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We discuss the quantum theory of a simple model of a maser oscillator, consisting of one radiation-field
mode interacting with a large number of stationary three-level atoms. The field and the atoms also interact
with separate heat reservoirs which represent dissipation mechanisms and an incoherent pumping
mechanism. The model is su%ciently simple that some analytical progress can be made with the nonlinear
quantal equations before further approximation is necessary. We start from the quantal equation of motion
of the field-atom density operator. We make immediate use of a diagonal coherent-state expansion for the
field part of the density operator and a somewhat similar expansion for the atom part. This yields an exact
equation of the Fokker-Planck form for a c-number weight distribution, which retains all the significance
of the original operator equation, and which has the semiclassical equation for the same model as a first,
fluctuation-free approximation. We make use of our basic Fokker-Planck equation in a variety of ways.
We discuss the reduction of the equation under conditions that the atomic decay constants are large (large
atomic linewidth}, arriving finally at an equation of motion for a field-only weight function which serves
to demonstrate the basic coherence properties of a maser. We derive and discuss the equation of motion of
the generalized Wigner density for the maser model. The generalized Wigner density is a smoothed version
(a convolution) of our basic weight distribution, and from it we derive an equivalent classical model in-
cluding noise sources. Finally, we discuss other useful weight distributions and the number representation
for the field. The equations we derive in these discussions make contact with the rate equations of Shimoda,
Takahasi, and Townes, as well as with the more recent work of Lax and Louisell, Lax, and of Scully and
Lamb.

I. INTRODUCTION

t 1HE theory of a maser oscillator is an interesting..meeting ground for quantal and classical physics. A
simple maser represents possibly the most elementary
quantal problem involving many particles which obey
nonlinear equations. In addition, of course, the maser
(laser) is a useful device which is the basis of quantum-
electronics research. Hence, it is important to' gain as
much insight as possible into the behavior 'of this
device, for example, to understand its inherent:quantal
fluctuations.

Since masers operating at levels near or above the
threshold of oscillation normally involve many atoms
and many photons, one might expect that there should
exist a close equivalent classical model. A tuned
circuit oscillator involving a saturable negative resist-
ance is such an equivalent, and part of the effort of
this work is to demonstrate precisely the nature of the
equivalence. Our equivalent classical model contains
appropriate sources of fluctuations (noise) .

We discuss a simple model of a maser oscillator,
consisting of one radiation field mode interacting with
a large number of stationary three-level atoms. The
field and the atoms also interact with separate heat
reservoirs which represent dissipation mechanisms and
an incoherent pumping mechanism. The model is
suKciently simple that some analytical progress can be
made with the nonlinear quantal equations before
further approximation is necessary.

A considerable amount of progress has already been
made in other work on fully quantal treatments of the
maser, wherein the radiation field is quantized as well
as the atoms. Our model is the same as that of Lax, '

' M. Lax, Phys. Rev. 145, 110 (1966).
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who has approached the problem by deriving and then
working from a set of Langevin-type operator equa-
tions involving noncommuting random forces. Lax and
Louisell' and later Lax' have extended this treatment
to obtain equations of motion of an "associated class-
ical function" (c-number function) which represents a
certain (antinormal) ordering of the Geld density
operator. Haken4 and his co-workers have pursued
more or less the same approach, generally treating
more complicated models with many field modes,
moving atoms, etc. Scully and Lamb' have taken a
different and independent approach starting from a
model nearly equivalent to Lax's. They treat the case
of short atomic lifetimes, and work in the photon
number (energy) representation for the Geld. They Gnd
the effect on the field density operator of the temporal
passage of one atom through the field. They then
multiply the result for one atom by the rate of passage
of atoms to find the total effect. Two different kinds
of atoms represent gain and loss mechanisms.

We have found yet another approach to this problem,
which we feel has some advantages over the others. We
start (Sec. II) from the quantal equation of motion of
the field-atoms density operator. We make immediate
use (Sec. III) of a diagonal coherent state expansion
for the field part of the density operator and a some-
what similar expansion for the atoms part. This yields
an exact equation of the Fokker Planck form for a
c-number weight distribution, which retains all the

' M. Lax and W. H. Louisell, J. Quant. Electron. 3. 37 (1967},' M. Lax, Phys. Rev. 157', 213 (1967};also, Brandeiv Summer
Institute I ectures, l966 (Gordon and Breach Scientific Publishers,
Inc. , New York, to be published).

4 V. Arzt, H. Haken, H. Riskin, H, Sauermann, Ch. Schmid,
and W. Weidlich, Z. Physik 197', 207 (1966}.

5 M. Scully and W. E. Lamb Jr., Phys. Rev. Letters 16, 853
(1966).
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significance of the original operator equation, and which
has the semiclassical equation for the same model as a
first, fluctuation free, approximation. The importance
of coherent state (minimum uncertainty wave packet)
representations has been emphasized by Glauber, ' who
has used them to gain understanding of coherence
properties of quantized fields. Further understanding
of diagonal coherent state representations has been
afforded by the work of Sudarshan' and Klauder. "

In the remainder of the paper we make use of our
basic Fokker —Planck equation in a variety of ways. In
Sec. IV we discuss the reduction of the equation under
conditions that the atomic decay constants are large
(large atomic linewidth), arriving finally at an equa-
tion of motion for a field-only weight distribution which
serves to demonstrate the basic coherence properties of
a maser. In Sec. V, we derive and discuss the equation
of motion of what we call the generalized Wigner
density for the maser model. The generalized Wigner
density is a smoothed version (a convolution) of our
basic weight distribution, and from the diffusion
approximation to its equation of motion we derive an
equivalent classical model, including noise sources.
Finally, in Sec. VI we discuss other useful weight
distributions, and the number representation for the
field. The equations we derive in these discussions make
contact with the rate equations of Shimoda, Takahasi,
and Townes' as well as with the more recent work of
Lax and Louisell, ' Lax, ' and Scully and Lamb. '

II. THE MODEL AND EQUATION OF MOTION

The model describing the simple maser we consider
here is illustrated in Fig. 1. It is identical with one used

e R. J. Glauber, Phys. Rev. 131, 2766 (1963);also in Quautum
Optics and Etectrolics, Les Houches i%64, edited by C. deWitt,
A. Blanden, and C. Cohen-Tannoudji (Gordon and Breach Scien-
tific Publishers, Inc. , New York, 1965).

E. C. G. Sudarshan, Phys. Rev. Letters 10, 277, (1963).
e J. R. Klauder and E. C. G. Sudarshan, Fundamentals of

Quantum Optics (W. A. Benjamin, Inc. , New York, to be pub-
lished).' J. R. Klauder, J. McKenna, and D. G. Currie, J. Math. Phys.
6, 734 (1965).

'o K. Shimoda, H. Takahasi, and C. H. Townes, J. Phys. Soc.
Japan 12, 686, 1957.

where b is the usual annihilation operator and b~ its
adjoint creation operator. The photon number operator
btb has the positive integers and zero as eigenvalues.
In contact with the resonator field are a large number
E of atoms having three important nondegenerate
energy levels labeled 0, I, 2 in order of increasing
energy. The uncoupled Hamiltonian describing the
atoms is

2

H, =pe,N;, (2.2)

N

N;=g(a;ta;), (2.3)

since (a; a,) is unity if the mth atom is in the jth
state, and zero otherwise.

The coupling between the atoms and the Geld is
described in the rotating wave approximation by the
interaction Hamiltonian

V =i5tt/M br —Mtb], (2 4)

where p is a real coupling constant proportional to the
atomic dipole moment associated with the 1+-+2 transi-
tion, and

M=+(a, as)„,

Mt = Q ( ast a, )„. (2 5)

The macroscopic polarization of the atoms is propor-
tional to,uM. Application of a single term of thi
interaction Lexpanded according to (2.5) $ removes one
photon from the field and simultaneously raises one
atom from level 1 to level 2, or adds a photon to the
field and lowers one atom from level 2 to level 1.
Without the rotating wave approximation, terms

Mb and Mtbt

would appear in V. These terms, which do not conserve
energy in the individual transitions without a lot of

where ¹,is the operator for the number of atoms in
the jth level, and e; is the energy of the jth level. We
use the notation of second quantization to describe
the atoms, with operators

(a ) and (a;")„
being, respectively, annihilation and creation operators
for the jth state of the mth atom. The properties of the
atomic operators which we shall need are discussed in
Appendix A. In terms of these,
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help from the heat reservoirs, are ignored here from the
beginning. This restricts the discussion to the case of
sharp resonance, or high Q.

Finally, the model is completed by allowing both the
field and the atoms to interact with separate heat
reservoirs. The held reservoir simulates the lossy walls
of the resonator and the lossy resonator medium. The
atom reservior simulates the maser's energy source
(the pump) and the various objects which randomly
perturb the atoms; i.e., radiation field modes other than
the one singled out here, phonon modes, atomic colli-
sion, etc. We specihcally do not include direct inter-

actions among the X atoms of the maser, as these
would have to be considered in more detail than is
implied by a reservoir. Hence no maser atom feels the
others except by way of the radiation field.

The e6'ects of the reservoirs on the density operator
describing the field and the atoms are not describable
in terms of a Hamiltonian. We have taken them from
Lax's work, ' and include them directly in the equation
of motion of the density operator.

In the Shrodinger picture, the equation of motion of
the density operator describing the combined system
of field and E atoms can be written

dp Z N 2—=——
{ (H.+H&), p]+pL(Mbt —Mtb), p]+g g w;„{(a,"a,)„p(a,ta;)„——',(a;ta;) „p—-', p(a„ta;)

t m=1 i,j'=0

——,y {Lnbb~+ (n+1) btb]p+pLnbbt+ (n+1) btb]) +y{(n+1) bpbt+nbtpb ). (2.6)

In this equation of motion (2.6), the first two terms
result from using

shifts are incorporated in the definitions of co and co~,

respectively.

i/i(dp/dt) =pi, p], (2 &)

in the usual equation of motion for the density operator
in the Schrodinger picture; i.e.,

III. THE ANSATZ AND THE FOKKER-PLANCK
EQUATION

We will show that (2.6) is consistent with the follow-

ing expansion of the density operator p, namely,

where the right side is the symbol for the commutator
of H and p. The succeeding terms contain the effects of
the reservoirs on the atoms and on the field. The
positive term in the curly brackets multiplying z;,
when i/j, gives the increase in the population of level i
caused by reservoir-induced transitions from level j,
with m;, being the probability per unit time and per
atom for such a transition. The negative terms, when

i/j, give the decrease in the population of level j
caused by reservoir-induced transitions to level i, and
also e8ect the associated decay of the atomic polariza-
tion. The terms with i=j do not involve level transi-
tions, and do not a6ect the level populations. They
correspond to reservoir-induced random-phase shifts,
and effect additional decay of the polarization.

Finally, p is the field decay constant caused by its
reservoir. In the n representation for the field, one may
see that the negative terms involving p yield a decay
of p„proportional to p„„while the positive terms yield
an increase in p„proportional to p„+~,~+~ and p„~,~~.
The parameter n is the mean number of photons in the
field when it is allowed to come to thermal equilibrium
with its reservoir in the absence of any maser atoms.
That is, n= eLxp(5&v ik/T) —1] ', where T is the reso-
nator temperature.

These reservoir terms constitute a slightly abbrevi-
ated version of the more general results of Lax.' We
have omitted terms whose only eEect is to shift the
atomic or field frequencies, assuming that any such

In (3.1), Pi is a weight distribution and 0 is a simple
product density operator for the field and E maser
atoms, of the form

(3.2)

+Oti( ai'ai) „+K,( a,'a.)„
+OR ( aQ ai) +OR ( al 82) j (3.3)

represents a mixed state of the mth atom. We have
shortened the writing of (3.1)—(3.3) by using the
notation

X,( j= 1, 2, 3, 4) —= (K„M;,OR, OR*),
d&2iP—=d(Re/) d(ImP),

d&4'X—:dO4d04d(ReOR) d(ImOR) . (3.4)

We have also used a superscript (6) on the integral
sign to represent a sixfold integral. To further simplify
later writing we shall use

where
l P) represents a pure coherent state of the field, '

and

0„(x,) =X '{(E—Xi—Kp) (aotao)
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and

.(x;)=Q .(x,),
m=1

(3.5)

to unit trace, we obtain
(6)

Ei(P, P*, X,, t) d"P d&4)X.

so that we can write

~(p p* &i) =~e(p p*)~.(&i) ~ (3 6)

Kl, 5|,2+0,

Ki+Z:.&cV,

ORBS*&Xl54. (3.7)

All of the component density operators of o- are normal-
ized to unit trace, as therefore are cT, and r itself. If we
trace (3.1) over all the atoms, we obtain

pb= Tl„p=
(6)

P (P, P*, X,, t) I P)(P I
d&"P d'4)x, (3.8)

which is the reduced field density operator in the
diagonal coherent state expansion. If we trace (3.1)
over everything, and assume that p is also normalized

Thus, the subscript b pertains to the field, the sub-
script a pertains to all the atoms, while the subscript m
pertains to the mth atom only.

The usefulness of the expansion (3.1) lies in the fact
that the "elementary" density operator o- is of product
(a symptom of statistical independence) form, and that
in 0- each atom has an identical description. The expan-
sion is possible because the density operator equation
(2.6) is symmetrical among all the atoms.

The motivation for making the expansion (3.1) was
the desire to display the relation between semiclassical
and fully quantal treatments of masers before any
unessential approximations were made. The expansion
of the field in the diagonal coherent state representation
seemed appropriate, since a coherent state is the closest
the uncertainty principle will allow a quantal descrip-
tion of a field to approach the usual classical description.
The accompanying expansion for the atoms part of the
density operator was arrived at intuitively to satisfy
our expectation that each atom would have an identical
description, but that statistical correlations among the
atoms would remain within the coherent state field
expansion because the present state of each atom
depends not only on the present state of the field but
also on its dynamically determined past history. For
an atoms-field system described by 0.(P, P*, X,) the
mean value of the complex field is proportional to P,
the mean populations of atom levels I and 2 are Xl and
K&, respectively, and the mean macroscopic complex
polarization is proportional to 5';. A complete statistical
relationship between moments of field-atom operators
and the parameters of 0. is given in Appendix C, but
we will not need it at this point. In order to ensure that
the eigenvalues of o- remain non-negative, the ranges
of its parameters are restricted by

Thus I'l has the form of a probability density; however,
there is no a priori reason to suppose or expect that I'i
is everywhere positive. In mathematical terminology,
I'& is properly defined as a "distribution" rather than
as a function.

For later use we note that if 0 is any function of
the quantum operators of the problem, then from (3.1)
we may write the expression for the mean value of that
operator function as

(0):—Tr(pO) = PiLTraO)do)P d& )n.' (3 9)

To consolidate notation, let us define the angular
brackets with subscript 1 by

(6)

pip d(&)p d(4)~ (3.10)

where P may be any function of the variables of I'&.
Then we can write (3.9) more briefly as

(0)= (Tr(00) )i. (3.11)

Kl, X.„,5tt;, 5',*((&E. (3.12)

Thus we treat the ground level as an infinite reservoir
of atoms; the number of atoms in the two upper levels
remain finite. We now show that upon insertion of
(3.1) in the density operator equation (2.6), we obtain
an equation of the Fokker-Planck form for the evolu-
tion of the probability density I'&. This is the basic
equation upon which the remainder of our work is
built.

To make use of (3.1), we need to know the effect of
the various operators in (2.6) on the elemen. tary density
operator 0 (P, P*, X,) . Using the identity

~e= IP)(P I
= «p( —P*P) «p(Pb") I0)(o I exp(P*b),

(3.13)

where
I 0) represents the ground (vacuum) state of the

field, we obtain

btire = (P*+&/&P) oe, (3.14a)

(3.14b)ba.e ——poe.

The first (3,14a) of these results may be seen by

While (3.1) is not the most general atom-field
density operator, a sensible model starting condition,
i.e., the equilibrium state with V removed, may be so
represented. If the starting condition is consistent with
(3.1) then so will be the subsequent evolution of the
density operator, as we shall show.

We shall confine our attention to situations wherein
the vast majority of the atoms are continually in the
ground-level 0, so that
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performing the indicated differentiation" on (3.13).
The second follows from (3.13) by virtue of the
identities

Lb, exp(Pbt) j=P exp(Pbt); b
~
0)=0.

Alternatively, it is well known that the coherent
state

~ P) is an eigenstate of b with eigenvalue P. The
adjoints of (3.14a) and (3.14b) also apply.

Further, we have the identities

(ag'~) =1V(B/Bold*) 0, (3.15a)

(u, ta;) „=(1+iV(B/BX,) )(r„; j=1, 2 (3.15b)

along with the adjoint of (3.15a) . These follow directly
from (3.3); in (3.15b) we have applied the limit
(3.12). Using (3.15a) and (3.15b), and the properties
of the atomic operators discussed in Appendix A, we

6nd that the macroscopic atomic operators satisfy the
relations

Ma. = {Olt(1+(B/Bate) )+m;. (B/Ban*) }0., (3.16a)

M to..= IBR~(1+(B/BK2) )+BE,(B/BOR) }0„(3.16b)

N,a.= Ix,(1+(B/Bat, ) )+El'*(B/BDR*) }0.) (3.16c)

N~o, = I%2(1+(B/BK.) )+BR(B/BSK) }0., (3.16d)

along with their adjoints. Using (3.14a), (3.14b), and

(3.16a)—(3.16d) we can express the erst two terms of
the right-hand side of (2.6), with 0 replacing p, in

terms of partial di6'erential operators acting on 0.
Using (3.14a), (3.14b), and (3.15a)-(3.15b), we can
do the same for the reservoir interaction terms.

When we do all this, we And that insertion of (3.1)
into (2.6) yields the following equation:

8 . t9

83

'
0 d&'&P d~4&X = I'~ [ju5R —(-',y+uog) Pg —+(p5R*—(-,'y —mug) P)

8 BPQ

8 8
+QP(94 —F4) —(I'n+i(u. )ORj +/pP"'(X2 —Xg) —(rgg i(o.)—m*j

85K 85K*

8jLRx+wuKp —I'gKg+p (P*BR+Pmt*)$
BXy

8 8
+(R,+~„X, I'Ot, —&(P*m—+Pm*) j +n~

BKg BPBP*

B, . B

BP BPQ

l9 8
L&P(X,—X,) —(I'„+i~.)mj — [&P*(X,—X,) —(r„—i~.)On*)

BBR 85K*

B' B' O' B'
@Kg pm psst* 0 d'" d~oX 3.17

HPB~* BP*B~ B& BP B& BP*

In (3.17) the curly bracketed operator o crates on 0. Also, R,=Ew, o is the r—ate at which atoms are pumped from
the ground state to the jth state I'j= '/pe'j is the decay constant for the population of the jth state, and I'»=-

g Q j (wjf+wjg) is the decay constant for the polarization. The next step is term by term partial integration of

(3.17), bringing all derivatives away from o. On performing this under the assumption that the surface integrals

vanish, we obtain

(8 gp,
0 d&@p d&4&x=

Bt

l9 8
LRi+~iP4 —I'P4+w(p*~+P~*) j— LR2+u2&i —I'P4 —v(p*~+P~*)j

BXi BX2

B2 B2 B2 B2 B2
nV

BPBP* BPBOR* BP*B5R BXgBP BXgBP*

where the long curly bracketed operator operates on I'j.

(3.18)

"Throughout this paper we make use of the simplicity of comp1ex derivative notation. Translation to the real and imaginary
parts of the complex variable p are made by the identities.

p=—Rep —iImp,

a/ap=', {pa/a(Rep) )+~ra/a(Imp) g},
and their conjugates. Differentiations of functions of p and p* with respect to p or p* proceed as though p and p* were independent
variables, as can be proved by making the above translation, and partial integrations may be performed in the same manner. The
area element d&'&p in the complex p plane always retains its identity as d(Rep)d(Imp). Similar considerations apply to the complex
variable 9K.
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A sufficient condition for the satisfaction of (3.18) is for Pi to satisfy the Fokker —Planck equation obtained
by extracting the integrand; namely

BP(PP~X;, t) B, B

Bf BP
——[I ~ (2—v+~b) Pj —[~~*—(kv —i~a) P*j

BP*

[Ri+w K —I' X +p(P*OR+POE*)]— [R +w K —I' K —p, (P*BR+POR*)g
&X' 8Ãg

B'- f O' O' O'- B'
nV

BPBP* &BPBJIt* BP*BSK BK BP BK BP*
(3.19)

Equation (3.19) is our basic result. The remainder
of this paper consists of an investigation of its proper-
ties and utility. Given a solution of (3.19), then p(t)
as deffned by (3.1) satisfies the Schrodinger equation
of motion (2.6).

In statistical equations of the Fokker-Planck form,
the first-derivative terms on the right-hand side pre-
scribe the mean motions of the variables. They are
called drift terms. The second-derivative terms pre-
scribe the Quctuations and are called diffusion terms.
In (3.19), each drift coefficient, the square-bracketed
term following each first derivative time, is themean
rate of change of the variable in the derivative. To see
this mathematically, we can derive from (3.19) the set
of equations

—„(~)=(.~—(lv+' )o),

—(mt )i = (pp(aug —Xi) —(r»+is). )Or()i,
dt

—(X,),= (R,+w -X.,—r,m, +&(P*m+Pm*) )„

—(K2)i= (R2+w2i04 —I' 04—p(p*DR+pOR*) )i, (3.20)

along with the conjugates of the first two. We have
used here the notation (3.10) .

Equations (3.20) are derived by writing out their
left sides according to (3.10), inserting (3.19) for
DI'&~'Bt, and then integrating by parts under our usual
assumption that all surface integrals vanish.

So long as we can neglect the diffusion terms in
(3.19), then delta function solutions" to it are possible.
The position of any such delta function moves according
to (3.20) with the mean value signs removed. Thus,

"Here we are really speaking of solutions in which the weight
P& is concentrated in a sufBciently small region that we are in-
terested only in its center of gravity and not in any details of its
shape. According to the full equation (3.19) such a situation will
persist for a certain time depending on the diffusion coefjcients.

equations (3.20) without the mean value signs may be
considered as the set of dynamic equations which
describe the maser when Quctuations are neglected,
and indeed they are precisely the equations one would
derive for this model problem by the methods of semi
classical physics, with P playing the role of the classical
field strength.

In contrast to the drift terms which, as we have
seen, make quite good sense, the diffusion terms of
(3.19) have a curious form. If the complex derivatives
are re-expressed in real and imaginary parts, " the
matrix of the diffusion coefficients is mainly off-
diagonal and clearly has some negative eigenvalues. If
the diffusion terms were diagonalized by a linear change
of variables, the resulting equation would have some
negative diagonal diffusion coeKcients. Such a situation
would not arise in the treatment of any sensible
problem derived from classical physics.

Partly because of this problem of the diffusion
matrix with negative eigenvalues, no solutions to the
complex equation (3.19) are presently known. It would
seem that a study of such equations is called for,
particularly since (3.19), for example, has been derived
from a simple physical model which one might reason-
ably expect to be well behaved.

To observe the effects of the diffusion terms in
(3.19), we must evaluate the time derivatives of second
moments. For example, in the same way that Eqs.
(3.20) were derived, we ffnd from (3.19) that

(b'»= Q*~)., (3.22)

p(b "M+bMi') =j(P"'OR+PER')i. -(3.23)

dt
—e'~) =( (~-'~+P~*)+ ( —~"W), (3.»)

where the pn on the right is contributed by the B'/BPBP*
diffusion term of (3.19) . It is clear that yn represents
the generation of an incoherent or noise field, since no
such term appears in the equation for the mean field.
To attach physical significance to (3.21), we may
derive from (3.11), (3.14), and (3.16) the relations
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Hence' (p*p)~ is the mean number of photons in the
fmld, and we see that tb(p~OR+pBR~)2 is the mean rate
of transfer of energy from the atoms to the field. Note
that this same term (3.23) appears in the mean rate
equations (3.20) for K& and K2, as it should.

If we now proceed to examine the equation of motion
of (p*OR+pOR*)~, we And positive contributions from
the B'/BPBOR"' and B'/BP""BOR diffusion terms, which
have the common coeKcient A%2. This represents
spontaneous emission, and we see that it affects the
field as the result of a two-stage process. The remaining
diffusion terms do not seem to have any such irrnnediate

physical interpretation.

IV. ADIABATIC .ELIMINATION OF THE ATOMIC
VARIABLES

Pending the availability of solutions to the full

equation (3.19), we can examin. e its behavior in
certain limiting. situations. In particular, the equations
can be reduced in the case that the atomic decay
constants F are large compared to the field decay
constant. Suppose first that F~~))F~, F2, y. Then the
polarization variable 5R is "instantaneously" (time
scale I'» ') rather than dynamically determined by the
other variables, and may be eliminated from the equa-
tion of motion. Such "adiabatic" approximations are
commonly useful in physics.

As a first step we remove the high-frequency motion
of P2. In (3.19), P and OR are tied together in phase,
and when conditions for steady oscillation exist, the

high-frequency motion of (p)& and (BR)& will be nearly
as exp( i—co2t), where as is well known, or may be shown

directly from the mean motions of the variables (3.20),

where

Glo=tdb+n(2 "t) =40~—nF»q

n= (« —&b)/(F»+2&).

(41)

Hence it is appropriate to change variables from BR and

p to OR' and p', where

OR =5R' exp( iau2—t),
p=p' exp( —i~pt). (4.2)

The required transformation of the partial derivatives
is

B5R BOR'

8 . 8

BP
——+ exp(ku2t)

BP'.
'

,„mv'y, „p'") . (4.3)"
B5R'* BP'"

The conjugates of these equations also apply. Making
this change of variables and then omitting the primes
for simplicity in writing, we obtain

BPy 8——fpoR 22' (1—i-n) P5— L—tboR*——.',y (1+in)P*j
Bt BP BPQ

a 8
PpP(K2 —Kx) —F»(1+in)OR) — LpP*(K —K ) —F (1—in)OR*j

85K 85K*

8
$R2+wg K2 —F)K2+P (P*BR+POR*)j— LR +n)2' —I' K —

tb (P*OR+POR*) J
BK] BKg

B2 ( B2 B2 B2 B2

nr
BPBP* (BPBOR* BP*BBR BKÃP B54BP*

(4.4)

The adiabatic elimination of BR and 5K* from the
problem now involves the assumption that 2~2 is large
enough so that 5K, 5K* come into statistical equilibrium
in a time short compared to that required for any of
the other variables to change appreciably. A method of
adiabatic elimination of variables from Fokker-Planck
equations is discussed in Appendix B. In (4.4), it
suKces to pick out the terms involving B/BOR and
B/BOR* and set them equal to zero. Thus we have

8 8

t9BR
Pp (K2 Kl) F» ( 1+2n)BR — tbK2 Pl 0 (4 3)

BPQ

and its conjugate, which are solved by

8
BRP2~ . P(K2 —Kg) — K2 Pg (4.6)

F»(1+in) BPQ

and its conjugal, te. This picking out extracts all terms in

(4.4) which are important for time intervals of the
order of F» ', the remainder of Eq. (4.4) then holds
for time intervals much longer than 7~2 '. %e use the
adiabatic solution (4.6) to eliminate OR and OR* from

(4.4). In accord with the discussion in Appendix 8,
the variables 5R and 5R* must be placed to the right of
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all other variables when the substitutions (4.6) and its
conjugate are made. This last is important since the
products 5'* and 5K*P occur in (4.4), and for example
the adiabatic solution for 5K does not commute with p*.

BP,(P, P*, K„X„t)

Bt

Bringing all the resulting derivatives to the left to
re-establish the I'okker —Planck form, and integrating
over the OR plane, we obtain, as the new equation with
OR and OR* eliminated,

8——E~(»—Xi) —vj (2 (1—t )p)—,E~(K2—») —v j(k(1+f~)p*)

t9 8
ER+(w + + PP*)X (F—+ PP*)K i— ER —(F + + PP*)X+(w + PP*)K j

8Ãy BX2

8 f92 g2+,E»+~mj+ L~pK2 2~(1—t~) p—Kr3+ E~p*»—k~(1+~)p*»3
BPBP* BKiBP BKiBP

8+ E——',ir (1+in)PX2)+ E
—-', ~(1—Za) P*Kgj— EirXg)

BK2Bp B»BP* BXiBPBP*
(4.7)

7r=2@~/Fr2 (1+n')
is the decay constant for spontaneous emission of a
photon into the laser mode 0 by an atom in level 2. By
contrast, F2 includes spontaneous emission into all
other Geld modes.

In (4.7) the weight distribution Pi has been inte-
grated over the OR plane; that is,

(2)

terms in (3.19). The group of off-diagonal diffusion
terms and the third-derivative term give rise to the
correlations between level populations and 6eld which
are a result of spontaneous emission.

Since intensity" and phase fluctuations have diferent
characteristics in an oscillator, it is interesting to trans-
form (4.7) to polar coordinates in the complex p plane.
Accordingly, we transform variables in (4.7) from P
and p* to the real variables I and g, where

Pi(P, P*, Ki, K~, t) =— Pi(P, P*,Ki, K„BR,BR*)dt'~5K. P=Irt' exp( t'g), — (4.8)

By using (4.6) and its conjugate, any moment of the
variables including OR and OR*can be re-expressed in
terms of the variables other than OR and OR*, so that
(4.6) and (4.7) together now describe the complete
behavior of the maser.

In (4.7), spontan. eous emission into the laser mode
has become quite explicit, and appears properly in the
drift terms which give the mean motion of the atomic
populations, and in the field diGusion term B'/BPBP".
The origin of all these spontaneous emission terms can
be traced to the B'/BPBSR~ and B'/BP*BOR dift'usion

BPi(I, g, Ki, Kg, t)

BI,

from which we obtain

8 (8 8 . 8
P=

I

—P* = —I+l~ —,
BP &BP* BI

B2 B2 B B2 1I
BPBP* BI2 BI Bg' 4I

dt@P = irII gg

Pi(P, P*, K;, K„ t) =2P, (I, g, K„K„t).

With these substitutions, (4.7) transforms to

a= ——EII (K.—K) —~}+~ + K j——El I (K:—K,) —v}j
t9I 88

8 8
ERi+Iw +m(I+1) }K~—(F,+ I)»7— ER —IF + (I+1)}K+(w~r+ I)Kij

BXi 8%2

8 1+—EI(yn+irK2)$+ ——(yn+~K2) + Em(2I+1)X2—mIKr]
8I2 882 4I BXyBI

82 83 mK+ E—~IX2j+ E
——',mnXi]+ E-', m-nK2j — E7rI041—, Pi (4 9)

BKgBI BKi88 BX288 ax.,aI2 am, aS 4I
» e use intensity (amplitude squared} rather than amplitude as a variable here simply because it is the intensity which appears

in the drift and diffusion coefIicients. Lax (Ref. 3}has shown that use of intensity leads to "quasilinear" solutions which are fairly
accurate even in the region near threshold.
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Note that in (4.9) both the intensity and phase
diffusion coefficients (8s/BIs and 8'/88' terms, respec-
tively) are proportional to the factor (pn+n. Zs), which
also appears as the spontaneous part of the intensity
drift coeKcient. Again, there occur a number of off-
diagonal diffusion terms whose individual physical
significances are not particularly apparent.

Finally, we can eliminate K& and %2 from the equa-
tion in the case that F~, F~)&y, so that the level popula-
tions are adiabatically dependent upon the Geld

strength. Because X2 and K~ appear in the diffusion
coeScients, we cannot do this elimination "exactly",
as was the case with BR. However, the physically
important results are probably contained in the diffu-

sion, or Fokker —Planck, approximation, where the
resulting equation is found only up through second
derivative terms.

In accordance with the discussion of Appendix 3,
we accomplish the adiabatic elimination of X~ and K2
by setting (for s=1, 2)

K,Pt ——LA, —(8/8I)I3, (8/—88)C.+ ~ ]Pi (410)

We substitute (4.10) into (4.9) to eliminate Xi and Ks
from the drift and diGusion coeKcients, bring all
derivatives to the left, and then solve for the A;, 8;,
and C; so that all first- and second-derivative terms
containing the 8/8X, vanish. We find that by order of
magnitude

C:8:A=x.'mI: T.'.

With neglect of m~2 and m~~, and also with neglect of ~
(but not rrI) with respect to I't and Fs, we find the
resulting equation

aP, (I, 8, t)

Bf

8 8 8——
L (I+1)A,—GAIA, +y(n —I)]——[-',nI (A,—A,) —pI]+ [ynI+X) 'trI1', ll', A, —I(A,—A, ) I]BI 88 QI2

8 82

+ —L(4I) '(yn+sA:)+S '-', ( n)'(FtAs+I'At)]+ L
—X) 'tr'nIF (A —A )] P,

80' 808I
(4.11)

As ——S 'LI'tRi+s I(Ri+Rs) ],
A, =n i/r, R,+~I(R-,+R,)]. (4.12)

Equation (4.11) is in agreement with similar results
obtained recently by Lax and by Scully using quite
diferent methods. The fact that we all reach consistent
results here lends some extra credence to all of the
methods.

The eGect of saturation on the diffusion terms of
(4.11) is a noteworthy feature. The phase diffusion

coeKcient, at least on resonance (n =0) is only affected
in so far as A2 is affected. The intensity diffusion
coeKcient, on the other hand, tends to be surpressed
further, and for very high power, where

~I» I'&, I'2,

evaluates approximately to

ynI+ (Fs/(I' +1's) )Ri.

It is in principle possible to have this quantity nearly
zero, by having n, R&—+0. In such a case I'& would come
to steady state with a very small variance in I.

In terms of Pi(I, 8, t), the field density operator is

where
n= r,r,+~I(r,+r,),

and where A~ and A~ are the adiabatic mean values of
Ks and Kt, as may be seen from (4.10), and are given by

given by
(2)

ps= Pi(I 8 t) I
Ii" expL i(tost+8)])

X (Iit' exp) —i(tost+8) ] j dI d8. (4.13)

We may conclude that a maser oscillator, operating
under highly saturated conditions, can produce a 6eld
which is very nearly in a coherent state. The phase of
the Geld will, as may be shown from (4.11), diffuse
slowly away from some initially measured value ac-
cording to the law

(d/dt) (exp( —t8) )i ———
L (4I) '(yn+sAs) ](exp ( —t'8) )i

(4.14)

for the case 0. 0. The result that the drift of 8 is zero
for a=0 is a result of our original choice for coo. In
(4.14), we have assumed that I and As are sensibly
constant in the average taking and have brought them
outside of the mean value sign. "' Equation (4.14) im-

'» Note added trt proof: If the maser is operating moderately
above threshold, it is appropriate to make an adiabatic elimina-
tion of the intensity I from (4.11). Straightforward application
of the method discussed in Appendix 8 results in a phase-only
diGusion equation, with the diGusion constant given by

L4(I)~g '(yn+s As) (1+a'),
where Ay=A~(L, 'I)1). This result generalizes the width of the
Lorentzian phase spectrum, multiplying the result given just
below in the text by a detuning factor (1+a'}, and specifying
that A2 and I are evaluated with I taken as the adiabatic mean
value (I)1.This result is consistent with Lax's quasilinear anal@
s1s.
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plies that the oscillation signal has a Lorentzian power
spectrum with a full width at half-power given by

hei = (yn+ v A 2) /2I.

This is a well-known result, which is now justified for
arbitrarily high levels of saturation.

One Anal point is worth mention here. Since we have
eliminated 5K and BR* from our basic equation Q.rst,
and then have eliminated X~ and Q2 later, it would
seem that the validity of (4.11) should be limited to
the regime F~&)F~, F&)y. It turns out otherwise; there
is a simplicity in this problem, whose mathematical
symptom is that the adiabatic OR (4.6) has no 8/BXi
or 8/BK2 terms in it, and whose result is that a simul-

taneous adiabatic elimination of 5K, BR, K~, and %2 in
favor of the field variables P and P* leads precisely to
(4.11). Thus (4.11) is in fact valid for any possible
relationship of F~2 to F~ and F2 ~

V. THE GENERALIZED WIGNER DENSITY AND
THE APPROXIMATE CLASSICAL MODEL

It is not obvious from our exact basic equation
(3.19) for Ii that there exists a classical model for the
maser which approximates the properties of the quantal
model including Quctuations. In this section, we show
that there is such a classical model, and show quantita-
tively the relationship between it and the quantal
model. To this end we shall use (3.19) to derive the
equation of motion of what may be called the general-
ized Wigner density for the maser.

We symbolize the Wigner density by P2 and de6ne
it from the moment generating function relationship

that any moment of these variables is equal to the
symmetri sed moment of the corresponding operator
variables. It is clear from (5.1) that I2 is the Fourier
transform of the symmetrically ordered quantum char-
acteristic function. If the atomic variables are omitted,
o~e can show that P2 is the ordinary Wigner density'4
for the Geld. That P2 should turn out .to behave sensibly
from a classical viewpoint is not too. surprising, as the
correspondence between classical variables and the
symmetrized form of quantum variables has long been
recognized. Nevertheless, it is interesting that the
diffusion terms in the Fokker-Planck equation for P2
turn out to be remarkably simple even for this dynami-
cal nonlinear problem.

In order to derive the equation of motion of P2, we
erst need to know its relationship to P'& whose equation
of motion we already have. We find this by inserting
the expansion (3.1) in the left side of (5.1). For con-
venience in writing this, let us use the de6nition

Q= expi(X*b+Xb'+$1Ni+$2N2+bM+$4Mt) . (5.2)

By virtue of the definitions (5.2) and (3.9), we can
write the left side of (5.1) simply as (Q), and from
(3.9) we have

(6)

(Q) = Ei(TroQ) d('ip dXidOtgd(NOR (5 3)

In Appendix C the trace of OQ is evaluated, and is
shown to be given in the limit (3.12) by

Tro Q

= exp{i(viKi+v2K2+vaOR+v4OR*+VP+XP*) —i2XX*},

Tr[p(t) expi(X*b+Xbt+giNi+$2N2+bM+$4Mt) ]
(6)

Eg(b, b*, Ei, Eg, M, M*, 1)

where

ivi= exp(i)+) [cosv i($ /v—) sinv] —1,

(5.4a)

X expi (&"'b+&b*+/iSi+gVg 1/3M+)4M )

Xd(»b dr,dz, d(&4V. (5.1)

Here, X, X*, and the &'s are the expansion parameters
of the generating functions. If ti and ga are real s,nd

$4 =$8*, then the exponential factor becomes pure
imaginary. In (5.1) we have introduced a new set of
c-number variables (b, b*, Ei, X2, M, M*), and their
associated weight distribution P2, having the property

ivy= exp(i)~) [cosu+i($ /v) sinu] —1,

ivy= i exp(—ik+) (b/v) sinv,

iv4= i exp(i—g+) (]gu) sinu,

and where

(5.4b)

5+—=k(b+6); '(& b) —-u=—(8 '+6—6) "-'

Comparison of (5.3) and (5.4) with (5.1) yields the
required relation between P& and P&, namely

(6)

P, exp{i(y+b+Xb*ytiEiyg~+PSM+glf*) j d ' b dEidXg ' M

(e)

Ei exp{—
& (M*)+i(X*P+XP*+vlXi+veX2+vaOR+v4OR ) }d P dOKidOl2d OK, (5.5)

&4 J.E, Moyali Proc, Camtiridge Phil, Soc, 45, 99 (1949).
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where the u's and the $'s are related by Eqs. (5.4b).
From (5.5) and the equation of motion (3.19) for P&,

we can derive the equation of motion for P2. It would

appear that there is much labor and little insight to be
gained by attempting to do this exactly. However, if
the sum K&+K& is large compared to unity over the
important range of P~, then Tr 0Q will be appreciable
only for small values of the $'s (particularly in the
combinations $+ and v), and it is appropriate to expand
(5.4b) in a power series in the P's. Keeping only second
power terms, we obtain

ATOMS

VOLTAGE ()-v+v»

()i„.i„)~.

CURRENT
L+L'

Lg ==Cg

RESONATOR

i» =ih 2—(4'+ks4),

i v2 i/2 ——
~ (2+b)4),

i» =ib kb—(b+6)

&&4 ~t4 pe($1+t2) . (5.6)

The approximation (5.6) yields Pm as a Gaussian
convolution of P~, as shown in Appendix D, and gives
the diffusion approximation to the equation of motion

Pro. 2. Circuit equivalent for the maser model.

for P2. The fact that P2 is a smoothed version of P~
explains to some extent why the diffusion equation for
P2 is better behaved than is that for P~. The method
of derivation of the diffusion equation for P2 is given
in Appendix E. The result is as follows:

&PE(b, b*, Ng, Ng, M, M*, t)

Bt

8——
Lt M —(k~+~~) b3 — C M*—(2v —~~) b*&— [pb(N~ —Ni) —(r„+i .)M)

ab ~b* ' aM

8
Lt b*(N, —N, ) —(r —i&.)M*]— [Z,+w„N,—r,N,+„(b*M+bM*)j83f* BEg

82

BE2
I R,+~„N,—r,N, —„(b M+bM*) ]+

Bb8b*

8+ Lr12 (%+%)+ 5 (R+R~ rB'i rml—V2+w2qN—j+w~2N2) j8j/IBM*

8+ $ ', (R +r Ng+wg -N )j+,L
—', (R~+r N, +w„N, ) )

BED' 8/22

8 8+ I!(r—-)Mj+, Ll(r —-)M*j
BEgBM BN28M*

8 g2 g2

I
-', (r,—„)M)+, L-', (r,—„)M*j+

BE28M
(5.7)

Equation (5.7), unlike (3.19), looks quite sensible

from a classical viewpoint. The diffusion matrix is
positive definite and does not couple the atoms with
the deld. From (5.7) one can derive a simple-classical-

model equivalent to the maser. The small price one

pays is that (5.7) is a good approximation only when

the number of atoms in levels one and two is reasonably
large. Of course, it is entirely possible to write the
exact form of (5.7), but then its advantage of intuitive

simplicity would be lost.
Equation (5.7) is equivalent, in the sense of pro-

viding equations of motion for various moments of the
variables, to the following set of dynamic Langevin
equations of motion:

db/dt =tIM —(-,'y+ia&g) b+Fg(t),

dM/dt =pb(Np N~) —(r +i(o.—)M+F (t),

dN, /dt=R, +w N, r,N, +„(b*M+bM—*)+F,(t),
dN /dt =R2+~u% rN tl, (b*M+bM—*)+F (—t),

(5.8)
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(5.9)

where the random forces F(t) have zero mean values, broad spectra with respect to the important spectral
widths y and F~ of our problem, and have the following nonzero correlation functions:

(Fb(t') Fb*(t) )=y(n+'2) 8, (t—t') expli0lb(t —t') j,
(F~(t') Fbr*(t) )= t F12(N1+N2) +-'(R1+R2—I'1N1—I'2N2+2212N2+2121N1) )B,(t—t') expLia&„(t —t') j,

(Fl(t) Pl(t ) ) (R1+I1N1+2112N2) b8(t t. )|
(F2(t) F2(t') )= (R +I'2N2+w21N1) b, (t—t'),

(F~(t)F1(t') )=-', (I'1—w12) M(t) b, (t—t'),

(P (t) F,(t') )=-,'(I'2 —~») M(t) b.(t—t'),

(Pl(t) P2(t ) )= (22'11N1+W12N2) Bs(t t ) ~

(2l+2l*), (i+i*); 2l, io- exp( —i0lt),

In (5.9) the subscript s on the delta function stands
for "slow, "and indicates consideration of time intervals
not too much shorter than the reciprocal bandwidths
of the problem; i.e., of the order of y ' or F~ '. The
exponential time dependen. ces, and the explicit indica-
tion of t in 3f(t) are included to take care of the high-

frequency variation of I"~ and F&. The physical point
involved here is that only the spectral region near the
resonator and atomic frequencies is important for I'~
and Ii&, and over this region they have white spectra.

The first two of the dynamic equations (5.8) along
with the first two second-moment formulas (5.9) for
the random forces are exactly those derivable in the
high-Q approximation from the classical equivalent
circuit shown in Fig. 2. A series resonant circuit with a
noise-voltage source represents the resonator, while a
parallel circuit with a noise-current source represents
the atoms. The two noise sources are statistically
independent. The current in the series circuit is pro-
portional to the field strength, while the voltage across
the parallel circuit is proportional to the polarization.
If we represent the circuit voltage and current by the
sum of positive- and negative-frequency parts

2li*+i2l* = @500 (Mb*+M*b)

and the energy stored in the resonator is

(5.11)

2L|z*z=Acob*b. (5.12)

The second moments of the random forces show that
in the equivalent circuit

then the equivalence relations are

(I.bCb) "'=0lb

Rb/I. b=y,

i= (Rug/2Rb) '"b,

2l„= (25(0Rb/7) 'I'Fb,

(L.C.) "'=~.,
1/R.C.=21, ,

1l =P (5(02Rb/y) '12~

i„=Lhld/R. l'12(1V,—N, ) 1112F~
and

R.=R (2t '/I' v) (N —N ). (5.10)

The proportionality between i and b has been so chosen
that power and energy relationships come out correctly',
e.g., the power delivered to the resonator is

(2l„(t)2l„*(t') )=2Rbko(n+2) 8.(t—t') expt i0lb(t t )j
(N1+N2) + (Rl+R2 22'01N1 22l02N2) /21 12

b,.(t—t') expLi~. (t—t') ).
1 2

(5.13)

The last two of the dynamic equations (5.8) are the
rate equations for the level populations, and the last
five of the correlation functions (5.9) are precisely
those one should expect as a result of shot noise in the
pumping and decay of these level populations. For
example, consider the (F~ (t) F1(t') ) correlation. A
heuristic argument which gives the correct diffusion
constant is as follows. The polarization 3f is propor-
tional to $1V1N2JI', hence a fluctuation bN1 in the decay
of E& should give rise to a Quctuation bM of M given by

bM/3f = ,'bN1/N1, -

hence
BM0N1 (M/2N1) (BN1) '. ——

From the (F1(t)F1(t') ) correlation term, the fluctua, -
tion (bN1)2 concerned can be seen to be proportional
to I'1N1, and hence the correlation term (Fbr(t) F,(t') )
should contain (M/21', ) I'1N1=-', I"1M, as it indeed does.
The 2bl12 term in (F~(t)F1(t') ) can be obtained from a
similar argument, since a positive fluctuation in the
transfer rate tv~ N2 from level two to level one simul-
taneously increases E& and decreases M, the latter
because of the decrease of E2.
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An important physical question to be answered
concerns the "number of photons" in the resonator and
the fluctuations in that number. This question may be
studied through consideration of the moment relation

(expi(X*1+'Abt) )= (expi(X*b+Xb*) )2, (5.14)

where on the right-hand side, we are using the angular
brackets with subscript 2 to indicate a mean against
the probability distribution P2. Hence this equation is
identical with (5.1), with $z, »2~0. By direct comparison
of moments, one can show from (5.14) that

(exp(ixbtb) )= (exp {ix(b*b—-', )+isx2+ ~ ~ .
I )2, (5.15)

where x is an expansion parameter. For comparison we
note that since"

(P ) exp (ixb t1) [ P) = exp f Lexp(ix) —17P*PI,

one finds using (3.11) and (3.2) that

(e p(ixb'b) )= &e p ( Le p( x) —17P*PI )
= (e p(ixa*P —lx'P*Py" ) ),. (5.16)

Comparison of (5.15) and (5.16) shows that if (P*P)i
is greater than -'„ then (b*b—2) is a significantly
better approximation to the photon number than is
P*P. If the mean and variance of the photon number
distribution are large compared to unity, then bb* is a
very good approximation to that number. As usual,
classical physics is a good approximation to quantal
physics in the limit of large quantum numbers.

VI. FURTHER CONSIDERATIONS

There are a number of useful functions (or distri-
butions) other than P2 which can be derived from our
basic weight distribution P~, and we shall mention a
few of these because they shed some further light on our
work and, in addition, make further contact with the
work of others, notably Lax, and Scully and Lamb,
who have treated the same or similar models by quite
diferent methods.

The first of these we label P'12 because it has the
properties of P~ with respect to the field, and of P'2 with
respect to the atoms. To consolidate notation, recall
that in (3.6) we abbreviated the atomic variables of
Pj.by

(Xl) K2) X3) K4) = (Xly K2r ~y ~ ) ~

Likewise, let us now abbreviate the atomic variables of
P2 by

(Xi, X2, X2, X4) —= (Ni, N2, M, M*),
d&4&X= dNidN2d(ReM) d(ImM) . (6.1)

'~ This identity follows from reordering the exponential opera-
tor into normal ordered form wherein all annihilation operators
appear to the right of all creation operators. For an account of
such techniques, see W. H. Louisell, RaCiation and Noise in
Quantgm E/ectronics (McGraw-Hill Book Company, Inc., New
York, 1964); also Ref. 8.

The function P~ is defined from the general relation

(6)

T,(pQ, ) =— P (P, P*, X;, t)

(4)

P, (P, P*, X„, t) exp(i+~, X,)d~4&n,', (6.4)

where the v„are related to the $; by (5.4b) . The passage
from Pi to P12 entails the same smoothing with respect
to the atomic variables as does the passage from P1 to
P'2. Hence, in the diffusion approximation, the equation
of motion for Pi. can be derived from (3.19) by making
the set of substitutions listed in (E5) for the atomic
variables only. The resulting equation has many diGu-
sion terms coupling the atoms with the field, and lacks
the intuitive simplicity of our P'2 equation. However,
like that for P2, the equation of motion for P12 in the
diQusion approximation is better behaved than is that
for Pi, and it retains the property of directly producing
the reduced density operator for the field, as may be
seen by setting t, =0 in (6.2) and (6.3) . The function
P& is precisely "the associated classical function" which
is being investigated by Lax using Langevin methods.

Other interesting results are obtained by going into
the number representation for the field. We do this by
taking the &2, m field matrix element of (3.1), obtaining

(4)

P„...(X„, t) ~.d~4&X, (6.5)

where the function P„„(X,, t) is defined by
(2)

P...(X;, t) —= P, (P, P*, X,, t) (~ ~, ~

m)d& &P

(2) PnP8m
Pi exp( —P P*) d&2&p. (6.6)

(22!m!) 'I'.

The equation of motion for P„, (X;, t) may be derived
from (6.6) and the equation of motion for Pi.

A final function of some appeal is formed by going
to the atomic variables X, )see (6.1)7 in the number
representation for the field. To do this, we use the
defining relation

(4)

(22 I Tr,pQ~ ~

m)—= P„, (X,, t) exp(i+&, X,) d~4&X

(6.7)

&& exp(igt„X, ) ~ P)(P ~

d&'&P d~'&X, (6.2)

where Q, is the atomic part of the generating function
(5.2), namely,

Q,=— expi(&iN&+t2N2+$2M+$4M") . (6.3)

If we expand p in our P1 representation, and make
use of (5.14) with P =&=0, we find the relationship
between P1 and P», namely,

(4)

P&2(P, P*, X;, t) exp(i+&,X,) d&4&X
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inserting (6.5) in. the left side of (6.7), and again
using (5.4), we obtain. the relation between P„, (X,, t)
and P„, (K;, t), namely,

(4)

P, (X,, t) exp(ig},X,)d'4}X;

nation of the polarization BR. The P& equation we shall
need is therefore (4.7).

We start with (6.6), transform its right-hand side to
the rotating frame using (4.2), and integrate it over
the 5K plane, thus obtaining the necessary relation
between P„, (Xz, X~, t) and the weight Pz of (4.7),
namely. ,

(4) (5} PnP@m
P„, (X,, t) exp(i'd);X;)d@X. (6.8) P„, (Xz, Xp, t) = Pz(P, P*, Xz, X2, t)—

Comparing (6.8) with (6.4) we see that the same
transformation which takes Pz to P}2 takes P„(X,, t)
to P„, (X,, t).

In the course of considering these various functions
and their equations of motion, we have found that the
equations for P&-type functions are easier to manipulate
(as opposed to solve). Adiabatic eliminations are an
example of this. On the other hand, equations for P2
like functions would appear to have smoother behavior,
and in addition have greater intuitive appeal.

To exemplify these remarks, we shall derive the
equations of motion for P„, (K;, t) and P„(X,, t)
under conditions appropriate for the adiabatic elimi-

)& exp{ i(m —zz) tjd&"P, (6.9)

where in (6.9) as in (4.7), the primes on the P's are
understood. We derive the equation of motion for
P„, (Xz, X2, t) by taking the time derivative of (6.9),
inserting the equation of motion (4.7) for

Pz(P, P*, Xz, X2, t),

integrating by parts with respect to Ia and P* to elimi-
nate derivatives with respect to P and P*, and then
using (6.9) again to reexpress the result in terms of the
P„, . We thus obtain the following equation of motion
for P„,

8P„,.(X„X., t)

Bt

=L(~+1)(m+1) j L~Xz+&(n+1) 7P„+z, +z+(~m) L~X,+»jP
', s( I+-m+2)X~+ ', (zr+zz-)mXz+i(zz m) (ur—},+n2m (F4—Xz) )+»(n+m+1) +-',y(1+m) jP„,

—(8/8Xz) {{Rz+wzzXz —(I'z+ 2' (I+m) i&'&(—zz m-) )X—z)P„, + (em) 'I'zrXgP„z, „zI
—(8/8X2) {fR2+w2zXz —(F~+-',zr(rz+m+2)+in-, '-zr(zz —m) )X27P„, +L(zz+1) (m+1) g'I'zrXzP~z, ~zI. (6.10)

An interesting property of (6.10) which was not true
in the case of (4.9) is that if we neglect the normally
small quantities z2& and m», we can "exactly" carry
out the adiabatic elimination of K~ and %2. When we
do this, we reproduce precisely the equation of Scully
and Lamb, 5 as we shall demonstrate below. But before
doing this we would like to derive from (6.10) the
corresponding equation of motion of P„,~(Nz, N2, t) .

To fznd the equation for P„, (Nz, N2, t), we multiply
(6.10) by exp(ipzXz+iz2X2) and integrate over Xz and
X2. We then make use of the identity (6.8) and follow
the same method as outlined in Appendix E. Since
everything is integrated over the OR plane, we set P3

——

$4
——0 in the relationships (5.4b) between the z's and

P„,„(Xz,X2, t) ~P„,„(N„N2, t) . (6.12)

The order of all factors is preserved in these substitu-
tions, so derivatives always come out to the left. After

the $'s, obtaining simply

iz, = exp(i$, ) —1; j=1,2. (6.11)
Because of the simplicity of (6.11), the passage to
P„, (Nz, N2, t) can be done exactly in this case. We
Gnd that it entails the following set of substitutions
into (6.10):

X,~ exp(8/8N, )N, ,

8/8X, ~(1 exp( 8—/8N;) )—, j= 1, 2,
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suitably rearranging the resulting equation, we find the following equation of motion for P„, (Ei, Em, t)

(8/Bt) P„, (Ni, N2, t)

t'8 81
1/2

( 8 8
={(n+1) (m+1))"' s exp~ — ~Ei+y(n+1) P„+i,~+i+(nm)"' s exp~ — N~+yn P„&,„ i

BNi BE21

—{(n+m+2) 2s/2+(n+m)-, 'sEi+i(n —m) Pcoq+n-', s.(N2 —Ei))+Vn(n+m+1)+-', y(n+m) )P„,

( 8) „ /81 (8)+ exp (

—
[
—1 Ri+w" exp ] N [ E2—I'i exp ] [ Ei P„,

BEi] BNg j &8Ei1

$ 8+ exp —
~

—1 R2+w~i exp
~

Ei—I'2 exp
~
N2 P„, .

BN21 (BNi 8/2j
(6.13)

The form of (6.11) makes P„, (Ei, Em, t) a Poisson
convolution of P„,~(K i%2, t), and hence Ei and E2 in

P„,~(Ni, E2, t) are actually discrete rather than con-
tinuous variables. Correspondingly, in view of the
identity

{exp(&8/BE;) If(N, ) =f(E,&1), (6.14)

where f represents an arbitrary function (to see this,
expand the right-hand side in a Taylor series), we see
that (6.13) is in fact a difference equation in Ei and N2.
Note that (6.13) keeps accurate account of the
atomic-population changes. For example, the 6rst term
on the right-hand side gives the increase in P„, due to
absorption processes, and the absorption which is due
to the maser atoms originates from a state in which

E& is larger by 1, and E2 is smaller by 1. The diagonal
(m=n) terms of (6.13) form precisely the equation
one would intuitively derive from energy Qow con-

siderations (rate equations). This last is the type of
equation proposed and solved in the limit of no satura-
tion by Shimoda, Takahasi, and Townes. ' Equation
(6.13) has also been derived by Lax' as an extrapolation
of his results obtained by Langevin methods.

As a final exercise we return to (6.10) to eGect the
adiabatic elimination of X~ and %2. The procedure here
differs somewhat from that of Appendix 8, but the
principle is the same. We seek instantaneous statistical
equations for X& and K2 which eliminate derivatives
with respect to K& and X2 from the equation of motion.
In the case of (6.10), this involves setting the two
curly bracketed expressions following 8/BK& and 8/BX,
equal to zero and solving the two resulting di6'erence
equations simultaneously for X&P„, and K2P„, . The
solution is quite simple if conditions are assumed such
that we can neglect +~2 and z2~ with respect to F~ and F2.
In this case we have to solve simultaneously the two
equations

and
$Ri (I'i+—,'s (n+m-) in ,'ir(—n m-) )Ot—i)P„+(nm, )'I'svt2P„, i 0, ——

[R —(I'2+~m (n+m) +in 2'(n m) )K—~)P„ i, i+ (nm)'t2+KiP„=0, , (6.15)

where in the second equation we have reduced the indices by 1 for convenience. The solutions tp these
two equations are

~here

miP„, =D„, '{Ri{I'2+-', m (n+m) +in2ir(n —m) )P„,„,+R~s.(nm) ' 'P„ i,

K~P„=„ i=D„, '{R2LI'i+-',s (n+m) io.27r(n m) )—P„-i,„ i+—Ris (nm) 't'P„, I,

D„=r, i'g+ (I'i+I', ) -', s.(n+m) + (1+m') L-,'m (n —m) )'+i~-', 7r(1' —I'y) (n m) . —
(6.16)

(6.1/)

Inserting (6.16) in (6.10), we find all dependence on Ki and K2 has disappeared. We may then integrate the P„
over X& and K2, which simply replaces P„, by the n, m matrix element of the reduced 6eld density operator.
Carrying this out and collecting terms, we obtain

(d/dt) (n { pg j m)

=L(n+1) (m+1))'t {y(n+1) j~D„+i,~i 'Ril'~)(n+1 { p& {m+I)+(nm)' 'Lyn+sD„, 'R21'i)(n —1
( pq )

m 1)—
—{D+i,~i 'R2LI'i-', m {(n+m+2)+in(n —m) f+(1+n') (', vr( nm) )')-
+D„, 'RiLI'si~ir {(n+m) iu(n m) I

—+(1+—n') (~s (n —m) )')
+Lan(n+m+1) +~/(n+m) /my(n m) )I (n

~

—
pb ~

m),
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Specialized to the case considered by Scully and Lamb, '
i.e., with n=R& ——0, Eq. (6.17) can be shown to be
identical to their result. In our notation, their quantity
R„,„~ is

=D +1, yl Zqqql )I1(1+in) + qqr (qq
—n') (1+n') ).

If one makes the substitutions (6.12) in (6.16), one
obtains adiabatic solutions for N~ and N2. These solu-
tions, substituted into (6.13), lead also to (6.17) .
However, it is clearly easier to see how to accomplish
the adiabatic elimination of the atomic populations
from (6.10) than from (6.13).
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(d/dt) (x)= &A, ),

(d/dt) &y) = &Aw) (82)
where the angular brackets indicate the statistical mean
of the included quantity. More generally, if f(x, y) is
any function of x and y, then (81) leads to and is
equivalent to the equation

where all partial derivatives on the right-hand side
operate on P and where the drift coefficients A„A„
and the diGusion coefFicients D„, D», , D,„may be
arbitrary functions of x and y. The drift coeKcients
have dimensions of velocity in the x—y plane, and pre-
scribe the motion of the mean values of the variables
according to
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—&f(x, y) )=
dt

B
A, —+Aq-

Bx By

APPENDIX A' PROPERTIES OF THE ATOMIC
OPERATORS

B B2
+D..—+D„„+2D~

By BxBy
(83)

( at aa) m ( ap aq) m = ( at aq) te4, y (A2)

Tr( a, t aj„)„=b,, p. . (A3)

Thus, any product of pairs of operators referring to the
same atom can be reduced to a single pair. Note that

LPA, (a, ta )„)[QB„,(a„ta,)„)=+C,,(a,ta,)„,

where
C,q= QA, d4q

Hence the pairs of atomic operators may be thought of
simply as identifying positions in a matrix.

APPENDIX B: ADIABATIC ELIMINATION

Consider a Fokker —Planck or diffusion equation
giving the time evolution of a statistical weight distri-
bution in two variables, say x and y, of the general form

BP(x, y, t) 8 8——A. ——Ay
Bt Bx By

B2 B2 B2

+—D„+D„,+ 2D,„P, . (81)Bx' '
By2

"'
BxBy

We will have use for the atomic operators only in
pairs such as ( a, t aq), which serves to transfer the mth
atom from state k to state j.Thus, the total number of
atoms is conserved. A convenient basis for matrix
representation of such pairs is the set of states with the
atom concerned definitely in one particular state. The
properties of the atomic operators are specified by

(a,ta, )„~p, m)= (f, m)b. ,„, (A1)

where b is the Kronecker delta, and
~ p, m) represents

the normalized pth state of the mth atom. Pairs of
operators referring to different atoms commute. From
(A1), we can derive the useful relations

where

(2)

(f(x, y) )=— f(x, y) P(x, y, t) dx dy. (84)

(xf(x, y) ) = (af+b (Bf/Bx) +b„(Bf/By) ), (85)

where f(x, y) is again an arbitrary function of x and y,
and the three coe%cients a, b„and b„are functions of
y alone. Special cases of (BS) are

&*)= &~),

(*y)= &~y+b, ),

(x') = &~xyb, ),
= &u'+b„(8a/By) +b, ). (85')

Equation (83) is derived by taking the time derivative
of (84), inserting (81), and then integrating by parts
with the assumption that P is sufficiently well behaved
that all surface integrals vanish. In (83) the derivatives
operate on f but not on P. Equations (82) are special
cases of (83) with f(x, y) set equal to x and y, respec-
tively.

The variable x, say, may be adiabatically eliminated
from (81) if conditions are such that, given any y
distribution in some range under consideration, the x
distribution has some conditional equilibrium to which
it relaxes before the y distribution can change appre-
ciably. Then the x distribution can be assumed to
remain adiabatically in its conditional equilibrium and
an equation of motion of the y distribution alone
obtained.

If we assume that the x distribution is continually
in conditional equilibrium then the mean of any func-
tion of x and y must be expressible as the mean of
some function of y alone. We can formalize this state-
ment in a useful way by requiring satisfaction of a
relation of the form
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In the last example we have had to make use of (BS)
twice to eliminate x completely. Thus a is the mean
value of x conditional on some particular value of y,
b„provides for correlation between the x and y distri-
butions, while b,, provides for additional variance of the
x distribution. Equation (B5) can be used to eliminate
x from any function of x and y, because its right-hand
side contains one less power of x than does its left.
Actually, (B5) is a normally adequate approximation
to a more general relation of the same type but in-
cluding all orders of derivatives.

By partial integration we can transform (B5) to the
form

(2) 8 8
f(x, y) x—a+ —b,+ —b„P(x, y, t) dx dy=0,

Bx By

(B6)

where the derivatives operate on J'. Because f is an
arbitrary function we may extract the integrand, giving
an an equivalent to (BS) the relation

B B
f(x, y)xP(x, y, t) =f(x, y) a——b, —b„P—. (B7)

Bx By

We use (B7) to eliminate x from the drift and
diffusion coefficients of (B1), and then pull all the
resulting derivatives to the left to re-establish the
Fokker —Planck form. Generally this process introduces

derivatives higher than the second into the result, but
if the diffusion approximation is adequate, we can
throw away such terms. [If such terms are not negli-
gible, we must go back and extend (BS) to include
higher derivatives also.) We then establish values of
the three coeKcients a, b„b„, and thus establish the
adiabatic x distribution, by solving this resulting equa-
tion for steady state while ignoring the motion of the y
distribution, i.e., ignoring the B/By and B'/By' terms.
Hence we set the coefficients of the B/Bx, B'/Bx', and
B'/BxBy terms equal to zero and solve for a, b„and b„.
This eliminates x from everything except P, which we
are now free to integrate over x, thus achieving the goal
of an equation in y alone.

If the drift coeKcients are linear in x while the
diffusion coefficients are independent of x, as is so in
the elimination of BR from (4.4) (the extension to more
variables is quite straightforward) then our method
does not introduce any higher derivatives and. so is
"exact."As a general example of this sort, suppose that

A =8—Fx,

A„=E+Mx, '

where 8, F, E, and M are functions of y alone. The
quantity F ' is the pertinent relaxation time for the x
distribution and must be positive. Then our method
results in the solution

a=F '[8—I" '(dF/dy) (2D,„+(M/F)D„)),
b, =D„/F,
b„=F '(2D. ,„+(M/F) D„),

BE(y, t) B 8 d(M/F) & M l B'
= ——&+M ——

I
».,+ —D**

I
+ D„+—».,+

Bt By F dy ( F j By' I' F'

where

P(y, t) = P(x, y, t) dx

and 0 is the product density operator

N

(C3)

Results obtained by this method correspond precisely
with those obtained by careful application of the
Langevin method discussed by Lax.' Ke have included
this discussion because it was not at first clear how to
accomplish the adiabatic elimination directly in a
Fokker —Planck equation.

APPENDIX C. EVALUATION OF TRACE (o.Q)

We need to evaluate [see (5.3) $

where
TroQ=[Troi, Qij[Tro. Q $~,

Qi, = expi(Vb+libt) (CS)

is the part of Q referring to the field, and

[see (3.5), (3.6)].Since b and bt commute with all the
atomic operators, and since pairs of atomic operators
pertaining to different atoms also commute, (C1) may
be factored; i.e.,

Tro Q,
where

Q = expi{X*b+Xb "+piNi+$2N2+$3M+$4M },

(C1)
Q~= expi{6(ai ai) +&2(a2 a2)

+P (ai a) +&4(a ai) } (C6)

(P, =$q*); (C2) is the part of Q referring to the mth atom. In (C4) we
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have used the fact that Tr o. Q is independent of the where
particular atom, i.e., of m.

First, consider the Geld part: we have

Tr~4Q4 ——(P ~
expi(li*b+xbt) } P),

= exp( —
ized V) (P ( (expiP, bt) (expiXb) } P),

= exp(9 *P+ilI,P*—-', X V),
Now by virtue of the relations {easily derived from

(C7) (A2) ]
where we have first reordered" the exponential to take
advantage of the fact that } P) is an eigenstate of b
with eigenvalue P.

The atoms part of Q is slightly more complicated.
By virtue of (A2), we can reduce Q to a linear sum
of pairs of atomic operators, plus unity. This may be
done efficiently by rewriting (C6) in the form

n+0 =On+ ——0, (C9)

where 0 may be any of the four operators in the
exponential of (CS), and

($ n +gzai'az+&4az'ai) '= v'(n+),

where
v =6—+t t4

we can easily reduce Q through the series of self-
Q„= expz{g+n++$ n +gaza&ta:+$4aztai}, (CS) explanatory steps

Q = (expi&+n+) (expi{P~+&za& a&+&4az ai})
= {1+)exp(it+) —1]n4.}{1+(cosv —1)n++i(sinv/v) (&~ +gz ait az+&4~tai) ]

1+Lexp(i/+) cosv —1]n++i exp(i/+) (sinv/v) ($ ri +)za& az+$4az ai).

We can now evaluate Tr (0 Q ), with 0 given by (3.3). Using (A2) and (A3), we obtain

Tra Q = {1+ Lexp(i&+) cosv —1](K+/1V) +i exp (i&+) (sinv/vtV) (P~ +&45K+&49R") },
where

(C11)

(C12)

K+=Kz+K i p % =%2—Xy.

The atoms part of (C4) is (C12) raised to the Eth power; in the limit of large E Lsee (3.12)]we obtain

LTr(r Q ] = exp{Lexp(i&~) cosv —1]%++iexp(i&~) (sinv/v) (g K +&35R+&40rt*) }.
Equations (C13) and (C7) combine according to (C4) to yield the desired result

TroQ = exp{—iz (U.*)+i (X*P+XP*+gvpX;) },
where the v, are as listed in (5.4b) of the text.

(C13)

(C14)

APPENDIX D: EVALUATION OF P2 FROM Pg IN THE GAUSSIAN APPROXIMATION

In the approximation, valid for large Ki+Kz, that the v; in (5.4) need only be expanded to second power in
the $;, we obtain a direct solution for Pz in terms of Pi. We have from (5.5), the transform relationship

Pz(b, b*, X;, t) expLi(Vb+Xb*+g$;X;)]8&"b d& iX

Pg, *,X;, t exp ——'M, * i X* X *
v,X; d&' d&''X, Di

where the v; and the $, are related by (5.6), i.e.,

ivi =if' —2 (gi +(4)4),

zvz =z$„——',(Q'+$4)4),

z»=zb zb(6+6) g

zv4 z(4 z4($1+tz) ~
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To extract P2 from (D1) by Fourier transformation we make (i and Q real and set $~
——,"4"" to make the exponential

of the left-hand side pure imaginary, then multiply (Di) by the factor

(1/4n') exp{—i(l&*b'+Lb'*+gg, X ) Id(Reh) d(Imh) dgid$2d(Re/4) d(1m')

and integrate over all the parameters. On the left, this extracts P2, and so transforms (D1) to

(6)

P2(b, b*, X,, t) = EPi(p, p*, K;, t) d&"p d&"K, (D2)

where the convolution kernel IC is given by

jE=
4x' exp{i'*(P—b) +X (P"' b"') +—Q$, (X; X—,) $

g PX +/i Xi+/'i %2+$4 $4(Xi+%&)]—-', (/i+$2) ($4*0R+$40R*) Id(Rel&) d(1m') d&id$&d(Re/4) d(Im(4) . (D3)

Evaluation of the integral of (D3) is facilitated by the following linear transformation which diagonalizes the
quadratic terms:

(,=i-,L2X,/(X, PX,) j——,'f,
g, =i-,{ 2X,/(Z, +X,) j+-,'i=,

$4= f4 —t+L29K/(Xi+Kg) j, (D4)

along with the conjugate of the last. After this transformation, E factors into the product of six independent

integrals, and evaluates to

2 2
~

DK —M {' ((K2—xi) —(x2—xi) $'E=- , , exp —2
) P b{2——

~3(x,yx, ) (x,x,—mm*) «' (Xi+Kg) 2 (74+%2)

{ m, (x,—A;)+x, (x,—1v,) —m(~*—~*)—Bit'*(~—~) j']
r2 (Xi+%2) (KiKg —5RBR*)

(D5)

APPENDIX E.DERIVATION OF THE "CLASSICAL"
FOKKER-PLANCK EQ. (S.V)

We start from the equation of motion (3.19) for Pi,
and the relationship between Pi and P2 given in (5.5)
along with the approximate relations (5.6) between
the v's and the $'s. We first differentiate the right side
of (5.5) with respect to time, and insert the equation
of motion (3.19) for 8P&/Bt This yields an e.quation of
motion for (Q) )note that (5.5) equates two expres-
sions for (Q)j of the form

(6)

(Q )= exp{——', (U,*)+i@,*P+XP*+)Q;X;) f

where 5& stands for the complete curly bracketed
Fokker —Planck operator in the right-hand side of
(3.19). The semicolon in 5 indicates that all derivatives
are to the left. We integrate (E1) by parts, applying
the derivatives to the exponential, where they bring
down the parameters X*, ), and the v, . Next we express
the variables in Fy as partial derivatives of the exponen-
tial with respect to the parameters. An example of this
1S

P'~ —i (8/N. +-', X*).

This procedure yields an equation of the form

8 8 8—(Q) =&a X, X", v, ; —, , —(Q). (E2)
df N. DX* Bv,

{t' 8 8 8
XPi~ —, , ;P, P*, X; Pid&'&Pd&4&X, (E1) In 2i, all derivatives are to the right, again indicated

by the semicolon. Now we use the relations (5.6) to
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1 8
p—+b+—

2 Bb*'d 8 8 8&

dh
' ' 'W, '8V 8$,)—,(Q)=~ lt, lt", 4; —, , —l (Q) (E3)

8 8

8P 8b'The final stage is to express (Q) as the left side of (5.5)
and to reverse the procedure which led from (E1) to
(E2), obtaining an equation of the form 1 8 8 1 8

2 1(&)—(Q) = expi(Vb+Xb*+g$, X,)
8 8 1('8 8

express gr in terms of the $,, transforming (E2) to the stitutions:
form

XFs —. . .' b, b*, X, l
Psd&'&bd"'X, (E4)

8 8 8

Bb Bb* BX, )

where /see also (6.1)j we have used the notation

X,( j=1, 2, 3, 4) =—(1Vt, Es, M, M*)

d&4lX= dNtdNsd (ReM) d (ImM) .

In (E4), the operator Fs comes out to be the complete
curly bracketed Fokker —Planck operator on the right-
hand side of (5.7) after all derivatives higher than the
second have been discarded. Extraction of the integrand
of (E4) by Fourier transform yields (5.7) .

Carrying out the above procedure, we find that
passage from F1 to F2 entails the following set of sub-

j=1 2

j=1 2

along with the conjugates of the 6rst four. These
replacements are made without disturbing the order of
factors. In 51, products of field quantities times atomic
quantities such as P*OR an.d PXt occur, but these give
no ordering problems since their replacements commute.
After the replacements, all derivatives higher than the
second are discarded.
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Lattice relaxation measurements have been made for Ce'+, Nd'+, and Yb'+ at axial sites in CaWO4 by
a novel spin-echo method. In this method the spin system is inverted by adiabatic rapid passage, and the
magnetization is later sampled by a two-pulse echo sequence. Temperatures were in the range from 1.4 to
O'K, the transfer of cold helium gas being used to maintain temperatures of 4.7'K and above. The relaxation
behavior of all the ions appeared to be best described by a direct process (v ~ T) going over into a Raman
process (wcc T") in the vicinity of O'K. The results could not, however, be Gtted to the r law, which
arises in simple theoretical treatments of the Raman process, but yielded powers of the absolute tem-
perature between 10 and 11.Orbach processes did not seem to be relevant. Two causes for this behavior
are considered: dispersion in the phonon spectrum, and the inadequacy of an approximation which is
commonly made in treating the denominator of the Raman integral. The Yb relaxation rate showed a
marked angular variation in the Raman region. This is discussed in terms of a possible admixture of the
two processes which, in the simple theory, lead to T' and T' laws.

I. INTRODUCTION

E have made lattice relaxation measurements for
the three Kramers doublet ions Ce'+, Nda+, and

Yb +, in axial sites io a CaYVO4 lattice. The experimen-
tal frequency was 9.4 Gc/sec, and the temperature
range 1.8 to 9'K. The measurements were made by a
method analogous to that often used in nuclear relaxa-
tion studies, in which the spin system is inverted and
its magnetization sampled after a variable time interval

by means of a two-pulse spin-echo sequence. In our
experiments, an adiabatic rapid passage was used rather
than a 180' pulse to invert the spins, since it was
virtually impossible to realize the latter pulse condi-
tion with the broad resonance lines, which we en-
countered in the materials studied. The relaxation
behavior of all three ions appeared to be best described
by a direct process going over into a Raman process
above 4'K. Although some problems arise in this
interpretation, we believe that it is essentially correct,


