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Superconductors which can carry critical persistent currents around the circumference of a specimen

may dissipate energy when an alternating magnetic Geld ho cosset is superimposed on a magnetic 6eld Ho
which is swept at a constant rate dHD/dtWe h, ave calculated, for a long macroscopic superconducting
cylinder, the real and imaginary parts of the permeabilities due to the surface currents alone for the Grst
three Fourier components of the internal 6eld. The results are complicated and depend on two parameters,
namely, (dHO/dt) /ash~ and h ~ (Ho)/ho. The function h, (HO) is a measure of the current-carrying capacity of
the surface of the superconductor.

I. INTRODUCTION

T has been known for several years' " that type-II
. . superconductors are, in general, lossy materials at
low frequencies when an alternating magnetic field

h(f) =hp cos(dt is superimposed on a static magnetic
field Ho. At present it is believed that these losses are
mainly associated with the surface of the superconduc-
tor, in particular for magnetic fields Ho between the
upper critical field H, ~ and the surface nucleation field
H,3. To explain these losses, essentially two different
models have been proposed, namely, an effective
conductivity model" ' "of the surface, and a model' "
which is based on a well-defined critical current""
associated with the surface sheath. This current can be
calculated" from energy considerations and from the
inherent properties of the superconductor. The con-
ductivity and the critical-state models have been com-
pared in detail by Rollins and Silcox." Paskin et al. 's

model' assumed also a critical current (of the kind
Abrikosov" 'r has calculated) but does not take into
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account hysteresis loops in the 8—Ho plane. ' Based upon
this model" Schwartz and Maxwell" have calculated
the losses for a type-II superconductor for swept
magnetic fields Ho with the assumption that the ampli-
tude of the alternating driving field ho is small and no
hysteresis loops in the 8—Ho plane are swept out. They
find fair agreement with the experimental results of
Maxwell and Robbins. ' They conclude that the losses
depend only on a single parameter q = (dH, /dt) /&uhs. The
critical-state model, ' """however, leads to the con-
clusion when Ho is not swept that the losses depend on
p=h. /hp, where h, is a magnetic-field parameter which
is related to the critical state of the surface sheath and
which is a function" of Ho. There appears to be a dis-
crepancy as to the parameters on which the low-fre-

quency losses depend. It is the purpose of this work to
calculate the real and imaginary parts of the perme-
abilities under the most general conditions of the
swept-field case. It is found that in general the perme-
abilities depend on both p and q. When, however,
p&ps&1 (ps is a parameter which will be defined
below) the response depends on q only, which probably
was the case in Maxwell and Robbins's' experiment
when HD was between approximately H.1 and H,2.

II. FORMULATION OF THE PROBLEM

It has been recognized for some time that the low-

frequency magnetic behavior of type-II superconduc-
tors is quite diGerent20 from static magnetization
measurements. This behavior has been correlated by
I.eBlanc" to hysteresis loops in the static magnetiza-
tion. Because of the hysteretic behavior of the real part
of the microwave impedance, which was observed by
Cardona et al." in the mixed state of a type-II super-
conductor, it was suggested" that the surface sheath,
which might also exist in the mixed state, '4 could carry
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persistent currents. " This was confirmed by Fischer
et ul." for low ~ materials with a surface sheath. For
magnetic fields larger than H, 2 the observed hysteresis
loops in the static magnetization"'7 could be readily
correlated" to currents in the surface sheath. " Below
but near H, 2 it has been proven definitely" that the
hysteresis in the mixed state is due to surface currents,
by plating the specimen surface with chromium (anti-
ferromagnetic), though the total current appeared to
be somewhat larger than one would anticipate from an
extension of the theory of the surface sheath""" to
fields below H,~, when the mixed state is neglected.
There are other experiments" ' which support the
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Fn. 1. The response of the internal Geld of a long supercon-
ducting cylinder to an applied magnetic Geld H, for the critical-
state model. (a) B as a function of H . The term b, is due to criti-
cal surface currents and (B) is the magnetic induction which is
assumed to be magnetically reversible. (b) The applied Geld H„
as a function of time. H, is the sum of the magnetic field hp

costume

and the field Hp, which is swept at constant rate dHp/dt (c) The.
time variation of the internal Geld due to the applied Geld H, .
(d) The alternating component of the internal field as a function
of time. b(t) is here defined as B (t) —((B)—b,). For details see
text.

idea of surface currents, but these currents are not
entirely associated with the surface sheath alone but
can be partially explained by the Bean"—London"
model. Currents which are associated with the surface
sheath and the mixed state in the form of longitudinal
transport currents have also been measured. ' "

In order to simplify the calculations we assume that
the low-frequency losses can be adequately described
by the critical-state model of the surface sheath
alone. ""We assume that this surface sheath exists for
magnetic field between H„and H.s (or H, and H, p for
type-I superconductors). We neglect contribution to
the losses from the mixed state and the normal state.
We disregard also surface currents other than those
associated with the surface sheath, though this is not a
necessary assumption as long as these currents behave
qualitatively in the same fashion as the currents in the
surface sheath. Then the parameter p=h, /hp has to be
interpreted more broadly than due to the surface-sheath
currents alone.

We also assume that the sample is at constant tern-
perature at all times and that temporary heating ef-
fects" may be ignored. The zero-frequency hysteresis
loop is assumed to exist also in the same way at low
frequencies, which means that we ignore possible
relaxation effects (inherent as well as due to defects).
At the present it is not known whether relaxation effects
exist and/or can be ignored. In essence, possible relaxa-
tion effects will determine what is meant by low fre-
quencies. The energy dissipated per unit volume per
cycle is equal to the area enclosed by the 8—Ho loop
divided by 4' when Hp is not swept (g=0) and it is
equal to p"hps/4 for a linearly polarized driving signal
where p" is the imaginary part of the fundamental
component of the permeability p=p' —ip".

We now make further simplifying assumptions by
considering Fig. 1. The magnetic induction (8(Hp) ),
which we call the average internal field, is shown in
Fig. 1(a) with the average internal field ((8)—b, )
which exists in the superconductor when the external
field Ho is increased. When Ho is decreased the average
field is ( (8 )+b,). (8) is thought to be magnetically
reversible and corresponds to the magnetic induction
of the lowest energy state of the specimen at a given
value of Hp. For H,t&Hp&H. s the value of (8) is
smaller than H, and for H,s&Hp& H p the value of (8 )
is Hp. The magnetic induction (in cgs Gaussian units)
b, is due to critical surface currents and the fields

( (8 )—b,) and ( (8 )+b,) are magnetically irreversible
owing to the surface contributions. When the external
field Ho is swept at a constant rate and an alternating
field h(t) =hp cosat is superimposed on the swept field
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as shown in Fig. 1(b), the internal Geld 8(H, ) changes
over one cycle of the external field [points 1 to 6 in
Fig. 1(b) ], as shown in Fig. 1(a) by the lines connecting
the points 1 to 6. We assume that we may linearize (8 )
over one cycle of the small alternating field h(t) . This is
exact for H,2&Hp(H, 3 provided the thickness of the
surface sheath is smaLL compared to the diameter of the
cylinder. We disregard induced very low-frequency
components owing to the nonlinear behavior of (8) in
the mixed state when Hp is swept. Further it is assumed
that b, is constant over the period of one cycle, though
it may change slowly as a function of Hs (which it
actually does) when Hs is swept at constant rate. As in
most instances h, (Hp)&((H, s—H,s) or h, (Ho)(&(H.2—
H,i), a sufficient condition for the latter assumption is
that hp is also small compared to H,3

—H, ~ or H, ~
—H, ~.

In other words hp should not be very large compared to
h, when q(1. When q& 1 no low-frequency losses occur
even when hp&)h, as the instantaneous magnetic Geld
proceeds only along ((8)—b, ) when dHs/dt)0 or
along ( (8 )+b,) when dHs/dt&0. Also, possible round-
ing effects at the corners of the hysteresis loop due to
magnetic-Geld penetration changes are assumed not to
exist.

III. SOLUTION

The instantaneous applied magnetic field is

H, (t) = (dIis/dt) t+hs cosset+ Ci. (1)
The origin of ~t may be chosen arbitrary, which is com-
pensated for by adjusting the constant C, in Eq. (1).
We assume that the field is swept at a constant rate
dHs/dan = a. When surface effects are included and only
Hp is changed at a constant rate with hp

——0, then the
average internal field is

8(Hp) = (8(Hp) )&b,. (2)

The sign in front of b, depends on whether the external
field Hp is decreased or increased at a constant rate a.

If an alternating field h(t) =he cos~t is superimposed
on the increasing field Hs, and if Eq. (2) would be
reversible {which it is not), then the internal field 8
as a function of time would be

d[(8(Hp) )—b,$ dHs
8(1) = 1+bs cosa&t+Cs, (3)

dHp

where the constant C2 is determined by the origin of
out and

This would correspond to the curve 1, 2, 4A, 6 in Fig.
1(c). As b, is assumed not to vary over the period of one
cycle it follows that db, /dHs 0, and Eq. (3) r——educes to

d (B(Hp) ) dHs
8(f) =

. 1+hp cosa/ + Cs
0

We define

sin xs ——a/hst0, (7)

(g)

g =8/hsM. (9)

xs is determined from 8 (ts) —8(ts~) =2b, which leads to

cosx,—cosx,+q(x, —x,) +2p=0, (10)
where

p =h, /hp.

The increment of 8 between points 3 and 4 in Fig. 1(c)

where we have assumed that (8(Hs) ) can be linearized
over the period of one cycle. For H,2(Hp(H, 3 the value
of d (8 )/dHs=1. In the mixed state for magnetic Gelds

near H, & where Abrikosov's theory" applies,

(8)=Hs —(H,s—Hp)/(2irs —1)P

with P =1.16 for a triangular" lattice and hence

ig (8 )/dHo= (1+1/(2 ' 1)P) {6)
Near H, ~ in the mixed state some other approximation
for d(8)/dHs has to be found. In the Meissner state
Eq. (4) is zero.

Because of surface effects the internal field 8(Hs) =
(8(Hs) )&b, is not reversible and a hysteresis loop, as
shown in Fig. 1(a), is swept out over one cycle of the
applied alternating field, which leads in general to a
variation of the internal field with time as shown in

Fig. 1(c) by the wave form 1, 2, 3, 4, 5, 6.
When the distance between the point 3 and 4 of the

hysteresis loop in Fig. 1(a) shrinks to zero when, for
example, o~ or hs is decreased or (dHs/d1) is increased,
the response of the internal field as a function of time
corresponds to a wave shape 1, 2, 5A, 6 in Fig. 1(c).
When dHs/dt) idhs no part of the "hysteresis loop" is
traced out and 8(t) is described by Eq. (4). For the
latter case no losses occur as the alternating component
of 8 (t) is sinusoidal and is in phase with the alternating
driving Geld h(t).

Figure 1(d) shows the alternating component b(t) =
[8(1)—((8)—b, ) j of 8(t) of Fig. 1(c) when from
Fig. 1(c) the drift component (which is the straight
line which goes through the points 1 and 6) is sub-
tracted. This drift component was assumed to generate
a very low-frequency Fourier component in the non-
linearized approach and is zero in the linearized ap-
proach. This Fourier component will be disregarded in
further considerations.

The parameters x2, x3, x4, and x5 and their relation to
dHs/dt=a, cs, h., and hs are found from Fig. 1(a) to
1{c).They determine the wave shape of Fig. 1(d),
which we shall Fourier analyze.

x2 and x4 are obtained from the extreme values of H,
in Fig. 1(b). They are

d(8)—+ Cs,
dHp

(4)
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Pro. 7. The in-phase third-harmonic Fourier coefficient b~ of
b(t) of Fig. 1(d) as a function of q and the parameter p.

FIG. S. The in-phase second-harmonic Fourier coeKcient b2 of
b(t) of Fig. 1 (d) as a function of q and the parameter P.

abilities in Eq. (16) are defined by

cp =up(d (8 )/dHp) (17)

p.' =b„(d (8)/dHp), (18)

u."=~-(d (8)/dHo). (»)
The susceptibilities have been calculated previously" "
when dHp/dt =0 and H,s(Hp(H, p. In Ref. 14 the shape
of the wave form of b(t) was linearized. The calcula-
tions of Rollins and Silcox" are more accurate, though
both"" calculations make the same simplifying as-
sumption, as was done here, that b, is constant over the
extent of a loop in the 8—Ho plane. This is a good ap-
proximation when p is near pp but a poor approximation

0.02

when p«pp. It should be remembered that b, =b, (IIp)
and the above analysis breaks down if hp (H„—H„)
or (H, p

—H,s). This is probably one reason why the
agreement between experiment" and theory" '4 is only
fair when hp/h, &10 when dHp/dt =0.

%e have calculated on an analog computer the
I'ourier coeKcients ao, a and 6„for e= 1, 2, and 3 for all
possible values of p and q. Figures 2 to 8 show the
results as a function of q with p as a parameter. Figure 2
shows only the constant component ap of Fig. 1(d) . In
an experiment one would measure an additional con-
stant component due to the swept field dHp/dt. From
Fig. 3 and Eq. (18) one obtains the dispersion. Figure 4
in conjunction with Eq. (19) gives the quantity which
is directly related to the low-frequency power loss of the
surface sheath. When Ho is decreased through H, 2

the losses increase at H, s as d (8 )/dHp= 1 for Hp) H,s,
but d(8)/dHp)1 for Hp(H, s as can be seen readily
from Eq. (6). This sudden increase in p„' and p,„"is
larger the smaller the I(: value of the type-II super-

-0.02
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I t
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FIG. 6. The out-of-phase second-harmonic Fourier coefBcient FIG. 8. The out-of-phase third-harmonic Fourier coeKcient
o2 of b(t) of Fig. 1(d) as a function of q and the parameter p. al of b(t) of Fig. 1(d) as a function of p and q.
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Fio. 9. pp I Eq. (i3l g as a function of q. When p& pp, y„' and
p„"are not any longer functions of p but only functions of q.
For p& p0 both y„' and p„" are functions ofp and q. For details
see text.

conductor is. Though for H«H, 2 the average internal
6eld is smaller than Ho, the internal alternating-field
variations are ampli6ed below B,~ as compared to above
H, ~, hence, the observed" increase of p~' and p,~". The
Fourier coeKcients of the higher harmonic components
are shown in Figs. 5 to 8 and might be a useful guide
for certain types of experiments which could compare
the 6ner details of various proposed models. The results
are quite complicated.

When p) pp (pp is shown in Fig. 9 as a function of q)
the Fourier coefEcients are the same for all values of p
for a given value of q and are shown in Figs. 2 to 8 by
the boundary curves at which the various curves for
p(1 terminate. These boundary curves correspond to
the value of p= pp. The boundary curves in Figs. 3 and
4 are of the same shape as those calculated by Schwartz
and Maxwell" though some of the details are not the
same. In our case, at for p= pp did not become negative
for 0.83 &q&1. Their results" are plotted in arbitrary
units so that no absolute comparison can be made.

IV. CONCLUSIONS

A type-II or type-I superconductor with a surface
sheath, which can carry critical persistent currents
around the circumference of the specimen, is in general
a lossy superconductor when an alternating magnetic
field is superimposed on a magnetic 6eld which is swept

at a constant rate. The losses are very complicated and
depend on two pa, rameters, p = t's, (Hp) /hp allcl g =
(dHp/dt) cphp. The function h, (Hp) is a measure of the
total critical surface current and is the quantity of
significance in any experiment. In the above calcula-
tions h, (Hp) is not necessarily assumed to be only
associated with the surface sheath but currents other
than the latter could contribute to h, . When dHp/dt=0
the imaginary part of the permeability p&" can be simply
related to the area of the hysteresis loop in the 8—Ho
plane. This simple relation does not hold any longer
when

~

dHp/dt ~)0. For values of q between zero and
unity the hysteresis loop in the 8—Ho plane disappears
when p& pp((1), though the permeabilities are finite.

In order to visualize the low-frequency losses as
hysteresis loops for q) 0 and p& pp, one has to introduce
a moving frame coordinate system with one coordinate
as h(t) =H, (t) $(dip/—dt) t+ Ct] and the other as
b(t) =8(t) —L(d (8 )/dt) t+Cp j, where the terms in the
brackets correspond to the swept external and swept
internal fields, respectively. In the b(t) —h(t) plane
the points 1 and 6 of Fig. 1 are the same and the hys-
teresis loop is closed. When q) 1 the permeabilities are
all zero (except p, ') and no losses occur, provided the
mixed state and the normal state can be ignored.

The main simpli6cation in the above calculations
was made by the assumption that the actual average
internal field as a function of Ho is parallel to the in-
ternal equilibrium field (8(Hp) ) Lsee Fig. 1(a)$ over
one cycle of the driving signal. This means that p
should not be small compared to pp. pt reaches a
maximum of about 0.252(d (8 )/dHp) at g 0.310 when
p& pp 0.562 (see Fig. 4).

In the above model the mixed state and the normal
state were neglected, so that we have disregarded
possible absorption due to vibrations of the quantize
P,ux tubes in the mixed state. Without these and other
possible relaxation mechanisms, the energy which is
absorbed per unit time is directly proportional to the
first power of the frequency.

The above calculations are based on the phenome-
nological aspects of irreversible thermodynamics. As
such they predict low-frequency losses in a supercon-
ductor. The microscopic interpretation of these losses
is beyond the scope of this approach.
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