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The Pade-approximant method is generalized in such a way that converging upper and lower bonds can
be established from the early power-series coe%cients for a wider class of functions than was previously
possible. These procedures are proved applicable to many thermodynamic properties of the ferromagnetic
Ising model and used thereon. Certain pitfalls of nonbounding calculational methods, when applied to this
problem, are noted.

1. INTRODUCTION AND SUMMARY
"~"N attempting to treat problems for which no simple,
.. closed-form solution is readily available, it is desir-
able to have systematic approximation procedures
which converge rapidly, and, in practical cases, with
ascertainable accuracy. One way to develop such a
scheme is to base it on a perturbation- or Taylor-series
expansion of the quantity sought. In many cases, for
reasons not particularly related to the physics of the
problem, the series fail to converge for the value of
interest. In order to make further headway with this
type of approach, methods of series summation or
approximate analytic continuation can be developed.
For example, the Pade-approximant method' has proved
very successful in this regard. For a certain class of
functions (series of Stieltjes) it provides converging
rigorous upper and lower bounds. The principal known
physical examples of series of Stieltjes are' the
forward scattering amplitude for potential scattering
and the Ladder approximation to the many-body energy
with a purely repulsive potential. For a much larger
class of functions, the Pade-approximant method pro-
vides rapidly converging estimates, but no indication
of the error involved, save for the relative consistency
of various different Pade approximants.

It is the purpose of this paper to widen the class of
functions for which convergent upper and lower bounds
can be given, by developing an extension of the Pade
approximants. We then show that this widened class
includes various thermodynamic properties of the ferro-
magnetic Ising model. The value of these various
thermodynamic properties can, in principle, be com-
puted for any temperature and (nonzero) magnetic
field to arbitrary and precisely definable accuracy, by
use of these procedures.

In the second section, we introduce approximants of
the form

m j pB„,, (x) =g n„b(x, 0 )+g — — b(x, s)
g~ kt Bs

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

' See, for example, G. A. Baker, Jr., Advan. Theoret. Phys. 1,
1 (1965), an& references therein,

and consider their use in approximating functions of
the type

g(s) = b(z, s) dy(s), (1 2)

( 8/Bs) &b(x—, s) &0 (1.3)

for all real, positive x and s, and j=0, 1, 2, ~ ~ ~ . We
establish that the most general function of the form
(1.3) which is, in addition, regular in the right half-

plane and vanishes su%ciently fast as s tends to infinity,
is of the form

b(x, s) = e "dQ(x, t),

where dg)0. In the third section, we illustrate these
results with a few sample kernels, b(x, s) .

In the fourth section, we prove that the free energy
of the ferromagnetic Ising model, when considered as a
function of

p =exp( 2mH/kT)— (1.5)

can, through these procedures, be given converging
upper and lower bounds for every nonzero, magnetic
field. The same is true for every derivative with respect
to magnetic field, i.e., spontaneous magnetization, mag-
netic susceptibility, etc.

In the fifth section, we explain how a rigorous, though
inconvenient, bound on the energy can be given. We
then mak. e a conjecture on the temperature dependence
of the roots of the grand partition function, test it
experimentally against all available series data, and
use it to construct much more convenient bounds for
the energy.

In the final section we investigate calculation of the
various thermodynamic properties of the Ising model
without the use of bounding procedures. VVe find that
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where dg&0. We prove several general theorems about
this type of approximant. We give a sufficient condition
that (1.1) converge, and that it converge to a unique
function of z. Among the kernels b(x, s) for which we
can prove convergence, we give a simple, necessary,
and suffj.cient condition that (1.1) form upper and
lower bounds to g(s), namely,
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standard procedures such as Pade approximation and
Taylor-series summation work well, except that near
the critical point there is deceptively slow convergence
while still far from the correct answer. In such a situ-
ation, converging bounds are very desirable.

2. GENERAL THEOREMS

b(x, s) =Q b„(x) (—s)" (2.4)

and denote

(2.3) is to be omitted entirely. The defining equations
for n, P, o. are obtained as follows: Let us expand

- dy(N)
(z) =

1+su
' (2.1)

Such success as has been had to date in proving
convergence theorems concerning Pade approximants'
has arisen primarily from a representation of the func-
tion to be approximated in the form

s"dy(s).
0

Then, equating (2.2) to (2.3), we have

OO n

Z b.(x)Z- (--)-+Z b.(x)~.(-1)-
mM l~l m=4

(2.5)

where dp) 0. The Pade approximation then consists of

approximating d& by a discrete sum of delta functions
whose strengths and locations are determined so that
the leading coeKcients of the power series expansion
of the Pade approximants agree with those of the
function being approximated. For functions of the form
(2.1) (called series of Stieltjes) all locations and
coeKcients of the delta functions are non-negative real,
and various Pade approximants can be proved to form
convergent upper and lower bounds to f(s) for z real
and positive. In addition, the approximants converge
for any s which is not on the negative real axis.

We seek to relax form (2.1) in the hope of expanding
the class of functions for which we can establish con-
vergence theorems and bounds on the errors involved
in the use of finite approximations. To this end let us
consider

=Q b (x) (—1)"c„. (2.6)
m~1

Let us assume that b(x, s) satisfies a "solvability" con-
dition so that (2.6) can be made equivalent to a set of
equations obtained by equating 'the coeKcients of b„(x).
For example, if b (x) ~x as x goes to zero, then we
could obtain this equivalence. We take therefore the
defining equations to be

E 0 l Ic ckp
1

0&k&j

n~ 0-~ ~=cI„
L 1

j(k(2n+ j, (2.7)

where there are 2m+j+1 equations in the same number
of parameters and the c& are determined by the solution
of

g(s) = b(s, s) 4 (s), (2.2)
g(s) =+b (s)c ( —1)". (2.8)

where dp) 0 and the properties of b(s, s) are not yet
specified. Our approximants would again be defined by
approximating d@ as a sum of delta functions such that
the leading power-series coeScients agree with those of
g(s) . Some other authors' have considered special cases
of (2.2), but have not, to our knowledge, proved any
theorems about them.

We shall now introduce a triangular table of ap-
proximants.

j p g I'

B„,;(x) =Q n„b(x, o„)+Q—, — b(x, s)
p~ k~ 8s

(23)
where n=1, 2, ~ ~, and j=—1, 0, 1, ~ ~ ~ . These ap-
proximants are, for b(x, s)'=1/(1+xs), the Lm, e+j]
Fade approximants. When j=—1, the second sum in

2 D. P. Taylor, J. L. Gammel, and C. Rousseau. Bull. Am.
Phys. Soc. 12, 83 (1967); R. D. Teasdale, Institute of Radio
Engineers Convention Record, 1953, Part 5, p. 89 (unpublished).
I am indebted to Dr. A. V. M. Ferris-Prabhu for 'this latter
reference.

If we identify the (—o&)
' as the location of poles

and (n~/o~) as the respective residues, then (2.7) are
exactly the equations for the Le, I+j] Pade approxi-
mants to the function

C( ) =Q c ( —s)". (2.9)

Thus, for suitably restricted b(x, s), we may reduce the
study of this more general approximation procedure to
the study of the Fade approximants to a transformed
function. The series C(s) will be a series of Stieltjes for
g(s) of the form (2.2).

We are now in a position to give some sufhcient
conditions on b(x, s) so that the approximants (2.3)
will converge to g(s) .

Theorem I Suppose b(x, s). is regular in a uniform
neighborhood of the positive, real s axis and (lns)'+&)&

b(x, s) is bounded as s-++ ~, for some q) 0; then the
approximants B„,; (x) converge. as e goes to infinity for
functions g(s) of the form (2.2).
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FIG. 1. Integration contour in
the s plane for Eq. (2.10).

As the function in the last summation is monotonically
decreasing in o (as o„&-',S»8), we may bound this
term by 2Eco/(lnS) s H.ence

Cp

I(2.11)I& (lnS) &+—(lnS) ' & g c;S ~ (2.17)

I'roof. Consider

(—1 ds
b(, )L', +)I&s s' (2.10)

uniformly in n, for 5 and j 6xed. Thus, given any error,
e&0, we may pick an S such that the bound of (2.17)
is less than ~re. We may then, by theorem 7 of Ref. 1,
pick an no such that all

I I, I+j) Pade approximants
with n)np diGer by less than

where the contour C is as shown in Fig. j.. We wish to
prove that (2.10) converges as n tends to infinity.
By theorem 7 of Ref. 1, Pn, I+j)(—1/s) converges at
every point of C as n-+oo. Furthermore, s 'Lts, sr+j) X
(—1/s) is bounded at every point of the contour, since
pn, n+j ) approximates a series of Stieltjes. This result
follows easily as the 0.„, being positive, are bounded
by their sum which is cp. Let us now break the integral
(2.10) into two parts. In one part we consider that
portion of C such that

I
s I&S and in the other part

I
s

I
&S. The second part may be written as

0/2) trm

do
I
b(x, s) IL(o —o )'+b') '~'

(2.14)

where the primed summation includes only those terms
with 0- )—',S.

Now, assuming the bound on b(x, s) stated in the
theorem

I b(x, s)
I
&E/(lno)'+&,

we may compute (2.14) as

6coE 2E
I (2.11)

I
& (lnS) &+ — (lnS) —'—~ Q CsS-i'2' 21r

2E lnPo g(-,'~„2+b2) ifs)

2irI ln(-,'o„))'+&

(2.15)

1/2' b(x, s) g +g pts-~ ' ds. (2.11)
C&S ~i S—0~ k=O

Now, except for s in the range
I
s—o I& —,o. ,

(2.12)

In the range
I

s—o. I&-', o.„,
1/I s—o~

I
=1/L(o' o' )'+b')'I' (2.13)

where 0- is the real part of s.
Using (2.12) and (2.13), the result that the absolute

value of an integral is less than or equal to the integral
of the absolute value, the fact that all n's and p's are
positive real, and (2.7) for k=0, we may write

2 3cp
I
(2.11) ' &— do

I b(x, s) I

—+Q Pi,o
~' do.

2'

e/L2(S+irb) max(I b(x, s) II) (2.18)

at every point of C&S, from their limiting value.
Consequently the integral (2.10) converges in the limit
as n goes to in6nity. However, from the form exempli-
fied by (2.11) it follows by Cauchy's integral theorem
that (2.10) is exactly 8„,;(x).Q.E.D.

Corollary 1. If, in addition,

(—1)'+'f&. .s(x) —& -t, j+2(x) I &o,

(2.19a)

(2.19b)

—i/(2~&)

@~1

diverges, lim 8„,;(x) is independent of j.
I'roof. This result follows from Theorem 7 of Ref. 1

and is the condition that all diagonal sequences of
Pade approximants converge to a common limit.

Corollary Z. If the series t,.„has a 6nite radius of con-
vergence E. then we may replace the conditions on
b(x, s) in theorem 1 by b(x, s) regular in the neighbor-
hood of 0(s(E '. (Note: The condition of corollary 1
is automatically satisfied here. )

Proof. As all poles of the Pade approximant
Ln, n+j)( —1/s) lie' in the range 0(s(R ', we may
choose, instead of the contour C in (2.10), C' which
encircles that line segment and on which b(x, s) is
regular. As the Pade approximants converge (theorem 7,
Ref. 1) at every point of C', they converge uniformly
and hence the 8„,;(x) converge.

One of the advantageous results for Pade ap-
proximants to series of Stieltjes is that they form
monotonically converging (on the positive real axis)
sequences which give upper and lower bounds to the
correct answer, and thus allow assessment of the error
of the approximants. As the next theorem will show,
a remarkably simple, additional property of the function
b(x, s) is both necessary and sufficient to ensure the
same bounding properties for sequence of 8.„;(x)
approximants.

Theorem Z. The approximants 8„,;(x) to a function
of the form (2.2) obey the following inequalities where
x is real and non-negative:
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where j&-1, if and only if

(—c&jc&s) sb(x, s) &0 (2.20)

so by Rolle's theorem' P'(x) must vanish for

x (x;&'&, x;+re&, ~ ~, x~ r&'&)

xi x' ~ ~ o x.& j(x')

for all real, non-negative x and s, and j=0, 1, 2, ~ ~ ~ .
These inequalities have the consequence that the
B„,o(x) and B„, r(x) sequences form the best upper and
lower bounds obtainable from the B„,;(x) approximants
with a given number of coeKcients and that the use of
additional coefficients (higher n) improves the bounds.

Proof. The ffrst step in our proof is to establish a
representation for the inequalities in terms of partial
derivatives of b. To this end let us de6ne

where

xi& xi &x;+1&x;+1 &x;+2& ..&x~ 1 (x;+~.~ 0) . . (1) ... . 0)

(2.25)

If we repeat this argument we eventually obtain
P&"&(x;&"&)=0 for x;(x;&"&(x;+„. If we express this
result by directly differentiating (2.24), we get (2.23) .

Let us now consider inequality (2.19a) for j=0.
It is, by (2.3),

n—1 '0

pobo(x) +g ittb (x, trt) —pobo(x) —p ottb (x, o t) =Q (b),

6"f(x;)
(n!)

x;+„x;+„2 ~ ~ ~ x;„Sr j'(x;„)
xi x'2 ~ ~ ~ X ~+

xi+/ xi+] ' ' xi+]2

det

1 x;+r x;+r' ~ ~ x;+r"-' f(x;+r)
det ~

(2.26)

a functional of b. The points r~ and 0~ are all distinct
by theorem 5 of Ref. 1. They lie in the order (0, rr„,
B„r, a r, ~ ~ ~, trr, or) . We observe that

Q(s') =0, if j=0, 1, ~ ~ ~, 2n —2 (2.27)

by the fundamental equations (2.7) as both B„,o(x)
and B„r,o(x) approximate the same series. As (2.26)
is a 2e-point formula, it is thus a multiple of d'"—'. The
coefficient can be obtained from Eq. (II.18) of Ref. 1 as

Xi+a Xi+n ' ' ' Xi+th

(2.21)

on the distinct points (x;, x;+r, ~ ~ ~, x;+„). It follows
easily that

D(1, n —1)6&s"—'&

0=——
D(1, n —2) (2n 1)!'— (2.28)

since by (2.7) Q(s'" ') is ( —1)'" ' times the (2n —1)st
series coeKcient in the difference, where

6"(xt) =0,

(2.22)

cp cj+

6"f(x;) =ft"& (x,+8(x;+„—x;) ),

by considering

0(8(1 (2.23)

~ ~ ~ Xs

as for j&e two columns of the numerator are equal
and for j=n the numerator and denominator of (2.21)
cancel. Thus we identify 6" as the mth diGerence
operator. '
One can easily establish the usual mean-value-theorem
result

D(j, b) =det (2.29)

Cj+y Cj+Jt+1 ' Cj+2y

The D(j, b) are all positive I Eqs. (II.10)—(II.11),
Ref. 1$ as dp&0 in (2.2). Thus combining our results
we have shown that there exists a r such that

(2n —1)!(B r,o(x) —B„,o(x) $

D(1, n —1) c&'" '
, b(x, s), (2.30)

x'
P(x) =det ~

x'2 ~ . x;" f(x)

1 x~„x~„~ ~ ~ x~„ f(x,+„)
(2.24)

This function vanishes for x= (x;, x;+r, ~ ~ ~, x~„) and

'This def1nition can be shown to be equivalent to the more
usual form, which is given, for example, by H. JeBeries and B. S.
JetIeries, Methods of Mathematical Physics (Cambridge Univer-
sity Press, New York, 1950), Sec. 9.012.

where 0&0 (0-1.Hence the derivative condition implies
the inequalities. The other inequalities follow in exactly
the same way as the one we have just proven.

The converse may be shown as follows: In the same
way as before

(2n —2)!LB„, r(x) —B„r,r(x) $

D(0, n —1) its" 'b(x, s)
(2.31)

D(0, n —2) r&ss" '
4 See, for example, P. Franklin, A Treatise orl, Advanced Cal-

cgltts (John Wiley ttr Sons, Inc. , New York, 1940), Sec. 73.
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0&s&5

exp —st 1—— d t, 238
S

n)=e(, ', ,)
satisfies (2.32) . This result follows because

s s —'—&

(dlds) '
I

= ( ~) ' i~1—+- (2 4o)
&1+s/5 5

Consequently the jth derivative of f is a sum of terms

e "dP(t),

3. SAMPLE KERNELSan b

Before proceeding to the applications, we willmention
b Q few examples which fall in the scope of therie y a

(2 34) results of the previous section. The first is obtame yf(s) = e "F(t)dt, .

438

t e set of basic such a way that j/s=r, a constant. The function t'e "
b' 1

='f"
ose these arbitrarily by can then have an ar itrari y s arp

d h
-

1selecting dp as a sum of delta functions and so, by large enoug s an j; us w
making (o„, oi) narrow and sweeping it past any
desired point, we may, by Bolzano's theorem, find an ( rt/»)&f(g) g $(t rtF—(t~
example which has 0- at any point we desire. Thus, the
inequa i ies impyl'ti imply the derivative conditions for even-

by (2 32) He„ce (2 32) also;mplies 2 33 E D
which are re ularor er eriva ives. incd d t' Since b(x s) goes to zero as s~~~ Corotfury3. fn the classof functions w ic gfollows that the odd derivatives are of fixed negative;n the circle with diameter, 0 s, an go

sign. This result can be seen as follows: Since it'b/&s' is fr~ter than (g s)s y~1 for some y as s goes to
positive, if Bb/» ever becomes positive, it"cannot de- frolli within, the following statements are equivalent:
crease in magnitude and therefore b(x, s) diverges at
least linearly as s goes to infinity. But b,x, s~

'~ ~

( 8/—»)&F s
goes to zero as s goes to infinity. Thus Bb/» is non-
positive de6nite. It goes to zero as s goes to in6nity in
order that b remain non-negative. Similarly, it'b/»' F(s)
must go to zero. . AVe can now repeat this argument for
8'b/8s' 8'b/»', 8'b/»' and thus by induction all odd
de i ti es of & a o p iti e def i«Co eque tiy F j ff F(~) sat'sfi (237)the inequalities imply the derivative condition as well
as vice versa. Q.E.D.

(2.39)One may inquire what class of functions is character-
ized by property (2.20). At least for functions which
have certain regularity and boundedness conditions,
this class of functions is easily characterized. The follow-
ing theorem does so and shows that (2.20) characterizes
a large class of functions.

Theorem 3. In the class of functions which are regular
in the right-half s plane and go to zero faster than s ~,

k) 1 for some k as s goes to infinity therein the following

S
statements are equivalent:

( —~/»)~f(&) &0~ 0&&&+~ (232) That every a is positive follows by induction on j
as no matter whether Ff"& or (1+s/5)" is differentiated,and
the sign factor is the same. Repeated differentiation o
(2.38) shows that it implies (2.37) . The corollary now

o follows from theoiem 3 as the transform (2.39) m p
its conditions into those of theorem 3.with dg)0,

differ These results provide the ground work for appli-
hich we can construct convergent boundingder the integiaI sign 0&r&+ an

q y i (.3), as p . , eresas d &0. ~The result for s=0 approximan s o a
follows by taking the limit from s)0.) prev»u

Suppose now that (2.32) holds. The conditions in
the theorem are sufiicients to ensure that f(s) c e
written as a Laplace transform:-

0

where F is continuous and of order 0(1) for all t&0-
Consider

(—8/») ~f(s) = t'e "F(t) dt (2.35-)

in the limit where s and j-go to. .in6nity together in

' See, for example, R. V. Churchill, Modems Operatzona/ Mathe-
matzcs &s EwgzneerzlgE,

'
(McGraw-Hill Book Company, Inc., New

York, 1944), Sec, 56.

taking
b(z, s) =Lr(ss),

where Lr(x) is the LeRoy function

I., * =g ('+"") (-*)-, 0&f &1. (3.2)
„~ F.(1+0}

Most of its properties can be readily establis ed from

(3.1)

(' '

e See, G. H. Hardy, Dieergent Series (Oxford Uiiiversity Press,
London, 1956), p. 197.
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its integral representation

Ll(x) = expL —(t+xtr) jdt.
'

(3.3)
0 .

Repeated differentiation of (3.3) immediately estab-
lishes property (2.20). As one may easily show that

i Lr (x) i
&I'(1/f'+1) x-'tr (3.4)

from (3.3) for x real and positive, it follows that the
conditions for theorems 1 and 2 hold. %e see from
(3.2) that Lr(x) is an entire function for 0&/&1
The two special cases

Li(x) =(1+x) ', Lo(x) =e * (3.5)

are what give this family its interest, for it interpolates
by means-of entire functions between Pade approxi-
mants (f= 1) and the exponential approximants shown

by theorem, 3 to be the rriost. general form of kernel of
the class b(s, s) = b(ss) for functions regular, etc., in the
right-half plane.

One can further show by contour distortion in (3.3)
that

~
Lr(x)

~

is bounded for the infinite angular wedge
defined by

~
arg(x) ~(-',sr(1+1') (1—e), e)0. In the re-

maining wedge we estimate by the saddle-point method
that

Lr(*)--PIE(f)«o-r'-(1)""-"3(-x)""-"'I,
—', (1+1)&~ arg(x) I( . (3.6)

One might hope that, since one of the primary
diQiculties in proving convergence of sequences of Pade
approximants has been the occurrence of poles of very
small residue in regions of convergence, as the functions
Ll(x) are entire, and hence finite for all finite values
of their argument, and since in practice the:residues
are observed to tend to zero very fast, it may, be that
the whole diagonal sequence of approximants ha&ed on
Lt (x), 1'& 1, converges under very general asst)mptions
rather than just a subsequence, as has been conjectured
for Pade approximants. ~

Another family of kernels is given by

b(s, s) =L1+ss/(re+1) j ", 0&rt& oo (3.7)

which we will use in the next section. The range'm=1
to ~ again interpolates between the Pade approximants
and the exponential approximants of theorem 3. Re-
peated differentiation shows directly that (2.20) is
satisfied. The conditions of theorem 1 follow as (lns) '+&

diverges more slowly than any power. Hence theorems
1 and 2 apply to this class of examples as well. Theorem
3 applies, a fortiori, as (3.7) is regular and bounded in
the whole cut plane (ss) 1) . (The case, n& 1, can also
be treated, as is well known. s) In addition to the use we

l

' G. A. Baker, Jr., J. L. Gammel, and J. G. Wills, J. Math.
:Anal. AppL 2, 405 (1961);also Ref, 1, and J. S. R, Chisholm, J.
Math-. Phys. 7', 39 (1966). ,' See, for example, G. A. Campbell and R. M. Foster, Foerf'ir
Iategrals for Practica'-l A pplicatiows ID; Van Nostrand-Company,
Inc. , New York, 1948) pair 524.

make of these in the riext section, they- provide an
alternate method to the standard Pade method' of
estimating the strength and location of a singularity of
known index of divergence, even in the absence-, of an
expansion of the form (2.2).

As one final example, we point out that if bi(x, s)
and bs(x, s) satisfy (2.20), then so does bi(x, s) bs(x, s)
by Leibnitz's rule of differentiation.

4. FERROMAGNETIC ISING MODEX,

The starting point of our application of the results
we have obtained is the result of Yang and Lee.~ They
consider the grand partition function for a lattice gas
(equivalent to the partition function for the Ising
model) and prove a theorem concerning the location
of its zeros as a function of fugacity under the. assump-
tiog of an impermeable hard core and attractive forces
(equivalent to the Ising model with purely ferromag-
netic interactions of unspecified range). As they point
out, the grand partition function may be written

&.=Z —,y",
M g

(4.1)

where "M is the maximum number of atoms that can
be crammed into V" on account of the hard cores.
As Z, is a 6nite polynomial, it can be factored as

z.=lI(1-y/y, ), (4.2)

where the yi, ~ ~, ysr are the roots of the algebraic
equation

~.(y) =o. (43)

None of the roots can be real and positive as the Q~
are all positive. In the mathemp, tically equivalent Ising
model, '0 the fugacity is proportional to the variable

ts =exp (—'2tttH/k T), (4 4)

~ =II(1—I/t ') (4.5)

The theorem of Yang and Lee' states

(4.6)

for all ferromagnetic-type interaction (the spins have
lower energy when parallel than antiparallel) Ising
models. If. we now calculate the spontaneous rnagneti-

e C..N. Yang and T. D. Lee, Phys. .'Rev. 8'I, 404, 410 (1952).
'i0 For" a:review of the Ising model see, C. Domb, Phil. Mag.

Suppl. 'g,'No. 34 (1960).; ibid. , p. 149. M. :E. Fisher, J. Math,
Phys: 4, 278 (1963);Rept. Progr. Phys. (to be published),

where m is the magnetic moment, H the magnetic
field strength, and T the temperature. Rewriting (4.2)
in terms of p.
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7.0

5.0

from the symmetry of the model between points p and
1/p. For T)T., the critical temperature (two- or
higher-dimensional models), we know that I(1)=0,
and as the $E, 1V—17 Pade approximants also equal
zero at this point (the fE, E7 are ininite here), we
have the consequence that we have converging bounds
to I everywhere in the (H, T) plane, except on H=0,
T& T, (the coexistence curve, for the analogous lattice
gas) .

Through the use of the results of Sec. 2 we can
construct bounding approximations to a number of
other thermodynamic properties. According to Yang
and Lee,' the free energy (related to the logarithm of
the partition function) is given by

5.0

I.O—

ln(1 —2p, cos8+lis) g(8) d8, (4.10)

where g(8) is non-negative definite. Letting cos8=1—2y
we may rewrite (4.10) as

(F+mH)
kT

l L(1—~) '+4~y7d4 (y) (4 11)

One easily establishes for the allowed range of p and y
that

gb, y) =—&((1—u)'+4us) (4.12)

0.5 I.O

FIG. 2. Upper ( j=0) and lower (j=—1) bounds to ~(w) at
T=2T, for two-dimensional lattices, plotted against v—=gw(1+
—,'ve) '. The large tick on the right-hand side corresponds to the
exactly known value b'= 1.The curves are (a) honeycomb (j=O),
{b) honeycomb (j=—1), (c) square ( j=0), (d) square
{j=—1), (e) triangular ( j=O), and (f) triangular (j=—1).

B„, i& (F+mH)/kT&B, p, (4.13)

5.0—

possesses property (2.20). Hence by corollary 2 and
theorem 2 the approximants (2.3) bound the free

energy,

zation per spin, we have

I(li) /(1Vm) = 1—2'�(d/dp) 1nZ

g~ (1+~/~')
(4 7)

'-i (1—~/u')

This result means that if
~

li ~&1 (note the equality
sign),

4.0

5.0

ReLI(li)/Em7) 0.

Consequently, by (II.60) of Ref. 1 we have

(4.8) 2.0

F(~) = (1+~) "'I(L(1+~)"'—17/I(1+~) '"+17),
(4.9)

which is a series of Stieltjes for all temperatures. This
result is perfectly rigorous and without additional as-
sumptions of any kind. Theorems 6 and 7 of Ref. 1
now assure us that the $X, N7(w) and tItI, X—17(w)
Pade approximants form upper and lower bounds, re-
spectively, to F(w) and hence provide them for I(p)
over the range 0(@&1 (0&ted& eo). These bounds
must converge 0&ii(1 as I(fi) is a convergent series
with radius i. The range f&p& ~ can be computed

I.O—

0
0

l

0.5
V

I.O

FIG. 3. Upper (j=0) and lower (j=-1) bounds to cu(w) at
T=2T, for three-dimensional lattices, plotted against e=—4'm(1+
/re) '. The large tick on the right-hand side corresponds to the
exactly known value 8=1.The curves are (a) diamond {j=O),
(b) diamond (j=—1), (c) simple cubic (j=0), (d) simple
cubic (j=-1), (e) body-centered cubic (j=0), (f) body-
centered cubic (j=—1), (g) face-centered cubic (j=O), and
(h) face-centered cubic (j=-1).
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and converge to it Lexcept B„,s(1) = oo j for all temper-
atures.

The magnetic susceptibility is 2p(7r/'de)I(fj) and
hence is directly related to

(d/dw) F(w) = (4.14)

I(X +lib (4.15)

Gaunt, Fisher, Sykes, and Essam" have used it to
estimate 6 from

(1—p) (cj lnI/Bp)
~
„=t. (4.16)

We will now show that we can provide upper and lower

60

which is of the type (3.7) with fs =2, and consequently
can be bounded in the same way as the magnetization
was, but using a diQ'erent kernel. All higher derivatives
with respect to magnetic 6eld give the sum of succes-
sively higher derivatives with respect to m and these
terms can be bounded using the same procedures. Since
one can bound (above and below) each derivative with
respect to w, one can bound a sum (or difference) of
such terms.

We can prove a special result about the logarithmic
derivative of the magnetization. This quantity is of
interest in the estimation of the critical index 8 which
is de6ned by the hypothesis that

lO

0
0 0.5

V

I.O

bounds to (8 lnI)/(c)p) . The function F(w), which is
directly related to I(p) by (4.9), is a series of Stieltjes.

ow' a series of Stieltjes can be approximated by a
converging sequence of LN, N) Pade approximants.
Hence

Fro. S. Upper (j=0) and lower ( j=—1) bounds to co(w) at
T= T, for three-dimensional lattices, plotted against v—= 41m'(1—
—,'mr) '. The large tick on the right-hand side corresponds to the
accepted value h=5.2. The curves are (a) diamond (j=0), (b)
diamond (j=—1), (c) simple cubic (j=0), (d) simple cubic
(j=—1), (e) body-centered cubic (j=0), (f) body-centered
cubic (j=—1), (g) face-centered cubic ( j=0), and (h) face-
centered cubic ( j=—i).

d 1nLN, Nj d lnF(w)

dzv dK
(4.17)

40

20

as the LN, N) are analytic functions in the cut w plane.
However,

d lnLN, N j=ZE(w+~') ' —(w+S') 'j, (418)
Qzv

where the x; are the poles and the y; the zeros of the
fE, N) Pade approximants By the. orems 5 and 7 of
Ref. 1, y;+&&x;+&&y;&x;&E, where E is the radius of
convergence which is unity in this case. We may write
the term enclosed by parentheses in (4.18) as

0
0 0.5 I.O

,=(w+*') ' —(w+)') ' (419)
1+wg

Hence, if we choose

Fro. 4. Upper (j=0) and lower (j=—1) bounds to co(ve) at
T=T, for two-dimensiona1. lattices, plotted against v—=—,'mf(1+
~~mf) '. The large tick on the right-hand side corresponds to the
accepted value of 8=15. The curves are (a) honeycomb ( j=o),
(b) honeycomb (j=—1), (c) square ( j=0), (d) square (j=—1), (e) triangular (j=0), and (f) triangular (j=—1).

"D. S. Gaunt, M. E. I'isher, M. I'. Sykes, and J. W. Essam,
Phys. Rev. Letters 13, 713 (1964).

d4~(() =8k y; '($(x; '

otherwise, (4.20)

one can easily show that at least a subsequence of the
&sj converges. They are bounded at every point and
hence we may select a countable, dense set on the
interval (0, E ') . We may now choose a subsequence
which converges at the drst point; from that, a sub-
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sequence which converges at the second point; and so
on. However, every g~ is a positive measure, and hence,
there exists a limiting g such that

d lnF(w) " '
dq')(g)

dw, (1+wan)"
(4.21)

where d&&0. Consequently we may bound from above
and below d lnF(w) and hence, a function can be con-
structed which tends to 8 which we can also bound
(0&p(1) .

An additional special result can be given for the
logarithmic derivative of a series of Stieltjes. Taking
account of the signs, we obtain, by dividing (II.19d)
by (II.19c) of Ref. 1,

d ln(E, X—1g d lnF (w) d lnLE, N]
dw dw dw

To illustrate these results we have computed approxi-
mants based on (4.21) and (4.22) for the nearest-
neighbor, spin-~„ ferromagnetic Ising modeI from the
extensive data tabulated by Sykes', Essam, amd Gaunt. "
It is worth noting, since these-calculations form a sensi-
tive check on the coefricients, that eo errors were
detected. For this case it turns out that (4.22) provides
superior bounds to those obtained from (4.21). We
have plotted (for j=0, —1) in Figs. 2—5

lim(o(w) =8,

5.A CONJECTURAL BOUND ON THE ENERGY OF
THE FERROMAGNETIC ISING. MODEL

In the previous section we showed how all derivatives
of the free energy with respect to magnetic field could
be bounded from above and below with converging

"M. F. Syhes, J. W. Essam, and D. S. Gaunt, J. Math. Phys.
6, 283 {1965),especially Appendix III.

"G. A. Baker, Jr., and D. S. Gaunt. , Phys, Rev. 155, 545
(1967}.

versus v—= -', w(1+-,'w) ' so that we expect ~ to tend
linearly to 6. For j=—1, co always takes on the value 1
for m = ~, which is correct for T& T, but a. lower bound
for T& T,. For j=0, co always takes on the value —1
for w = ee. Thus the limiting range of the curves (4.23)
gives

~
8 ~&1. It will be observed that although these

curves form rigorous bounds, their rate of convergence
near the critical point is inferior to that found by
Gaunt, Fisher, Sykes, and Kssam" using standard Pade
techniques. The point on the right side of the curves is
(a) the exactly known value of 8=1 for T=2T, and

(b) the a,ccepted value of 8,""15 for two-dimensional
lattices and 5.2 for three-dimensional lattices for T=T,.
We remark that for T= ee, co(w) =—1.0, for all lattices.

approximants. In this section, we discuss the derivative
with respect to temperature. First, let us note that
rigorous cog.verging, though somewhat unhandy, bounds
can be given as

where E is the total energy per spin aiid 8 is the:"con-
figurational" energy per spin. From (4.5) we may
rewrite

M/2

lnZ =Q ln(1 —2x,y+p') (5 5)

where account has been taken that the p; appear in
complex conjugate pairs and x; denotes the cosine of
the angular position of the root on the unit circle.
Therefore

(5.4)

p 1++g»j/BP
1—~' 1—~ ~i1+4~y~(1 ~) ' '

where we have substituted x, =1—2y; (0&y;&1); By
theorem'8 of Ref. 1, we see that the term of (5.5)
within brackets, if (ejx;)/(BP) &0, isexactly of the form
of an- arialytic function which has-.positive- a real part
for ~-p, )(1, ,and is real for real values of p, . If we apply

where. I means an upper and L a lower bound. - The
mean-value theorem implies d&$(a+h.

By convexity, we may use this procedure to bound
the derivative of the free energy and thus the energy
at any point where we have the bounds of Sec. 4.
Bounds for-all higher derivatives can also be constructed
although we can only specify a range for the point.

A somewhat more-convenient bound seems to be
valid and may be obtained as follows: Lee and Pang'
compute the location of all the roots of the grand par-
tition function for the one-dimensional Ising model
explicitly. They also give the density of roots for p =&1
for the two-dimensional Ising model. They observe
that the roots (one dimension) move from p, = —1
towards +=+1 monotonically along the unit circle.
Furthermore, for the two-dimensional Ising model the
density of roots decreases monotonically at p = —1 and
increases monotonically at +=+1. The same is also
certainly true of the density (spontaneous rnagneti-
zation) of roots at p=+1 for the three-dimensional
Ising model. It is therefore tempting to conjecture that
the roots of the grand partition function move mono-
tonically from p, = —1 to p=+1 along the unit circle
as temperature decreases (P = 1/k T increases) .

In order to use this conjecture, we note the standard
statistical mechanical result
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4.0-

3.0

I.O

0
0 0.5

P.

I.O

(4.9) to (1—p')8/p, instead of I, we again obtain a,

series of Stieltjes and the theorems of Ref. 1 apply.
In order to test this conjecture against available

data, we note first of all that the condition

eLy(s) 3&0,

is equivalent to the condition

(5.6)

where
I ~o(s) I&1,

oo(s) =U(s) —1j/Lf(s) +13.

(5.7)

(5 8)

Let us first consider a result of Nevanlinna. ' The result
is that it is necessary and suQicient for

I
os(s) I&1 in

I
s

I
& 1 for

I
o„(0)

I
& 1 for all rI,. We define

(5.9)

'4 R. Nevanlinna, Ann. Acad. Sci. Fennicae, Ser. A13, 1 (1919).

Fro. 6. Lower bounds to 8/(4 JN') for the simple-cubic lattice
based on the $5, 4g Padd approximant to (5.5). The dots above
the curves represent the upper bounds based on the L5, 5j shortly
after it becomes distinguishable from the [5, 4j. The ticks below
at the right-hand side are the previous lower bound based on the
(4, 5$. The curves are: (a) T=2T, (the slope at i4=1 is small,
but not zero, as it is zero for E but not 8); (b) T= T, (one ex-
pects the correct curve to display an upward cusp from knowledge
of I(T) at T,); (c) T= ', T.. -

where the asterisk denotes the complex conjugate. If
I

o =i(s) I
&1 for

I
s

I
& 1, then the absolute value of

the quantity within the brackets in (5.9) can easily be
shown to be less than unity. By Schwartz's lemma,
division by s does not increase the maximum modulus,
and so I

o.„(s) I
&1 also. Thus the inequalities are

necessary. Nevanlinna also shows that they are suK-
cient. From (5.9) it follows that we may compute the
first o„(0) (we will abbreviate these by o.„) directly
from the power-series coeKcients of o'p(s) through order
Sn.

For the case T= ~ (P=O), we have

(5.10)

where q is the lattice coordination number. One easily
verifies property (5.6) or (5.7) in this case, thereby
confirming the conjecture for that temperature. To test
this conjecture further, we have tested it by means of
the "0. test" described above for temperatures of -', T„
T„and 2T, for the square, triangular, honeycomb,
simple-cubic, body-centered-cubic, face-centered-cubic,
and diamond lattices. In every case the test was met,
and by a wide margin. The only 0's which were close to
unity in absolute value were the 0-0's for T=2T,.
However, as

op
——(qN, ' ' 1)/(qg~'+—1),

where, if J is the exchange integral,

I=exp( —4J/AT), (5.12)

we necessarily have 1&o.o& —1 for ferromagnetic I
(i.e., 0&I&1). All the other o's are well below 1 in
absolute value and are apparently decreas&sg as far as
the series data of Sykes, Kssam, and Gaunt" allow us
to enquire. All the series evidence now available indi-
cates that this conjecture is valid, and that the results
of Pade-approximant bounds formed from the series of
Stieltjes extracted from (5.5) are correct bounds to the
configurational energy G. Some sample results for the
simple-cubic lattice are displayed in Fig. 6.

6. NONBOUNDING PROCEDURES FOR
COMPUTING WITH THE p SERIES

TO THE ISING MODEL

Although the usual Pade-approximant procedure to
the p, series does not give bounds in the region H=O,
T&T„ if we consider, for example, the spontaneous
magnetization, they give consistent values to many
decimal places very quickly. At T=-', T„for the number
of terms available, " no error is apparent in the eight
figure results computed for loose-packed lattices and a
fluctuation is apparent only in the sixth figure for close-
packed lattices where fewer terms are known.

One word of caution, however, should be added at
this point concerning the use of nonbounding sur6-
mation procedures as applied to these series. If we con-
sider the magnetization series for T= T., then we know
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I(1) g m; 0.8148. (6.1)

An additional 195 terms of the same size as the thir-
teenth would be required to reduce I(1) to zero. The

difhculty is that II=0, T=T, is known to be a singular

point of I.
In the region H=O, T& T„Domb" has shown that,

if A is the partition function per spin

g 4"(~)i'
(1+9,) i (1+p)'"

(6.2)

where P„(p) is a polynomial of degree at most 2r, and

f =1—I, a high-temperature variable. If we introduce
the linear fractional transformation

I(1)=0. However, straight Pade approximants give
values (depending on lattice) of up to 0.75 with a con-
sistency of a half a percent or so (square lattice, for
example). As we know (theorem 3, Ref. 1) that the
Pads approximant cannot converge to the wrong answer
(regular point), we concluded that this is a reflection
of very slow convergence. The Taylor series reQects sim-

ilar slow convergence. Although the last term available
(square lattice) p" is —4.1734X10 ', the sum is still

13

temperature decreases, they seem (Sec. 5) to move
along the circle toward @=+1.They reach (in the
limit of an infinite system) @=+1 at the critical
temperature. For temperatures above T„p=+1 is a
regular point and we can plainly continue to values of
p& 1.As the temperature approaches T, from above, the
poles move in on the point @=+1,completely closing
the unit circle.

There is, however, no reason to suppose that just
because the physical grand partition function has a
solid wall of poles on the unit circle that it necessarily
forms a natural barrier, any more than one would
suppose

gi Co

tan-~ —~=x
a1 . x'+s' (6.5)

sin —', 0
g(0) =(2~) '

(sinning ~2) i/2' cose(1—2N'

has a natural barrier for —~(x'( —a', which is
known to be untrue. That analytic continuation through
the unit circle is sometimes possible can be illustrated
in the case of the one-dimensional Ising model. Ac-
cording to Yang and Lee, ' g(8) in (4.10) for the free
energy is given by

n =~/(1+~), (6.3) =0, cose) 1—2N'. (6.6)

then (6.2) becomes

(6.4)

where the p„(g) are polynomials of degree 2r and have
lower-order coeKcients that vanish to progressively
higher orders as r increases. Consequently, a Taylor
expansion in q to order 2r will diGer from the complete
function by terms only of order O(p+'). However, as
the I1V, 1Vj Pade approxirnants are invariant under

(6.3) (theorem 1, Ref. 1), the same rapid convergence
is to be expected in the high-temperature region from
the $1V, 1V] summation of the p, series. Except for simple
correction terms Las in (6.4)), the same type results are

expected for other thermodynamic quantities.
As a practical matter then, we expect nonbounding

summation procedures to produce good results through-

out the II-T plane away from the critical point. They
do however suBer from the drawback of deceptively
slow convergence near the critical point, which can lead
the unwary into serious underestimation of his error
bounds.

A few remarks concerning analytic continuation in

the complex p plane are perhaps in order. Yang and
Lee' have shown that the roots of the grand partition
function lie on the unit circle in the p plane. In the
high-temperature limit they are all at p= —1. As the

'~ Equation (113),Sec. 5.4.3 of Ref. 10.

However, we can rewrite (4.10) by using sin-,'e =
L(~')'"—

(I ') "'3/(») as

(Ii+mII) = —(2vri) ' lnL1 —p (p,'+ (p, ') —')+p'j
kT

where C is that part of the unit circle described in (6.6) .
We may now distort the contour in the p,

' plane by
Cauchy's theorem without changing the value of (6.7)
and thus analytically continue the free energy onto
an unphysical Riemann sheet. If the density function
is smooth in higher dimensions, there is no reason to
suppose that this sort of analytic continuation is not
still possible. Only the endpoints of C are necessarily
singular.

When T=T„ the endpoints disappear. The most
likely consequence is that a singular point remains at
p=+1 t note the slow convergence of (6.1)j but that
the H=O+ and H=O Riemann sheets tear apart.
What is meant by Riemann sheets tearing apart is
illustrated by (6.5) in the limit as a~0. The result is
&~/2 for all x where the sign is given by the sign of
the real part of x. Clearly, analytic continuation of
either of these branches is possible and does not give
the other branch after the limit a~0 has been taken.
Experimentally (Pade approximation and ratios), it
appears the singularities in the p plane recede from the
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unit circle as the temperature is reduced below the
critical temperature. These analytic continuations prob-
ably correspond to metastable states.

Ke conclude that every physical point in the p-T
plane is regular, except the critical point, and that
standard Pade-approximation procedures to the p series
should be pleasantly convergent. However, the rate of

convergence near the critical point is so deceptive that
it is prudent to adopt a bounding summation procedure.
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The transitions induced by temperature and pressure between the face-centered cubic (fcc) and the
body-centered cubic (bcc) phases in the alkaline earth metals —Ca, Sr, and Ba—are analyzed by computing
the differences in Gibbs free energy between the two phases in the framework of the nearly-free-electron
and harmonic approximations. At the absolute zero of temperature and pressure, the observed fcc in Sr
and bcc in Ba were found to have the lower internal energy; in Ca, however, identical analysis led to lower
energy in bcc rather than the observed fcc. An fcc-bcc transition characterized by a change in the sign
of the difference in free energies in Sr at O'K was found at a critical pressure P, 10 kbar; at zero pressure,
it was found at a critical temperature, T, 150'K. Both these results agree only qualitatively with, the
observed P, 36 kbar and T, 830'K. Ca and Ba, already bcc at absolute zero, showed no phase transition.

I. DTTRODUCTION

ECENTLY, the changes in the electrical properties
and the crystal structures of the alkaline-earth

metals —Ca, Sr, and Ba—under pressure have attracted
considerable attention. EGorts have, however, been
focused primarily on the change of the resistance with
pressure and its implications for the electronic band
structure of the alkaline-earth metals. ' ' From these
studies, particularly the most recent extensive band-
structure calculations in the face-centered cubic (fcc)
and body-centered cubic (bcc) phases by Vasvari et at.,'
it has become clear that the band structures near the
Fermi surface are basically nearly-free-electron-like, as
previously obtained by Harrison, ' but do not have the
simple form of s-p bands suggested. by Mott' and
Drickamer. ' A computation of the high-pressure elec-
trical resistance E. by Vasvari and Heine' on the basis
of the band structure in the fcc phase has shown that
the high resistance and the negative itR/BT in Ca and

*This work was supported by the Advanced Research Project
Agency through the Center for Materials Research at Stanford
University.

' N. F. Mott, Phil. Mag. 13, 989 (1966).' H. G. Drickamer, Solid State Phys. 17, 1 (1965).' B.Vasvari, A. O. E. Animalu, and V. Heine, Phys. Rev. 154,
535 (1967).

4 B.Vasvari and V. Heine (to be published).
e S. L. Altmann and A. P. Cracknell, Proc. Phys. Soc. (Lon

don) 84, 761 (1964).' W. A. Harrison, Phys. Rev. 131, 2433 (1963).

Sr can be understood in terms of a high-pressure semi-
metallic state with vanishingly small Fermi-surface
area, rather than the semiconducting state obtained
by Altmann and Cracknell. ' In a slightly different vein
from these developments, Jerome et al rhave rece.ntly
developed a theory of the transition from semimetallic
states characterized by small energy gaps or small band
overlaps to a new state, which they have called excitonic
insulator, and for which considerable studies have been
reported in the Russian literature.

In this paper we shall make a quantitative study of
the transitions in the crystal structures. In pure Ca
and Sr, which crystallize in the fcc phase at O'K,
temperature-induced transitions to the bcc phase have
been observed at 721 and 830'K, respectively. ' Pres-
sure-induced transitions were first reported by Bridg-
man, ' " and the phase boundaries measured by
Jayaraman et al.s up to pressures of 45 kbar. In Ca, the
transition temperature T, rises with pressure: BT/itp~
+3.3'C/bar at 1 atm; in Sr, T. drops with pressure:
itT/BP 10'C/bar. In Ba—, which crystallizes in the
bcc phase at O'K, temperature-induced transitions have
not been observed, but a pressure-induced transition

7 D. Jerome, T. M. Rice, and W. Kohn (to be published).
8 A. Jayaraman, W. Element, Jr., and G. C. Kennedy, Phys.

Rev. 132, 1620 (1963).
e P. W. Bridgman, Proc. Am. Acad. Arts Sci. 72, 187 (1938);

74, 425 (1942)) 81, 169 (1952).
'e P. W. Bridgman, Phys. Rev. 60, 351 (1941).


