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The stability of the equilibrium between Qux pinning and Lorentz forces acting on the Qux structure
in the mixed state is investigated. Complete stability is expected only if the temperature gradient of the
Qux pinning forces, BIi&/BT, is positive; otherwise the stability is affected by external Geld and geometry
considerations. For the simple case of a semi-infinite slab, cooled in zero Geld, a calculation is given using
standard empirical formulas for F~(B, T); the Geld above which instability is found then becomes
H f' —gal'"Lc(T, ' T') /T J—", where c is the specific heat per unit volume and T, the critical temperature.
For Hf;&H&Hf;, the Qux lines are accelerated by the Lorentz force until thermal recovery restores IiI.
This is called a limited instability. Above Hf, , the acceleration becomes too large compared to the thermal
recovery and a runaway speed is reached. This runaway instability is identified with flux jumping. A
simphfied approach to the heat equation allows an estimate to be made of the maximum speed during
a limited instability and of the Qux-jumping Geld Hf;, if the thermal diffusivity is known. The applicability
of the given calculations and the influence of various parameters are discussed, as well as some pertinent
experimental results.

A. INTRODUCTION

EFLUX jumps' ' and critical current degradation in
coilse have been variously observed in all techni-

cally important high-field superconductors. Both are
manifestations of the very general phenomenon of mag-
netic instabilities in type-II superconductors.

Inconsistency and scattering of experimental results
at 6rst gave support to the idea that gross material
imperfections and weak spots are responsible for these
effects. But this interpretation has been ruled out
except for a few isolated cases as more experimental
evidence has been accumulated.

There has been no lack of qualitative discussions, '~'
but attempts at quantitative explanations have been
hampered by the complexity of the problem and the
scarcity of data for important parameters such as
specific heat, thermal conductivity or diffusivity, re-
sistance in the critical state, etc.

The present investigation outlines a quantitative
treatment of magnetic instabilities for the very simple
experimental situation of a suKciently thick, long, solid
cylinder (without transport current) in a parallel ex-
ternal 6eld which is changing at a constant rate. In
this case, the assumption of a plane semi-infinite super-
conductor in a parallel 6eM allows a somewhat simpler
calculation while being a good approximation. The aim
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is to 6nd the value of the external 6eld for which a
Qux jump takes place.

It may help to summarize briefly the experimental
facts in order to illustrate what is understood by a
Aux jurnp. If the external field H is raised from zero,
the field 8 inside the solid cylinder will stay zero except
in a layer adjacent to the surface in which shielding
currents (parallel to surface and at right angle to the
field direction) are induced. ~" This "shielding layer"
will grow in thickness as H increases until, above a
certain value of H, the shielding currents suddenly
break down and 8 throughout the cylinder becomes
practically equal to H. On further increase of H, the
process will repeat itself; a shielding layer growing to
a certain thickness before breaking down again and so
on. The breakdown process is generally called Aux

jump.

B. BASIC APPROACH

Preceding the detailed mathematical procedure, an
outline of the physical ideas is helpful. We visualize
the mixed state in terms of quantized Qux lines or
Auxoids inside the superconductor whose density e gives
the induction B=nps (flux quantum ps ——2.07X10-'
G cm') . The current density j in the shielding region is
connected through the Maxwell equation, curl 8=4m j,
with the gradient of the induction:

1/47r(BB/Bsc) = —j. (1)

(The x axis is normal to the surface with the positive
direction into the superconductor; see Fig. 1.)

In the presence of this current density, a Lorentz
force Ill, is acting on the Qux structure:
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FIG. 1. Illustration of penetration layer and
disturbance, and of flux structure in equilibrium
between Lorentz and pinning forces.
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The reaction to this force is provided by inhomogene-
ities in the material creating local variations of the
mean free energy of the Qux structure. " If a force
equal to the local energy gradient is applied, a Quxoid
will leave its minimum energy site and move into the
neighboring minimum af ter the energy maximum in
between has been passed. The energy between maxi-
mum and minimum is completely dissipated. This con-
cept is called Qux pinning and the imperfections re-
sponsible for it are vaguely referred to as pinning sites.
These can be thought of as extended defects creating
a network of energy maxima or as point defects of
energy minima. Suggested examples are dislocations"
and grain boundaries for the former, and cavities"
and impurities for the latter. But for the present argu-
ment, the details of Qux pinning are of no concern.
One may simply assume a uniform distribution of vol-
ume density p of pinning sites, each of strength P,
resulting in a total pinning force per unit volume of
Fp =pP. Fg is a function of 8 and temperature T."
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J. Friedel, P. G. de Gennes, and J. Matricon, Appl. Phys.
Letters 2, 119 (1963) ~
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Ohio, 1964 (unpublished); Westinghouse Scientific Paper 64-1JO-
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A second contribution to the Lorentz force reaction,
independent of Qux pinning, comes from the Qux-Qow
resistance'" which is characterized by a viscosity p. If
the actual speed of the Qux lines is ~, this contribution
becomes gv. Dissipative mechanisms in Qux Qow have
been discussed extensively. '8

It is found" that for low temperatures and fields,
experimental results can be expressed as g =c„Bwhere
c„=H,s/p„with H, s the upper critical field at zero tem-
perature and p„ the normal-state resistivity. c„ is con-
stant over a large range of temperature and field.

Therefore, in the shielding layer in equilibrium, the
Lorentz force is balanced by pinning and viscous forces.

The task will be to discuss the stability of this equation
against disturbances.
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Let us 6rst introduce and justify two approxima-
tions. Initially, one may neglect the viscous term be-
cause ~ is very small. This is equivalent to assuming
isothermal conditions throughout the specimen, for
then j becomes a function of 8 only, and in order to
match 8 and H at the surface the Quxoids have to
have a drift velocity

dH 88 dB
47jr(B=H). (4)

8$ &=p

The power dissipation becomes

j (dC/dt) =j nggq, = (dH/dt) (8/47r), (5)

which enables one to estimate the limits of the iso-
thermal approximation. "

A disturbance of this equilibrium takes the character
of an addition of a lux increment DC to the interior
of the body. This may be thought of as occurring when
the innermost lux line moves a small distance; see
Fig. 1. Such a disturbance can be imagined as a density
wave in the fluxoid structure which propagates orders
of magnitude'4 faster than the drift velocity. This justi-
ces the assumption of a constant II during the time
of a disturbance.

So, using these two approximations, v=0 simplifies
the equilibrium Eq. (3) to

Large a)

force is greater than when H is large. The reduction
in pinning strength is similar in both cases since it
depends mainly on 6C. This means that the stability
limit is approached with increasing H. Looking now at
a limited superconductor such as a plane slab or a
cylinder in Fig. 2(b), it is found that after the field
has penetrated to the center, a disturbance with the
same reduction in Lorentz force needs an amount of
AC slightly smaller than before by the cross hatched
area since flux comes in from both sides. This lends
plausibility to the frequent observation that if the
center of a specimen is reached by the field without
a flux jump taking place, the danger of flux jumping is
reduced. If on the other hand the specimen is a hollow
cylinder as in Fig. 2(c), then the flux jumping danger
is increased suddenly, as soon as the field reaches the
inside wall, because an increase in AC is now needed
to fill the hole.

~I ~P) (6)

and H=const causes the flux front to take on the
shape indicated in Fig. 1 after a disturbance.

The disturbance changes both Lorentz and pinning
forces. From Fig. 1 one sees immediately that on the
whole the Lorentz force has been reduced since for a
point with the same 8 the gradient has become smaller.
The pinning force has also changed because of the
change in temperature due to the energy dissipated
by adding AC. The dissipation can be represented by
the product of the induced voltage and the shielding
current density or, with the same result, by the move-
ment of flux lines against the pinning forces. The change
of the pinning force is also negative when, as in most
superconductors, increasing temperature reduces pin-
ning strength. If the reduction of the Lorentz force is
larger than the reduction of the pinning force, the
equilibrium is stable; if smaller, then unstable; equality
gives the stability limit.

A qualitative conclusion may illustrate the point.
In Fig. 2(a) are shown two shielding layers with equal
AC disturbances, AC being represented by the shaded
area. When II is small, the reduction of the Lorentz

"Center
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» If we consider typical order-of-magnitude values, j&104
A/cm', FF &10' G, dH/dt&10' G/sec, we have v&1 cm/sec,
power dissipation &I W/cm' resulting in a power transfer of
&0.5 W/cm across the surface into the helium since the shielding
layer will be &1 cm thick. This power transfer is below the 61m
boiling limit ( 0.8 W/cm') (Ref. 60) which would thermally
isolate the surface from the bath.

s4A measurement of the magnetic diffusivity (Ref. 38) in
NbZr gave a factor of 10'.

"Center

FIG. 2. Influence of the external 6eld on the disturbance. De-
pendence on sample geometry for a solid and a hollow cylinder.
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Fn. 3. Graphic representation of basic approach. Equihbrium is represented by point R where FI.= Fp. It is shown how pp might
be affected by an increasing disturbance b,C. If the Lorentz force changes as indicated by F~ 1 then the equilibrium is stable. The lim! t
o the stability region is found when FI. and FI have the same tangent at K A limited instability is illustrated by FI. 2; thjs causes F~
to change as curve 2 lying on the surface which indicates how FI recovers with time due to heat conduction. The projectjog 2' gjves
the point of maximum speed where it crosses Fl, 2; it is the inflection point on the projection 2 into the t, AC plane. FI. 3 jndjcates
a runaway instability. The runaway speed is reached when 3 becomes parallel to FL, 3. A linear approximation of Fz is assumed.

On exceeding the stability limit, the Lorentz force
becomes greater than the pinning force during a dis-
turbance and the movement of the lux lines will accel-
erate. Now one has to look at Eq. (3) since v can be
neglected no longer. Kith the acceleration of the Aux

lines, the disturbance grows larger and may develop
into a lux jurnp. The acceleration process will take
some time during which thermal conduction reduces
the temperature rise and therefore, to a certain extent,
restores the pinning strength of the material. This will
reduce the acceleration and eventually decelerate the
flux lines again. The result will be a large, but locally
and in time limited, disturbance as distinct from a
Aux jump, described in the introduction. This situation
may be termed as one of limited instability.

Limited instability is characterized by an accelera-
tion to a maximum speed of the lux lines followed by
deceleration. The duration of this process is short
enough so that the shielding layer has not grown notice-
ably compared to the original thickness xo. If, how-

ever, Jvdt becomes comparable to xo during the acceler-
ation process, then the heat conduction, both to the
surface of the specimen and across the inner boundary
of the shielding layer, which should reduce the temper-
ature and thus restore the pinning, becomes less eEec-
tive. Eventually the shielding layer may grow so rapidly
that the heat conduction becomes negligible, i.e., the
front of the advancing flux may outrun the -heat con-
duction, resulting in an adiabatic process. This runaway
instability then is a flux jump.

A graphic representation summarizing the basic ap-
proach is given in Fig. 3.

The following three sections will give a quantitative
treatment along the given outline for the regions of
full stability, limited instability, and runaway in.sta-
bility.

C. FULL STABILITY

A disturbance of the shielding layer can be intro-
duced by changing J3(x) into B(x)+p(x) where p(x)
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is an infinitesimally small positive field. This will change
Lorentz and pinning force from FI. into Fr,+AFz, and
Fr into Fr +AFz. The equilibrium equation (6) changes
into

instability
FI.+~Ps, ~ Pr +~Fr

stabi lity

This field will give the stability limit and may be de-
noted as Hf;.

Hr; can only be calculated if F&(B, T) is known.
ln what follows we shall determine Hf; for a depend-

ency of FI which is found to be a good empirical
approximation in many cases."

Equation (7) with an equal sign, belonging either to
instability or to stability, separates the two regions
and determines what we call the stability limit. We
want to solve

AFI, =AFI.
where

Fp ——n LB/( B+Bo) $

aFz/a T= (a~/a T) [B/(B+Bo)),

Ba/BB =BBp/BT =0

(16)

Since, as said before, a disturbance spreads out very
quickly, we can ask that (8) be fulfilled simultaneously
for all x."

Using Eq. (2), one gets

AFr, Pr, (B+——P) —Fz(B)

1/4rr (—B(dP/dx) +P (BB/Bx)). (9)

Using (6) and (2) in (16), one finds the differential
equation

cr/(B+Bp) + (1/43r) (BB/Bx) =0. (18)

With the boundary condition for x =0, 8=H the solu-
tion becomes

(H+Bp)' (B+Bp—)'=8prnx. (19)
PdP/dx, being small to the second order, can be ne-

glected.
The pinning strength is mainly aRected by the tem-

perature rise which accompanies the energy dissipa-
tion because of the admission of Aux, and to a much
smaller extent by the increase in field. Thus AFp ——

(aFp/a T)nT+(aFp/aB) P.
The energy dissipated is

Substituting (16)-(19) into (14), differentiating, and
using the notation

S=c '(Ba/BT) and R= (Bp+H)'/4lrrr,

one obtains

(R—2x) P"—3P' —SP=0. (20)

1 BB
hq =j EC = ——— pdx.

4x Bx (8'v/BP) —2' =0, (21)

Substituting R—2x=2P and P=v/$, this reduces to
the form

10

The initial temperature rise becomes

AT= (1/c) aq,

where c is the speci6c heat per unit volume. Here we
made use of the fact that the disturbance is also a
quick process compared to the thermal diffusion and
avoid using the exact (but cumbersome) heat equation

which has the solution

v =Ci cosh(25) '~')+Co sinh(2S) 'I'$ (22)

or resubstituting

P = (-', (R—2x) ) 'I'
I Ci cosLS(2x—R) j'IP

+Co sin[S(2x —R) ]'I'I. (22')

gT/at=«, (a T/Bx')+c '(dq/dt), (12) The 6rst and second boundary conditions (15) give
the following Eqs. (23) and (24); and (22') instrted
into the original Eq. (14) gives Eq. (25). We use
the notation y= (—S/4prcr)'I' and keep in mind that
—,'(R—2xp) =Bp'/8'.
B D/(8prcr) "'=Ci cosBoy+ Co sinBpy, (23)

0 = Ci cos(Bo+H) y+ Co sin(Bo+H) 'Y

with crih being the thermal diffusivity, for which (11)
is a solution for small enough t. (See Secs. D and E.)
With (10) and (11) we have now

BFI 1 88 o aFI
d Fp = — — Pdx+ P. (13)81' %re 8x 8$

(24)

0= Cy sloka~ —Cm cosB~. (25)

Equating (9) and (13), one gets

dP aB aP~i 1aB aP~
B —+ —+4

~ P—— Pd*=0 (14).
dx Bx 88) c Bx BT

Now we have to 6nd the 6eld H for which (14) has a
solution with the following boundary conditions:

(1) P(0) =0, and (2) P(xp) =D(=const). (15)

It can be shown that if EPg&b, Fg for x1&x&x2 and & for
x&x1, x&x2, then the Rux lines in x1&x&xg will accelerate in
such a way as to reduce the differences between AFz, and &Imp in
both intervals.

These are three equations for the unknowns C» C2,
and B. Since we are only interested in H, we write
Eq. (24) as

0= (cosHy) (Ci cosBpy+Cp sinBpy)

—(sinHy) (Ci sinBpy —Cp cosBy) . (24')
26 Y. 3.Kin, C. F. Hempstead, and A. R. Strnad, Phys. Rev.

Letters 9, 306 (1962).
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After substitution of Eqs. (23) snd (2S), there remains

[BoD/(8rra) 'I'] cosHy =0

and the first solution of (26) gives, after replacing

(26)

v dt SMALL

c4xn dv
APPROXIMATION: —= 0

r)X

(27)

Ke may insert the common temperature dependence
of Qux pinning:

&I'&r& =Fi'~o)L1 —(T/T ) ] (28)

where T, is the critical temperature. Equation (28) is
a fair approximation in many measured cases. ' It is
also plausible if one recalls that pinning is expressed
by the local gradient of variations in mean free energy
and the pinning sites are locally fixed. Since the differ-
ence in Gibbs free energy between normal and super-
conductive state, being proportional to the square of
the critical 6eld, has the temperature dependence of
Eq. (28), it is likely that the variations also follow
this dependence. "

With Eqs. (28) and (16), (17) one obtains

Xo

fv dt LARGE

APPROXIMATION: v(o) =(&/2) v(Xo)

Ba/BT= —n(T) 4T/(T. s —T').
Using (29) in (27), one gets

(29)
{1/2) v dt

Hr; =-', m Lv-c( T.'—T') /T]'" (30)

This equation is remarkable as it contains only the
specific heat and the critical temperature and neither
the pinning strength parameter n nor the rate of change
of the external field dH/dt.

Subject to the assumptions of isothermal conditions
(dH/dk not too large), semi-infinite half-space (good
approximation as long as the shielding layer does not
reach the center of the specimen), and ordinary field
and temperature dependence of Aux pinning, the sta-
bility limit is expressed by Eq. (30).

Formulas similar to (27) and (30) have been pre-
sented earlier. "'9 Without allowing for the inhuence of
rl in Eq. (3), they were, however, erroneously attrib-
uted to H~;.

D. LIMITED INSTABILITY

Once the stability limit as determined by Eq. (14)
is exceeded, then the original equilibrium equation (3)
has to be considered in order to study the process
initiated by a disturbance. The time derivative of (3)

2' This is often not the case if the variations are caused by alloy
phases or inclusions which represent superconductors different
from the matrix, such as in the Pb—Sn and Pb—Sn—In alloys re-
ported by Livingston [J. D. Livingston, Appl. Phys. Letters g,
319 (1966)3.

'8 S. L. Wipf and M. S. Lubell, Bull. Am. Phys. Soc. 10, 60
(1965). (See also footnote in Ref. 38).

» P. S. Swartz and C. P. Bean, Bull. Am. Phys. Soc. 10, 359
(1965).

FIG. 4. Approximations concerning the speed of the Qux struc-
ture. The shaded area indicates where the Aux of the original
penetration layer is found after the disturbance. The triangle
with Jvdt as a base is equal in area to the rectangle with & Jvdg
as a base.

gives an equation of motion for the Qux structure:

8FI, 8Fp 85 Bg
=rl —+v

Bt 8t Bt Bt
(31)

This equation has to be valid for all x and t. In addi-
tion, the following equation for the conservation of the
Aux, which enters through the surface, must be fulfilled:

which gives

~ 88
88= —dx)

~=0 Bt

DB 888 85=8 —+v —,
Bt Bx Bx Bx

(32)

(33)

in which the sign is negative because x(g3) &x(&=0).
Now each of the two terms on the left in (31) have to
be worked out. Making use of (2), (33), one gets

BFI. 1 8'8 BB ' Bv BB~p
Bt kr Bx8t Bx Bx 8x

(34)

This equation can be simpli6ed by making some ap-
proximations. As long as jv(xo) dt«xo, one can neglect
Bv/Bx (see Fig. 4). The differential quotient in the



6rst term in (34) then becomes

(B/Bt) (BB/Bx) = v(—B'8/Bx')

because

(BB/Bx) (x, t+at) = (BB/») (x—»t, t);

with this approximation (34) becomes

BFr, v BB&' B'8

47/ Bx ) Bx
(34')

%IPF

If we make use of the notation (36), then

BFp BFp j BFp Bv BBf —vB — 8 —+v-
Bt BT c 88 Bx Bx

We can now write the original Eq. (31) for small v,

replacing q with c„8, as follows:

BB ' B'8 BFp f BB BFp BB+8 + —vB+ 'v—
4~ gx gx' gT 4~c gx pig gx

(39)8,88)
Bt Bxj

Bv/Bt =g;v+fi;v', (40)
wheredv v(xo) v

dx 2xp xo+x —
i

—-Fr 41
BI' BB 8 B'8 1 BBi f

4 Bxj c Br
and

2. BB/Bx= P(x) (H/xp), where P is a proportionality,

constant. Then

If fvdt is comparable to xp, we can make the following

approximations (see Fig. 4):
v(x) = which has the form1. fv(x=0)dt= ', fv(xp)-dt and therefore v x =

—,'v(xo) [1+x/xo], and

(B/Bt) (BB/Bx) = (B/Bt) (P (H/xo) )
=—(PH/xp') (Bxp/Bt)

(BB—/») Lv (xo) /*o]

= —(BB/Bx) [2v/ (xo+x) ].
Now (34) becomes

BF. . BB P BB

Bt 4n. Bx Bx xp+x
(34")

The difference between (34), (34'), and (34") is usu-

ally insignificant because (BB/Bx)' is very arge.

For the pinning force term in (31) one gets

BFp BFp BT BFp BB
(35)

83 8 T Bt BB Bt

The temperature is again given by a solution of the

heat Eq. (12). Instead of (11),we write

BT
~

~g—dt=fc '
Bt

(36)

where f=f(x, t, dq/dt) is a parameter measuring the

steadiness o ed f th temperature distribution according

to Eq. (12) [f (adiabatic) =1, f (steady state) =0].
See also Fig. 5.

If we neglect the change in shielding current, we get

[«Eq (1o)]
Bq .BC . 1 88---=j —=jvB=—vB —; ( )37
Bt Bt 4x Bx

'

with the use of (33), Eq. (35) then becomes

BFr BFp B'T ' BF ( Bv BB

Bt 8T Bx2 c 88 & Bx Bx

(38)

fi = (BB/Bx) /B.

F« 1«ger v, Eq ('N) must be written, replacing ai
and bj with

~Fp ~ ~+ 8 88 3 ].

x+xo» 4v Bx x+xp 4n. Bx

(41')
c 87

b, = (BB/Bx)/8+(x+x, )
i-

Equation (40) is solved by

v = —(u;/b;) [C exp( —g;t) +1]—i.

Where C is given by the initial speed vo,

(42)

C+1= a,/b, vp— (43)

C being a large number, the addition of 1 can usually
be neglected. For small t, (42) can therefore be written

v = vp exp(ait) . (44)

Equation (44) applies as long as fvdt«xp, i.e., in almost
the whole limited instability range.

Note that for vo
——0, the solution of (40) is v=—0 as is

seen in (44). This is expected since vp=0 implies no
disturbance and the system was originally in equi-
librium.

It is further seen from Eq. (44) that v decreases for
u~(0 and @=so=constant for uI ——0, i.e., a disturbance
will stop by itself and the equilibrium is stable, a&

——0
giving the limit of stability. Indeed Eq. (14), which
was given as the stability limit in the previous section,
will give the same result if the time derivative is
formed, using the simplifications introduced after Eq.
(34) and keeping in mind that BP/Bt=BB/Bt and f= 1.

It has been mentioned above that a limited instabil-
ity is characterized by a period of acceleration, followed
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are kept at zero temperature. The remainder has been
6lled in by approximating, for small time values, by
the unsteady-state solution and, for large t, by the
steady-state solution of the heat equation. The left-
hand boundary is assumed to stay at zero temperature
and at the right-hand boundary there is radiation into
the same medium at zero temperature. This would
make f infinite at the boundary itself, which is the
reason for leaving the vicinity of xo blank. .

We learn from Fig. 5 that for tn th/d'( 0. 02 the as-
sumption f=1 is a fair approximation and that for
longer times f reduces rapidly.

If one can neglect the change in xo during the whole
limited instability process Lsee Eq. (34) j, one writes
t from Eq. (45) as

tm (XP /Ath) gl. (47)

Seeing that f is small at the surface and near xp and
without knowing the exact shape of the disturbance,
we can say that the change in the shielding layer, i.e.,
the change in 13 and dB/dx, is largest near the center.
Qne might also say that the acceleration force is largest
at the center and is spread out over the whole of the
layer because of the elastic rigidity of the Aux struc-
ture. Considering all this, one may make a plausible
choice of gi

——0.015, which is the value for which f at
the center starts to diminish. With this, Eq. (44) can
be written

In this formula, vo has been replaced by v« from

Eq. (4), using Eqs. (2) and (6).

d =xp+ ddt (49)

increases noticeably during the acceleration period.
Should d grow faster than t'~' we obtain a case where

the thermal time parameter decreases with increasing

time, t. This means that the heat conduction is too

E. RUNAWAY INSTABILITY OR FLUX JUMP

Wehave seen that, once the stabilitylimit is exceeded,
a disturbance will cause the Aux lines to be accelerated

by the I.orentz forces because of the weakening of the
Aux pinning. The velocity, starting from the drift veloc-

ity, will eventually reach a maximum value. In the
case of a limited instability, this value is comparatively
low, allowing a thermal recovery of the bulk of the
shielding layer via heat conduction. Thus, the pinning
forces recuperate and a deceleration of the Qux struc-
ture sets in which stops the instability again. Thermal
recovery starts when the time parameter ntht/d' reaches
a certain critical value, which from a study of Fig. 5

we have guessed to be 0.015.
The situation may change when the thickness d of

the shielding layer

slow and the process becomes, or remains, adiabatic;
i.e., the thermal function f=i Lsee Eq. (36) and
Fig. 5).

In this kind of process, the acceleration continues
until a final runaway speed is reached. Naturally, in
due course the movement terminates owing to the
boundaries of the superconductor.

This process is a Aux jurnp and it occurs when the
following criterion holds:

Atht/d + g2. (50)

In other words, the condition for the development
of a runaway instability is that the thermal time pa-
rameter, which is zero to begin with, will not exceed a
certain critical value g2 because of the expansion of the
thickness of the shielding layer.

In order to make a quantitative estimate, we shall
adopt the same recipe as in the previous section. We
assume that Fig. 5 is a reasonable approximation for
the function f, although as d is not constant the agree-
ment would be expected to be somewhat poorer. This
would again give a choice of g2=0.015.

We arrive at the threshold value for a runaway in-
stability by putting this critical value into Eq. (50)
and assuming the equality sign. Since f=1 is again
valid, we can use Eqs. (40) —(44) in determining u

which gives the value for d according to Eq. (49).
We still have to decide what limits the integral in

Eq. (49) should take. The obvious choice of taking mq„

as the initial speed is not good if we realize that Fig. 5
is only right for constant dq/dt which in this case
means constant v. Instead of being constant, v changes
by several orders of magnitude before the integral
becomes comparable to xo. Therefore, the insertion of
the initial speed v from Eq. (48) is suggested. Thus
the thermal time parameter is counted from the mo-
ment when the heat production has reached this almost
constant, higher level of the limited instability.

on the basis of these considerations, the formal re-
sult is reached as follows: Taking v from the expres ion
(42), the constant C assumes the value

C= —(u;/ti;v +1),
where v,„is given in (48). With

(51)

t
t 0, ' ln(1+C exp—( —g,t) ) (52)

b;

the criterion Eq. (50) becomes

1+C exp( —o't) ~
x,t-»2 ——PI2—

b; b; 1+C 1 0.0151

(53)

The condition that the left-hand side shall be a mini-
mum will determine the unknowns t and C. The con-
stant C contains the value H~;, the threshold 6eld for
runaway instability.
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In a practical evaluation, one may get the left-hand
side of (53) versus time directly from Eq. (40) by
means of an analog computer.

F. DISCUSSION

In order to appreciate the applicability of the formu-
las presented in the previous chapters, it is of impor-
tance to state once more clearly the assumptions made
and discuss the effect of deviations from them. In
subsequent sections, the influence of the main vari-
ables, such as dH/dt, atq, Fz, and r)Fz/r)T, will be
outlined and Gnally, a comparison in a general way
with experimental Gndings should be of interest.

Magnetic instabilities can only occur when a super-
conductor is not in thermodynamic equilibrium, i.e.,
irreversible. Terms like "perfect" or "ideal" allude to
a high degree of reversibility"; an "ideal" superconduc-
tor cannot sustain any macroscopic magnetic gradients
in the mixed state.""The maximum of the deviation
from equilibrium which an imperfect superconductor
is capable of can be characterized by a "critical state. "
This, for the purpose of the present investigation, is
su%ciently described by a bulk critical-current density
J, which is normally a function of the local induction
8 and temperature T. In general, and recently the
subject of various studies, " there is also a surface
critica1 current density J„—in addition to the equi-
librium surface current responsible for the ideal dia-
magnetic properties of the superconductor, and unlike
this one it can have positive or negative sign. Maxwell s
equations allow an alternative description of the critical
state in terms of a magnetic gradient 88/Bx=47r j,
and of a step at the surface DH, =4m J„. A third
equivalent description uses pinning forces which are
connected to the previous two views by being the
reaction to the Lorentz force, Fp = J„&8;in this more
microscopic picture, the surface current takes the role
of a surface barrier. "

While in many magnetically unstable superconduc-
tors these surface currents are not negligible (AH, is
of the order of 100 G in NbZr and NbTi), " their
inQuence on the instability problem is small if the sur-
face is well cooled as in our conditions. Naturally the
boundary Geld which the bulk Aux structure sees should
be taken as H —AH, rather than the external field IJ

~The GLAG theory is based on thermodynamic equilibrium.
See A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957)
LEnglish transl. : Soviet Phys. —JETP 5, 1174 (1957); also pub-
lished in J. Phys. Chem. Solids 2, 199 (1957)].

» C. J. Gorter, Z. Angew. Phys. 14, 722 (1962).
3 W. Klose, Phys. Letters 8, 12 (1964).
& J. %, Heaton and A. C. Rose-Innes, Appl. Phys. Letters 2,

196 {1963);Cryogenics 4, 85 (1964).
34 A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 47, 720 (1964)

t English transl. : Soviet Phys. —JETP 20, 480 (1965)g; H. J.
Fink and L. J. Barnes, Phys. Rev. Letters 15, 792 (1965);J. G.
Park, ibid. 15, 352 (1965).

ss C. P. Bean and J. D. Livingston, Phys. Rev. Letters 12, 14
(1965)."H. A. Ullmaier and W. F. Gauster, J. Appl. Phys. 37, 4519
(1966).

alone. Since instabilities related to the surface repre-
sent sudden changes of QH„ they become a source of
disturbances similar in effect to an unsteady dH/d1.

%e have assumed isothermal conditions; this is
largely a mathematical convenience. The same phys-
ical ideas apply when dH/dt is too large for the iso-
thermal approximation, but simplifications like Eqs.
(4) and (16) are no longer allowed and the calculation
may become prohibitively complicated. For large val-
ues of dH/dt, one approaches fully adiabatic conditions.
Then a very simple criterion will establish an upper
limit for the Qux jumping field"; however, the pres-
ently outlined mechanism may, and usually does, still
cause instabilities at a slightly lower field.

An important simplification justified by the iso-
thermal assumption is the heat equation (12). In this
form it is only valid when the thermal diffusivity is a
constant. In reality a,b

——E/c is a function of T because
both c and E vary differently with temperature. The
correct heat equation

becomes
c(r) T/r)t) =V (EVT) (54)

Bp/Bt=a, t, p". (56)

This is important because n, ~. ,g. is proportional' to
dH/dt; consequently, for small dH/dt, the disturbance
propagates itself so slowly that Eq. (11) is never valid,
the heat being conducted away as it is produced.
Equation (56) was used to determine the stability
limit in dependence of dH/dt by means of an analog
computer, but the results depend on the type of mag-
netic disturbance being used as a boundary condition
and, moreover, 0.,~. „.far from being a constant,
renders Eq. (56) a very poor approximation for similar
reasons as given above in discussing the heat equation.

In the present treatment dH/dt enters through tlat„

of Eq. (4) into Eq. (48) to influence the limited in-
stability and H&;,

' because of (10) the stability limit
is independent of dH/dt, thus for very small dH/Ch the
results are questionable.

In connection with the drift velocity, it shouM be
pointed out that for very slow movements e&„repre-
sents an average speed which may be composed of
short quick movements of individual vortices while the
others are stationary. Spacing of pinning sites may be
of the order of i0 5 cm which is the same as the spacing

» S. L. Wipf and M. S. Lubell, Phys. Letters 16, 103 (1965).
ss M. S. Lubell and S. L. Wipf, J. AppL Phys. 37, 1012 (1966).

—',eLr)(T')/t)ti=t V'(T') (55)

if c=eTs and E=fT', which are fairly close to the
actual functions in the superconductor.

In adopting Eq. (11), we have also assumed that
the magnetic diffusivity is larger than the thermal
diffusivity. In reality the magnetic disturbance P in
Eq. (10) is itself the result of a diffusion process and
shouM likewise be the solution of an equation:
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Fro. 6. Qualitative illustration of Fs.(/Fp versus Fr/Fp on the basis of Ref. 40.

Fz Fp Fg,(+r(v——. — (57)

Frft f according to the results of Ref. 40, can be ex-
pressed as a function of Fr,/Fp and would take values
as illustrated in Fig. 6. (( (which can only be positive)
is different from zero when

Fs,(/Fp) 1—Fr/Fp.

~ P. G. de Gennes and J. Matrieon, Rev. Mod. Phys. 36, 45
(1964)."D. E. Farrell, I. Dinewitz, and B. S. Chandrasekhar, Phys.
Rev, i.etters 16, 91 (1966).

of fluxoids at 8=2000 G. With the idea of spatially
discreet pinning centers and the elasticity of the flux
structure" (Maxwell tensor) one might assume that
a small section of a flux line having cleared a pinning
site moves a fraction of this distance, say 10 cm.
If vd„&10 ' cm/sec (for j=10' A/cm' dH/df& 10
Oe/sec) then this process occurs only once every sec-
ond. This is also a reason why for very low vz„ the
present treatment is poor and why Eq. (56) is no big
improvement.

This, lastly, raises the question of the validity of a
constant viscosity rl in Eq. (3). The nonlinearity of
Eq. (3) has been experimentally investigated, 4' and it
was found that for F«Iip the drift velocity reaches
finite values. In the light of the above model and in
order to keep the formalism of Eq. (3) intact, one
would have to add to the Lorentz force a force FQ f,
which is due to the deformation of the flux structure.
Pd f expresses the excess of the steepest local gradient
over the average gradient dB/dx connected LEq. (2)]
with Fr, . Equation (3) then becomes

Our criterion of instability as given in (7) or (31) can
also be written as

8/Bt(Fr, /Fp) &0,

but with (59) we have, because of (58), also

8/Bt(Fz/(Fp Fa.() ))0. —

(59)

(60)

Consequently, the criterion for stability is unaffected
by this more refined description. Once the stability
limit is exceeded, one has to expect a lower v, speed
during a limited instability. This in turn leads to a
higher runaway field Hf;. At present not enough is
known about Fd, ( and since its relative size (~20%%u~)

compares with the scattering of experimental flux jump-
ing data, the mathematical complications are a strong
bias against its inclusion.

The geometric assumption of a semi-infinite plane
superconductor is not very restrictive because in most
cases the shielding layer thickness d is small compared
to the dimensions of the superconductor. Conversion
of the calculation into cylindrical coordinates shows
that for d&80% of radius r of a solid cylinder, the
change is very small. If the shielding layer grows fur-
ther towards the center then the danger for instabilities
subsides as outlined in the second chapter, Fig. 2(c) .

Cooling in zero field has been taken as an initial
condition with regard to the magnetic history of a
specimen. Normally after a flux jump, 8 inside is
uniform and equal to P(=H(;) outside, ' in which case
subsequent instabilities can be worked out by applying
the same formalism unchanged except for the initial
Geld H which becomes II~; instead of zero. Neither
does it matter whether, after a flux jump, the field is
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raised or lowered; if 8=0 is crossed, some sma11 compli-
cations, mentioned in detail later, may arise. In general
and for more complicated magnetic histories, it is sufB-
cient to know the (macroscopic) distribution of J3
throughout the shielding layer in order to easily adapt
the given formulas.

In this context the case of the external field being
not paraBel to the surface should be mentioned. Again,
if the internal distribution of J3 is known the present
treatment should, in principle, be adaptable. The difE-
culty in predicting 8 in such cases seems at present
at least as big an obstacle as the anticipated mathe-
matical complexity. This has been discovered recently
for the simple geometry of a long cylinder in a perpen-
dicular field 4' 4'

For the brief discussion of the inQuence of variables
on the results, we shall stay within the assumptions
originally adopted and we include external variables
such as H, dH/dt, and T as well as material constants
such as Fg&, BFp/BT, n,q, and c.

It may be repeated here that in regions (with regard
to T and H) where BFr/BT)0 the stability limit (7)
or (58) is never reached and the superconductor is
inherently stable. A small argument has been presented
which makes plausible why many defects have a pin-
ning strength which decreases with increasing temper-
ature, like L1—(T/T, )']', but there are many pinning
mechanisms possible and there have been reports of
BF~/BT) 0."4'

The variation of the stability limit as c't' is seen
directly from (27) and (30). Many studies'444' have
suggested, at least qualitatively, similar formulas con-
taining the c'I' dependence. Since Hgj is more or less
proportional to Hf;, the inQuence of c is reQected in
the Qux jurn. ping field. Experiments with porous Nb&Sn

give a good illustration. 4' 4~ If the pores are filled with
liquid helium, c being the specific heat per unit volume
will have a contribution from the heat of vaporization
of the liquid, which for completely isothermal condi-
tions can increase c by a factor of 100, increasing Hf;
tenfold.

'The e6'ect of the actual size of FI is weak, having
no influence on the stability limit $Eq. (30)j. Weak
pinners, however, often do not fulfill the geometric
assumption of infinite thickness and appear therefore
more stable. Fr enters Eq. (48) and thus influences

4' M. S. Walker and J. K. Hulm, Appl. Phys. Letters 7, 114
(1965).

4' Y. Iwasa and J. E. C. Williams, Appl. Phys. Letters 9, 391
(1966).

4' J. Sutton and C. Baker, Phys. Letters 21, 601 {1966).R. R.
Hake, T. G. Berlincourt, and D. H. Leslie, Bull. Am. Phys. Soc.
7, 474 (196').

«F. Lange, Cryogenics 6, 176 (1966}."R.Hancox, Phys. Letters 16, 208 (1965); Appl. Phys. Let-
ters 7, 138 (1965)."J.M. Corsan, G. W. Coies, and H. J. Goidsmid, Brit. J.
Appl. Phys. 15) 1383 (1964).

4'I P. F. Smith, A. H. Spurway, and J. D. Lewin, Brit. J. Appi.
Phys. 16, 947 (1965).

Hr; in Eqs. (51)—(53). Hr; changes in the same sense
as FI. (See specimen 4 in Ref. 37.) For large dH/dt,
H fj will reach a constant value somewhat above H
For small dH/dt, Hr; increases logarithmically4'; an
examination of (48) shows that o,„ is proportional to
(dH/dt) e" to a first approximation Ltaking H/FI* (H) =
1/j constant, and a;~ 1/H; xo~ H]; furthermore, at
t, the relative increase of the shielding layer Exp/xs
is also proportional to (dH/dt) e~, using the same ap-
proximation (and 1«expa, xs'/rrts) . This would imply
Hr; ~ constant —logdH/dt.

The thermal diBusivity has also a comparatively
weak inQuence, changing Hf; in the same sense as itself.
The temperature dependence of ntq being close to T '
tends to counteract the L1—(T/T, )'$' dependence of
F~, resulting in a weak temperature dependence of
Hfj in spite of the variation of Hf;."

Finally, we try to find experimental illustration and
confirmation of the presented arguments and calcula-
tions. Although magnetic instabilities have frequently
been observed, they are usually not in the focal point
of an investigation and therefore only incidentally re-
ported. Often the geometries are remote from the plane
slab, or the material of an inhomogeneous nature, the
results therefore only qualitatively comparable.

The present study has partly been stimulated by an
experimental investigation of Qux jumping in solid
NbZr cylinders. Some of the results have been re-
ported" and a more detailed description including
measurements of nfl, BFI/BT, and incorporating cal-
culations as outlined here will be published elsewhere.
The agreement of these results with the present theory
is reasonable; naturally, the choice of the critical con-
stants g& and g2 has been inQuenced by these experi-
mental results.

Perhaps insufIiciently recognized so far is the fact
that runaway instabilities are preceded by limited in-
stabilities. The latter often go unnoticed in experiments
which measure Qux jumping activities because the effect
in terms of change in magnetization or amount of Qux

involved is very much smaller.
However, experiments by Wischmeyer" clearly show

small rushes of Qux, of 100 Qux quanta or more, which
increase with dH/di and are observed under conditions
which immediately precede the occurrence of Qux jumps
and above the stability limit. Another interesting ob-
servation is that these limited instabilities are, as ex-
pected, also localized with regard to the specimen
surface. "

Further observations of limited instability have been
reported as "Qux jumps" of between 5X10' and 2&(10'

8 J. M. Corsan, Phys. Letters 12, 85 (1964); N. Morton, ibid.
19,457 (1965).

4' J. H. P. Watson, J. Appl. Phys. 37, 516 (1.966).
"C.R. Wischmeyer and Y. B. Kim, Bull. Am. Phys. Soc. 9,

439 (1964). See also Fig. 9 in Y. B.Kim, Phys. Today 16, 21.
{1964).

s' C. R. Wischmeyer, Phys. Letters 19, 543 (1965).
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quanta each where a total Qux jump would require at
least 10' quanta. "The magnetocaloric eBect reported
by Zebouni et ul. ,

53 can almost certainly be attributed
to limited Qux jumping.

It must be pointed out here that a series of limited
instabilities can lead to a sufficient relaxation of the
Lorentz force, so that real runaway instabilities never
occur.

Since the solution of Eq. (40) gives a final velocity
v )see Eq. (46)] and since there are various rneasure-
ments of such velocities, """we ought to focus our
attention quickly on this point. If during a Qux insta-
bility a 6nal velocity is reached, it will be given by an
integral of Eq. (31), similar to Eq. (46). Of course,
neither a; nor b; is constant. Such a solution would be
expected to give smaller speeds than a solution of the
diffusion equation:

(61)

with r being the normal electrical conductivity. How-
ever, in the adiabatic flux jumping limit Eq. (61)
could apply. We can therefore say that for Qux jumps
occurring below B~ of Ref. 37 the 6nal speed will be
lower than a solution of (61) and depend on Ht;. If
Hfj &H& (for small dH/dt, higher temperatures, etc.),
then Eq. (61) will apply.

The question of what happens after the runaway
speed has been reached has not been treated here. We
mentioned earlier that most observed Qux jumps end
when Qux has reached the center of the specimen; but
even in the semi-infinite slab the movement will come
to a rest since the runaway speed is not infinite and
thermal recovery does take place behind the moving
Qux front. Thus the recovering Qux pinning will inter-
rupt the supply of Qux. An excellent experimental study
by Wertheimer and Gilchrist" shows this in the case
of very short cylinders.

~'E. S. Borovik, N. Ya. Fogel', and Yu. A. Litvinenko, Zh.
Eksperim. i Teor. Fiz. 49, 438 (1965). )English transl. : Soviet
Phys. —JETP 22, 307 (1966)j.

»N. H. Zebouni, A. Venkataram, G. N. Rao, C. G. Grenier,
and J. M. Reynolds, Phys. Rev. Letters 13, 606 (1964).

~ R. B. Flippen, Phys. Letters 1'7, 1.93 (1965).
5 B. B. Goodman and M. Wertheimer, Phys. Letters 18, 236

(1965).
«M. R. Wertheimer and J. Le G. Gilchrist, J. Phys. Chem.

Solids (to be published). (See Rei. 55).

It has been noticed in certain experiments that,
immediately after a Qux jump, no or very little Qux
is admitted. This indicates the inQuence of the surface
critical current and is especially noticeable when AH&

is comparable to (dB/dx) r, which is normally the case
for low-~ material like Nb, ' or for weak pinners like
Pb—Bi alloys. In this context another inQuence has
recently come to notice; it was reported" that what
must be surface originating instabilities occur under
otherwise equal stability conditions only when Qux is
leaving the sample but not when entering. In this
particular case the entropy of the Qux lines, " needed
to create the Quxoids when entering the sample and
set free when Quxoids leave, will create a change of the
surface temperature of 1&10 ' 'K." This temper-
ature change being negative when Quxoids enter the
specimen stabilizes AHg,. being positive when Quxoids
leave, it adds to the Joule heating, thus increasing the
instability conditions.

It has been suggested that the annihilation of Qux
lines in the region where 8=0 is a crucial inQuence in
causing Qux jumps. '""But in many cases such an
inQuence can hardly be noticed. ""The annihilation
of Qux lines which will release additional energy will
doubtlessly complicate the picture in the region 8=0
along with the possibihty of a Meissner state (for
B(H,&) and consequently an intermediate state be-
tween the regions of opposing Qux; but fortunately in
most cases the inQuence is negligible.

ACKNOWLEDGMENTS

The author thanks A. G. Presson for solving some
computer problems and M. S. Lubell, H. T. Coffey,
H. J.Fink, and T. G. Berlincourt for helpful discussions.

s' S. H. Goedemoed, C. Van Koimeschate, J. W. Metselaar,
and D. de Klerk, Physica 31, 573 (1965)."R.W. Rollins and J. Silcox, Phys. Letters 23, 531 (1966)."F.A. Qtter, Jr, , and P. R. Solomon, Phys. Rev. Letters 16,
681 (1966). (See also Ref. 6.)

«Note that in Ref. 58 there is an error concerning the diameter
of the specimen, vrhich should be 34 mil (=0.86 mm) and not 34
mm as printed (private communication by J. Silcox). To arrive
at the surface temperature change, heat transfer values extra-
polated from A. P. Dorey [Cryogenics 5, 146 (1965)] and A.
Karagounis LBull. Int. Inst. Refrig. Annex 2, 195 (1956)$ were
used.

6' M. R. Beasley, W. A. Fietz, R. W. Rollins, J. Silcox, and
W. W. Webb, Phys. Rev. 137, A1205 (1965).I C. R. Wischmeyer, Phys. Letters 18, 100 (1965).


