1)

L Z

0.1.
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

. 0..0871
0.1774
0.2646
0.3486
0.4245
0.4902
0.5441
0.5841
0.6088
0.6171

0..0632
0.1249
0.1837
0.2390
0.2870
0.3274
0.3595
0.3829
0.3971
0.4019

0.1471
0.2861
0.4011
0.4822
0..5255
0.5307
0.5049
0.4615
0.4196
0.4019

0.0326
0.0799
0.1290
0.1813
0.2349
0.2869
0.3347
0.3711
0.3941
0.4019

0.0896
0.1787
0.2646
0.3454
0.4199
0.4861
0.5415
0.5829
0.6084
0.6171

0.1892
0.3639
0.5020
0.5920
0.6231

0.0696
0.1379
0.1931
0.2294
0.2416

(b) bcc

0.1
0.2
0.3
0.4
0.5
0,.6
0.7
0.8
0.9
1,0

0.1170
0.2176
0.3101
0.3850
0.4425
0.4847
0.5121
0.5274
0.5344
0.5363

0.0826
0.1641
0.2413
0.3116
0.3748
0.4297
0.4753
0.5088
0.5293
0.5363

0.1937
0.3643
0.5013
0.5906
0.6218

0.0340
0.0682
0.0911
0.1034
0.1101

0.1154
0.2219
0.3042
0.3559
0.3736

0.2441
0.4349
0.5398
0.5426
0.4494
0.3038
0.2493
0.3612
0.4864
0.5363

0.0911
0.1841
0.2789
0.3722
0.4494
0.5021
0.5307
0.5397
0.5383
0.5363

in reciprocal lattice space, where as= (2Q) '~' is the bcc
lattice constant. Convergence was better than 0.1% in
model 8, but as high as 5%%uz or less in model A, as de-
termined by the symmetry of the dispersion curves.

The phonon spectra (model A) are given for Ca, Sr,
and Ba in Figs. 3, 4, and 5, respectively. Since all the
dispersion curves turned out to be very similar to the
ones in Ca, we have shown those at 0/Qs=1. 0, 0.&,

and 0.6 in Figs. 3(a), 3(b), and 3(c), respectively, for
Ca only. The computation was repeated for model B,
not in its entirety, but only in Sr at 0/0& ——1.0 (Table
II), for the reason (see below) that here it was only
in model 3 that we obtained the correct fcc phase

with lower internal energy than the bcc at O'K. The
variation of the shapes of the dispersion curves with 0
comes entirely from the G function (Fig. 6) .

The computations were terminated where the lower
transverse branches become pure imaginary. In Ca
and IIa this occurred for 0/0, =0.7 and for Sr at
0/Qs=0. 7 (fcc), 0.6 (bcc) . This suggests that both fcc
and bcc structures will be unstable at smaller values
of 0/Qs.

There are no measurements to date of either the
phonon spectra or the elastic constants in Ca, Sr, and
Ba. In Sec. IV, however, we shall evaluate the specific
heat at constant volume, C„(T),and show that it does
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Fro. 4. Phonon dispersion in Sr at 0/Os=1. 0.
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G(q )

0.5

plane: The bcc oGers no resistance to a shear of this
type. The elastic constant, s (C» —C»), associated with
this shear is given by the slope of the lower transverse
Tr branch in the L110j direction of the phonon spec-
trum, which is generally higher in the fcc than in the
bcc phase at zero pressure Lcf. Figs. 3(a), 4, and 5j.
Thus ES&0 in (3.4) is approximately equivalent to

s (Cll Cls) fcc& s (Cll Cls)bcc. (3.6)

have the T' behavior at low temperatures T&(OD and
tends to the Dulong —Petit limit of 3R (R=the gas
constant) at T»8D, as expected.

Before we proceed in the next section to the detailed
computation of the free energy, it is useful to conclude
this section by giving a semiquantitative version of
Zener's original qualitative arguments" for the tendency
of the fcc phase to transform to the bcc phase at high
temperatures, T))0~. Let us assume that the enthalpy
difference between the bcc phase and the fcc phase is
positive at O'K, i.e.,

dH=—DU+phQ& 0, (3.1)

where AX=—Xb„—Xf„ for any X. Then at O'K, Eq.
(3.1) expresses the fact that the fcc phase is more
stable than the bcc phase. At a Gnite temperature T,
the equilibrium between the two phases is given by

AG=—AH —TAS=O, (3 2)

where AS comes entirely from the phonon contribution
(2.3) and is practically independent of temperature.
For, in the harmonic approximation, "

S —k Q ln(fi(v„, /kT) T»8n, (3.3)for
qs

so that

5S k g 1nL&e„(fcc)/ce„(bcc) j. (3.4)

The transition temperature T, is therefore given by
(3.2) as

O0
N

~~o r
li

0
/k 2.0

q/kF

FzG. 6. Volume dependence of Cochran's G function in Ca
(dimensionless units). The first three nonzero reciprocal lattice
points in the fcc and bcc structures are indicated by Huo (bcc),
and Hnl and H2po (fcc).

On introducing the complementary shear constant
(C44) r,. (C~)b„, and the anisotropy ratio

C44/s (Cll C1'2) y (3.7)
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(d) PHASE (Sr)
I200
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the condition (3.6) reduces to Ab„&At„ for a tran-
sition from fcc to bcc to occur at T))0~. Zener found
A =18.7 in P-brass (bcc) and A =4.0 in cr-brass (fcc)
to substantiate this argument. Detailed calculation to
be presented in the next section shows AS&0 at
Q/Qs ——1.0 but not necessarily so for smaller Q/Qs, for
both models we have used here. From the fact that
A—=Crs'/Crt', where Crt and Crs are the velocities of
sound for the transverse $001j and L110$ branches in
the L110j direction Lgiven in Figs. 3(a), 4, and 5j,
we obtain Ab ——7.7, 9.5, 7.9 and Ar„=6.3, 6.3, 6.3
in Ca, Sr, and Ba, respectively, at Q/Qs ——1, consistent
with ES&0 and the occurrence of a temperature imduced-

phase transition, as expected. The transitions also
manifest a discontinuity in the specific heat at T„as
will be discussed below, with d,C„(T,) &0, consistent
with the absorption of heat at T,.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we shall evaluate the structure-
dependent parts of the free energy from the expressions

T,=hH/DS, (3.5) bcc
CP
0
I-

bcc

where for a real transition to occur we must have
T,&0, i.e., assuming Eq. (3.1), ES&0. Zener made
the observation that the main difference between the
shear resistances of the bcc and the fcc packing of
hard spheres arises in the L1101 direction in the (110)

38 Reference 25, p. 20.

400
fcc

(c)
0

0 I 0 20 30 40
P (kbar)

400
fcc

Id)

0 IO 20 30 40
P (kbar)

FIG. 7. Experimental results in Ca, Sr, and Ba. (a) Compression
(Ref. 12); (b) resistance (Ref. 12); (c) phase diagram in Ca
(Ref. 8); (d) phase diagram in Sr (Ref. 8).
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given in Sec. II and compare the numerical results with
experiments. The relevant experiments are summarized
in Figs. 7(a) —7 (d): Fig. 7(a) gives the relation between
the volume contraction and the pressure"; Fig. 7(b)
gives the corresponding change in the electrical re-
sistance, which has been discussed in Ref. 4; Figs. 7(c)
and 'I (d) are the fcc—bcc phase diagrams' in Ca and Sr,
respectively. In Ref. 8, the corresponding entropy
changes at the transition temperatures were quoted as
AS~0.08 e.u. in Ca and AS~0.23 e.u. in Sr at 1 atm
(Q/Qs 1.0), where the entropy unit (e.u.)~rsR, R
being the gas constant, so that AS~0.04R (Ca),

0.12R (Sr).
At constant values of Q/Qs, it is more convenient to

evaluate the Helmholtz free energy F(Q, T) = U TS, —
than the Gibbs free energy G(P, T) =U TS+P—Q.
The part of the free energy which depends on structure
may be written in the form

F(Q, T) =U TS,h, — (4.1)

where the entropy part S,i, is given by (2.3), and the
internal-energy part has the form

U= U, i,+U., (4.2)

TanLE IIL U, at O'K in Ry/ion. U, is the structure-dependent
part of the internal energy in a Gxed con6guration of the ions

(Eq. (4.3)j.An asterisk indicates the structure with the lower U, .

where U~h is the phonon "zero-point" energy given by
(2.2) at O'K, and

4s.e', S*(H)S(H)
U, = —Z' e'(y —1.8) /R. + G(H)

2ZQ H H'

(43)
is the reduced form of (2.14) with Z* replaced by Z
and the electrostatic energy expressed relative to the
energy of an ion in an atomic sphere Ly= 1.8 in (2.10)j.
The evaluation of (4.3) is straightforward with the G
functions known from computation of the phonon
spectra described in the preceding section. The sums
were performed to equal distances, iH i=( +26) X
(2m/as) in reciprocal lattice space (Fig. 6) .

T~LE IV. The phonon "zero-point" energies
U~h (Ry/ion).

Ca Sr Sr Sa
(Model A) (Model A) (Model B) (Model A)

0/Qo
U hfCC

U hbCC

1.0
0.00203
0.00198

1.0
0.00116
0.00112

1.0
0.00108
0.00105

1.0
0.00088
0.00083

ZfQ
J(x,) q'dq sin8d8dp,

s=l Bz
(4.4)

where J(x,) is any function of x,=—Aced(qs)/kT; q=
q(&e, 8, p) is the solution of the dispersion equation;
a&=&0,(q, 8, P) for the sth branch of the 3r branches of
the function co(qs); and q, 8, p are the spherical polar
coordinates of the vector q. The quantity E is the
number of atoms, Q is the atomic volume, and r is the
number of atoms per unit cell (r=1 in our case). On
performing the angular integration in (4.4) by
Houston's method, "'4 we obtain.

SQ &DI=,g g b q'J(x, ) dq,
(2m)s ,

(4.5)

where n labels the directions L100), L110j, and L111],
respectively, for cr = 1, 2, 3; qD is the maximum (Debye)
wave number in the direction 0.. We make the approxi-
mation of replacing the BZ by a sphere of equal volume
so that all the yp are the same, say q&

——(2/Z)'"k&i
where qz is the Debye wave number (qz=ks =0.587,
0.538, 0.519 a.u. in Ca, Sr, and Ba at Q/Qs ——1.0). The
constants b are'4: bi 40 /3s5, br=64——s/35, ha=36m/35
for both the fcc and bcc structures. Consequently the
final value of the integral (4.5) per ion is

I/E = (4s./35) L10(Iiz+2Iir)

To evaluate U~~ and P~h, we use the method outlined
in Sec. 5 of Ref. 17.Ke transform the summations over
q in expressions like (2.2) or (2.4) into an integration
over the first Brillouin zone (BZ):

I=Q J(irido~(qs) /kT)

0/Qo Ub~
Model A

U foo

Model 8
U boo U foo

where

+16(Isz+Isri+Isrs) +9(I;+2Isr) $, (4.6)

CR 1.0
0.8
0.6

—0.12672* —0.12492 —0.12082* —0.11984
—0.19294~ —0.18817 —0.18093* —0.17705
—0.28638* -0.26707 —0.25785* —0.24979

QI z r=, J(X i,r)q'dq,
2s' 0

(4.7)

Sr 1.0
0.8
0.6

Ba 1.0
0.8
0.6

—0.11630~
-0.18969*
-0.30820*

-0.47711*
—0.72749*
—1.19789*

—0.11564
—0.18704
—0.30087

—0.47482
—0.72246
—1.18658

—0.01904
—0.03712*
-0.05159*

-0.04976*
—0 ' 07724*
-0.11459*

—0.01923*
—0.03556
—0.04753

—0.04886
—0.07393
—0.11058

with I. and T denoting the longitudinal and transverse
branches of the phonon spectrum, for 0.=1, 2, 3. For
the various thermodynamic quantities we simp1y set
J(X) =kT ln(2 sinhrsX) for the free energy (2.4);
J(X) =kTX/2 for the zero-point energy (2.2); and
J(x) =kx'e'/(e* —1)' for the specific heat C,(T) at
constant volume. We shall express the entropy and
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TanLE V. Speciffc heat, entropy difference, and free energy in Sr (model 8) at 0/Op= 1.0. The specilic heat and the entropy differ-
ences are in units of R =Nk, where N is the number of ions per gram-atom; the free energy F (Qo, T) is in Ry/ion. The sign of AF-
Fb Fq„—is also indicated. AS= Sb„—Sq„was calculated from (3.3) and so is meaningful for T)en.
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0
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2.974
2.975
2.976
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2.977(6)
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Q fco(T)

0
1.963
2.659
2.836
2.902
2.934
2.952
2.962
2.969
2.974
2.977
2.980
2.982
2.983
2.985
2.985(6)
2.986(4)
2.987
2.987(6)
2.9ss (1)
2.989

0
0.16
0.19
0.20
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21

—0.01799—0.01820—0.01898—0.02019—0.02171—0.02345—0.02538
0.02747—0.02969—0.03203—0.03448—0.03702—0.03964—0.04235—0.04512—0.04796—0.05087—0.05383—0.05685—0.05993—0.06305

—0.01815—0.01830—0.01902-0.02016—0.02160—0.02328
0.02514—0.02716—0.02932—0.03160—0.03397—0.03645—0.03901—0.04164—0.04435—0.04713—0.04997—0.05287—0.05583—0.05884—0.06189

C„(T) in units of E=/t'/k (gas constant), and the free
energy and "zero-point" energy in Ry/ion, where
k=6.3446&&10 ' Ry/'K. The numerical integration of
(4,r7) is straightforward; one interpolates the phonon
spectra from tables like Table II.

In Table III the values of U, are given for both
models A and 8, at Q/Qp=1. 0, 0.8, and 0.6. In Table
IV the "zero-point" energy U», which is harder to
compute, is shown only at Q/Qp ——1.0. In Table V the
free energy (4.1) is given explicitly for Sr (model 8) at
Q/Qp = 1.0, together with' the entropy difference AS,&

and the specific heat at constant volume, C„(T), over
a wide range of temperatures: 0&7&1000'K. In Table
VI, the results for Ca, Sr, and Ba (model A) are summa-
rized by giving only the entropy differences at 600'K,
since 6$~h remains approximately the same for T)&8&.
The relevance of these tables to the understanding of
the phase diagrams will now be discussed.

The relative stability of the fcc and bcc phases at
O'K and at Q/Qp ——1.0 is determined by comparing the
total-internal-energy differences obtained by adding
the corresponding terms in Tables III and IV. We see
that both models A and 3 give the lower internal energy
in the bcc phase for Ca and Ba, in agreement with the
observed bcc phase in Ba, but not in Ca, which is fcc.
In Sr, model A gives the lower internal energy to the

(o) PHASE DIAGRAM Sr (EXPERIMENT)

800

700

T( K)

600—

500
0

I

IO 20
P (k bar)

30

300—
(b) PHASE DIAGRAM Sr (THEORY)

bcc phase at Q/Qp ——1.0, whereas model 3 gives it to
the fcc—the latter model being in agreement with the
observed fcc phase. The contribution from the phonon
"zero-point" energy turns out to be extremely small,
but consistently in favor of the "softer" bcc lattice. It
is also a measure of the average phonon frequency
o~= gp, +p„and indicates that o~&„ is generally higher
than ab„at Q/Qp ——1.0. The disappointing result in Ca
is not altogether unexpected, since we are using only
second-order perturbation theory in the presence of a
strong d potential arising from the strongly attractive

TABLE VI. Entropy diR'erences at 600'K (model A), in units
of R=Nk, where N' is the number of ions per gram-atom and.
k is the Soltzmann constant.

Sr

200—
T(4K)

IOO

0/Qp
aS

1.0 0.8 1.0 0.8 1.0
+0.111 —0.054 +0.188 +0.033 +0.219

00 I

IO 20
P(kbor)

Flc. S. Comparison between theory and experiment in Sr. (a)
Experimental phase diagram; (b) theoretical phase diagram.



PHASE VRAXSITrONS

As component in the model potential (model A). We
observe, however, that Harrison (private communi-
cation) has obtained the correct fcc phase in Ca by
using his point-ion model potentiaP' to fit the model-A
form factor s(q) for q &2k& to a smooth part s(q) P/q
at q&2k~. The internal energy he obtained is U, =
—0.1237 Ry/ion (bcc), —0.1246 Ry/ion (fcc), which
clearly indicates that the difficulty with model A defi-
nitely arises at large q. As we go to smaller Q/Qs at O'K
model A always gives the bcc lower internal energy
than the fcc—which, of course, is consistent with the
tendency of the bcc to be favored at high pressures.
Note, however, that the reason for this- is the lower
euthalpy associated with the bcc at high pressures; it
divers from the tendency to bcc at high temperatures,
which is associated with higher entropy in the bcc, as
we have discussed in Sec. III at Q/Qs ——1.0. With
model B, we obtain the interesting result that in Sr a
transition from fcc to bcc occurs at about Q/Qs ——0.95
Li.e. at a critical pressure P, 10 kbar, from Fig. 7(a) j
to be compared with the pressure seduced trans-ition
shown in Fig. 7(d) at T=O'K and P, 35 kbar. Model
B gives the same negative results in Ca and Ba as
model A, as far as predicting the phase transition is
concerned.

We turn next to the temperature induced t-ransition.
The entropy difFerences in Table VI (model A) are
consistent with the condition b.S)0 required in (3.5)
for a transition to occur at Q/Qs ——1.0. We compare,
in Ca, ES=0.11R (theory) with B,S 0.04R (expt),
and in Sr, ES=0.19R (theory) with bS 0.12 R (expt).
However, model A gives the wrong signs for the
enthalpy differences at O'K, which suggests that T,(0
in (3.5), and so no transition can be predicted in this
model. In model B, we again obtain interesting results
for Sr. Table V indicates, from the change in the sign
of the free-energy diBerence, that a transition occurs at
T, 150'K from fcc to bcc for Q/Qs ——1.0, as compared
with T,=830'K (expt). The phase diagram suggested
by this and the pressure-induced transition considered
in the preceding paragraph in Sr is shown in Fig. 8(b)
(theory) for comparison with Fig. 8(a) )the experi-
mental result of Fig. 7(d) on an expanded scalej.
At 150'K, b,S=0.20R (theory). The agreement be-
tween theory and experiment is only qualitative: ob-
serve that (BT/BP)r, (0 in both Fig. 8(a) and Fig.
8(b).

"W.A. Harrison, Phys. Rev. 139, A179 (1965).

In order to evaluate the temperature-induced tran-
sition at nonzero pressure, we observe that in practice
there is a slight volume change AQ—=Qb„—Qg„at T,.
Thus from (3.5), T, = (AU+ pAQ)/AS, i.e.,

T.(p) =T,(0)+p(AQ/AS), (4.8)

where T,(0) =AU/AS is the transition temperature at
zero pressure. In Table VI, we see that 65 in Ca is
positive at Q/Qs ——1.0, but AS passes through a zero
and becomes negative before Q/Qs ——0.8. Assume that
our calculated DS is correct but that the-model is not
good enough for T,(0), this indicates that T,(p) in-
creases with p and has gone to infinity before Q/Q, =0.8,
i.e., before 50 kbar. The measurement of the phase
diagram [Fig. 7(c)) stops at about 35 kbar, so that we
are not as yet in a position to test this conclusion.
YVith the use of the Clausius —Clapeyron equation
(BT/BP=AQ/ES), (4.8) definitely leads to BT/BP) 0
in Ca with AS&0 if AQ&0, i.e., if there is volume
expansion at T,. In order to obtain results in Sr con-
sistent with Fig. 8(b), i.e., BT/M'(0, the volume must
contract at T, since 65&0.

Finally, to testify that we are indeed dealing with a
phase transition —such transitions commonly being
characterized by discontinuities of one sort or another-
we have calculated (from Table V) the change in the
specific heat AC„(T) = —0.007R at 150'K (model 3).
A similar discontinuity is also predicted by model A
at Q/Q, =1.0 in Ca, Sr, and Ba.

In conclusion, .we have shown in this paper that the
transition between the fcc and bcc can be understood
in the framework of the nearly-free-electron and har-
monic approximations. To improve significantly on -the

agreement between theory and experiment in this
framework we need better pseudopotentials, which, as
we have argued here and elsewhere, " have to be de-
termined experimentally. In an over-all sense, the
present work and the band-structure calculations of
Ref. -3 have been intended as a partial survey of the
various steps required to understand the recent de-
veloprnents in high-pressure work in simple metals.
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