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Because of the relative narrowness of the threshold region, a general model for spectrally pure self-
sustained oscillators (both classical and quantum, including gas lasers) can be reduced, in the threshold
region, to a rotating-wave Van der Pol (RWVP) oscillator. By a scaling transformation, we reduce to the
normalized RWVP oscillator which contains only one dimensionless parameter, a net pump rate p, which
determines the operating point. The power spectra of phase and amplitude fluctuations and of amplitude
(intensity) fluctuations in the normalized RWVP oscillator near threshold are calculated “exactly” by
numerical Fokker-Planck methods. Using the appropriate scaling transformation, our results yield these
power spectra for any oscillator of this general type. In particular, for gas lasers our results yield the one-
sided Fourier transform of (b (£)b(0) ) (the spectrum) and of (67 (0)b7()5(2)5(0) )— (b¥b)? (the intensity
spectrum), where bt and b are the creation and destruction operators for the radiation field. Except for
intensity fluctuations just above threshold, the power spectra were found to be nearly Lorentzian, with
half-widths at half power approximately equal to the lowest nonzero temporal eigenvalue of the Fokker-
Planck equation. For intensity fluctuations above threshold, the second-lowest nonzero eigenvalue was
found to yield a significant contribution to the power spectrum as well as the lowest nonzero eigenvalue.
These two eigenvalues become nearly degenerate for operation well above threshold. Thus the intensity
fluctuation spectrum is Lorentzian below and well above threshold, but more complex in the threshold
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region.

1. INTRODUCTION

ONSIDERABLE attention has been given recently
to the Van der Pol oscillator as a semiclassical
way of describing noise in masers and lasers.! It has
been shown for the gas laser, and any other laser for
which the atomic rate constants are fast compared to
the photon-decay constants, that the electromagnetic-
field operators have a Markoffian behavior and obey
“Heisenberg” equations of the rotating-wave Van der
Pol form?3 (RWVP) with quantum-noise sources that
can be calculated from first principles.

* The work reported here overlaps appreciably the contents of
a thesis submitted by R. D. H. to the Department of Electrical
Engineering, Massachusetts Institute of Technology in September
1965, in partial fulfillment of the requirements for a Master of
Science degree. Part of this work was previously presented at the
New York meeting of the American Physical Society, Bull. Am.
Phys. Soc. 11, 111 (1966).

t Present address: Physics Department, University of Illinois,
Urbana, Illinois.

1 The importance of Van der Pol oscillators in describing lasers
and laser noise has been emphasized by a number of authors:
W. Lamb, Jr., Phys. Rev. 134, A1429 (1964); H. A. Haus, ].
Quant. Electron. 1, 179 (1965); C. Freed and H. A. Haus, Appl.
Phys. Letters 6, 85 (1965); Phys. Rev. 141, 287 (1966); J. A.
Armstrong and A. W. Smith, Phys. Rev. Letters 14, 68, 208
(1965) ; Phys. Letters 16, 38 (1965); Phys. Rev. 140, A155
(1965) ; H. Risken, Z. Physik 191, 302 (1966).

2 M. Lax and W. H. Louisell, J. Quant. Electron. 3, 47 (1967).
hereafter referred to as QIX (see Ref. 3).

3 QIX stands for the ninth paper in a series of papers on quan-
tum noise by M. Lax: QI: Phys. Rev. 109, 1921 (1958); QII:
129, 2342 (1963); QIII: J. Phys. Chem. Solids 25, 487 (1964);
QIV: Phys. Rev. 145, 110 (1966); QV: in Physics of Quantum
Electronics, edited by P. L. Kelley, B. Lax, and P. E. Tannen-
wald (McGraw-Hill Book Company, Inc., New York, 1966)
p. 735; QVI: (with D. R. Fredkin) (to be published); QVII:
J. Quant. Electron. 3, 37 (1967); QVIIIL: H. Cheng and M. Lax
in Quantum Theory of the Solid State, edited by Per-Olav Lowdin
(Academic Press Inc., New York, 1966), p. 587; QIX: (with
W. H. Louisell), J. Quant. Electron. 3, 47 (1967); QX: Phys.
Rev. 157, 213 (1967); QXI: (to be published); QXII: with W.
H. Louisell (to be published).

4 See QIV.
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With the exception of the density-matrix treatment
of Scully, Stephen and Lamb,® previous treatments
have made quantum-mechanical calculations of diffu-
sion coefficients and inserted them into a classical
Fokker-Planck equation.® Even then, quasilinear ap-
proximations” have usually been used to avoid the
solution of the Fokker-Planck equations that consti-
tute the exact description of the classical random proc-
esses. For operation near the threshold of oscillation,
quasilinear approximations are not valid, and one is
forced to solve the Fokker-Planck equation.

Two different linearization schemes have been in
common use. The mean-value method,® as explained
in V, deals with the real and imaginary parts of the
field as variables and replaces a nonlinear resistance
by a mean value. For a laser, the population difference
is not treated as a fluctuating variable, but replaced
by a mean value.® In V, we suggested that this method
should be adequate well below threshold, since the

8 M. Scully, W. E. Lamb, Jr., and M. J. Stephen, in Physics of
Quantum Electronics, edited by P. L. Kelley, B. Lax, and P. E.
Tannenwald (McGraw-Hill Book Company, Inc., New York,
1966), p. 759; M. Scully and W. E. Lamb, Jr., Phys. Rev. Letters
16, 853 (1966).

¢ H. Haken, Z. Physik 190, 327 (1966); H. Sauermann, 7bid.
188, 480 (1965); 189, 312 (1966) ; H. Risken, C. Schmid, and W.
Weidlich, Phys. Letters 20, 489 (1966).

" For a general discussion of quasilinear methods see I; for a
quasilinear treatment of self-sustained oscillators see V, the first
and fifth papers in the series on classical noise by M. Lax: I:
Rev. Mod. Phys. 32, 25 (1960); II: J. Phys. Chem. Solids 14,
248 (1960); III: Rev. Mod. Phys. 38, 359 (1966); IV: 38, 541
(1966) ; V: Bull. Am. Phys. Soc. 11, 111 (1966) and Phys. Rev.
160, 290 (1967).

8 W. G. Wagner and G. Birnbaum, J. Appl. Phys. 32, 1185
(1961); D. E. McCumber, Phys. Rev. 130, 675 (1962); A. L.
Schawlow and C. H. Townes, ¢bid. 112, 1940 (1958); J. A. Fleck,
Jr., J. Appl. Phys. 34, 2997 (1963); R. V. Pound, Ann. Phys.
(N. Y.) 1, 24 (1957); M. P. W. Strandberg, Phys. Rev. 106, 617
(1957) ; J. Weber, Rev. Mod. Phys. 31, 681 (1959) ; W. H. Wells,
Ann. Phys. (N. ¥.) 12, 1 (1961); G. Kemeny, Phys. Rev. 133,
A69 (1964) ; H. Risken, Z. Physik 180, 150 (1964).
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nonlinear term, although crudely treated, is small com-
pared to the linear term which then is dominant in
determining the over-all response. The second lineariza-
tion scheme® used the amplitude and phase of the field
variables, and makes a quasilinear approximation in
the amplitude only. This method used, for example,
by the Haken School,® and by us?® in QV, was recog-
nized’ in V to be valid only well above threshold.

The present paper supplies exact numerical solutions
of the Fokker-Planck equation. In the region near
threshold, (power output within a factor of 10 of the
threshold value), we demonstrate that neither lineariza-
tion scheme is sufficiently accurate. We also demon-
strate our previous conjectures that the mean-value
method is adequate well below threshold, and that the
quasilinear method becomes increasingly accurate well
above threshold. These qualitative conclusions are also
suggested by Risken’s® variational treatment of the
lowest eigenfunctions of the Fokker-Planck operator.

The spectrum of our oscillator (for a laser, this is
the Fourier transform of (b7(¢)5(0) ), where 5" and b
are creation and destruction operators for the harmonic
oscillator describing the field) is shown to be nearly
Lorentzian. Thus the linewidth of this noise spectrum
will be determined, as demonstrated below, primarily
by the lowest eigenvalue A, (p for phase) of the Fokker—
Planck operator for the restricted set of eigenfunctions
which vary as exp(i¢), that determine the spectrum
of phase ¢ (and amplitude = | 5| ) fluctuations con-
tained in (r(f) exp[ip(£) Jr(0) exp[—ip(0)]).

As is well known,® the linewidth A, is inversely pro-
portional to the power. The proportionality constant
obtained by the mean-value method (see for example
the Schawlow-Townes? formula) is twice that obtained
by the quasilinear method.® Our present numerical re-
sults for A, display the transition from the Schawlow-
Townes formula, below threshold, to the quasilinear
formula above threshold.

The spectrum of intensity (pure amplitude) fluctua-
tions [for a laser this is the Fourier transform of
(bt(0)b%(2)b(¢)5(0) )] is also demonstrated to be nearly
Lorentzian except for a region just above threshold. In
the Lorentzian region, the linewidth is determined by
the lowest nonvanishing eigenvalue A, for the phase-
independent solutions of the Fokker-Planck equation.
The quasilinear estimate of this linewidth, as well as A,,
display a minimum #zear threshold in agreement with
experimental measurements of amplitude fluctuations.!

9 See for example, W. A. Edson, Proc. IRE 48, 1454 (1960);
J. A. Mullen, ibid. 48, 1467 (1960); M. E. Golay, ibid. 48, 1473
(1960) ; P. Grivet and A. Blaquiere, in Optical Physics (John
Wiley & Sons, Inc., New York, 1963), p. 69. See also the many
relevant papers in P. I. Kuznetsov, R. I. Stratanovitch, and V.
I. Tikhonov, Non-Linear Transformations of Stochastic Processes
(Pergamon Press, Oxford, England 1965).

10 H, Risken, Z. Physik 191, 302 (1966).

11 C, Freed and H. A. Haus, Phys. Rev. 141, 287 (1966); J. A.
Armstrong and A. W. Smith, ibid. 140, A155 (1965); F. T.
Arecchi, Phys. Rev. Letters 15, 912 (1965); F. T. Arecchi, A.

Berne, and P. Bulamacchi, 7bid. 16, 32 (1966) ; W. Martienssen
and F. Spiller, Phys. Rev. 145, 285 (1966). See also Ref. 1.
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The basis for our ability to apply the results of a
classical random problem to the laser, which is a quan-
tum random problem, is given in QIX 3 by Lax and
Louisell, who have set up a dynamical correspondence
between the density matrix of the electromagnetic
field p(b, b, £) and an associated classical function
@ (B, B*, t).12 The correspondence is simply that the
density operator is to be obtained from its associated
classical function by replacing 8 by & and 8* by bt
obeying the antinormal ordering rule: all 5'’s are to be
placed to the right, and all &’s are to be placed to the
left. The classical average of any classical function
M®™ (B, B* t) of B and B* over the classical probability
distribution (8, B*, ¢) corresponds to the guantum
average of the quantum operator M (b, b, {) obtained
from M® (B, 8% ) by replacing 8 by b and 8* by bt
and obeying the normal ordering rule: All 5%’s are to
be placed to the left, and all b’s are to be placed to the
right. (The relation between our ordering procedure
and the classical correspondences, adopted by other
authors are discussed,?*® with references, in QIX and
QX.)

In QXII, Lax and Louisell obtain a Fokker-Planck
equation for 5@ (B, 8*, N1, Ny, t) where N; and N, are
populations of the lower and upper laser levels, respec-
tively.’® For a laser in which all of the atomic response
rates are fast compared to the photon rates, an adia-
batic approximation for the population variables N; and
N, yields a Fokker-Planck equation for 5@ (8, 8%, f).
In Appendix A we quote the Langevin process appro-
priate to this Fokker-Planck process. Treatment of the
nonlinearity by an expansion in | 8 |2 is shown in Ap-
pendix A (a) to lead to the Van der Pol oscillator,
(b) to be valid from zero photons up to a number of
photons greatly exceeding the number at threshold.

In Appendix B we consider a classical circuit model
of an oscillator to demonstrate that the reduction to

12 We have established in QIX that, at any one time, our “classi-
cal” function p®) (B, B*, #) is identical (aside from a factor =) to
the P(B) function of Glauber (see Ref. 13), Sudarshan (see
Ref. 14) and Klauder (see Ref. 15). Our procedure is dynamical
in that we calculate P (B, t) using a Fokker-Planck equation de-
scription of the field plus reservoirs rather than using a conjec-
tured steady state P(B) plus free field dynamics (Refs. 13-15).
A demonstration of the full equivalence between averages of
time-ordered, normally-ordered operators in the quantum prob-
lem and ordinary averages in the associated ‘“classical” problem
is established in QXI. See also M. Lax, in Brandeis Summer I'nsti-
tute in Theoretical Physics Lecture Notes (Gordon and Breach,
Science Publishers, Inc., New York, to be published), Chap. 11.

18 R. J. Glauber, Phys. Rev. 130, 2529 (1963) ; 131, 2766 (1963).

4 E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963);
Proceedings of the Symposium on Optical Masers (John Wiley and
Sons, Inc., New York 1963), p. 45.

15 See also J. R. Klauder, J. Math. Phys. 4, 1055 (1963); 5,
177, 878 (1964) and Phys. Rev. Letters 16, 534 (1966). For an
excellent review, see L. Mandel and E. Wolf, Rev. Mod. Phys.
37, 231 (1965).

16 See also M. Lax, in Dynamical Processes in Solid State Optics
(W. A. Benjamin Tnc., New York, 1967), p. 195. A description
in terms of the field, Ny, and N, is appropriate when the popula-
tion equilibration times are comparable (or slower) than those
of the field. If N, empties rapidly, a simpler description in terms
of p(b, bT, Ny, t) is possible as shown in QX.
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Van der Pol form over a broad region including thresh-
old is valid for nearly all “well-designed” oscillators.
We define a well-designed oscillator to be one whose
output is sinusoidal rather than periodic, and whose
output is large compared to thermal noise in a similar
circuit in which all resistances are positive.

In Appendices A and B, we show that it is possible
to scale our amplitude variable and the time in such
a way as to eliminate all parameters but a single
dimensionless parameter p. For a laser, p is propor-
tional to the excess of the pump rate over the threshold
pump rate. Our scaled Langevin equations are just
those of the normalized rotating wave Van der Pol
(NRWVP) oscillator equations studied in V7 by quasi-
linear methods.

We can, therefore, for a broad class of oscillators
start with the NRWVP-oscillator Langevin equations.
The corresponding Fokker-Planck equation is derived
using the real and imaginary parts of the complex
amplitude of the oscillator as variables. Since we are
interested in phase and amplitude noise, a transforma-
tion to the magnitude and phase of the complex ampli-
tude is made in Sec. 3. In order to reduce the number
of variables in the Fokker-Planck equation, certain
integrals over the phase variable are performed since
it is only these integrals over the probability distribu-
tion which are needed. In Sec. 5 we obtain the steady-
state amplitude probability distribution, which is used
to obtain the dependence of the scaled photon number
(or scaled intensity) s on our dimensionless pump
parameter p. By taking the one-sided Fourier trans-
form of the equation resulting from the phase integrals
over the Fokker-Planck equation, we obtain an ordinary
differential equation for a Green’s function whose mo-
ments give directly the power spectra of phase and
amplitude fluctuations and of amplitude (intensity)
fluctuations.

This linear differential equation was numerically
integrated and the power spectra for operation near
threshold were obtained. Appendix C is a discussion
of the boundary conditions used in this numerical inte-
gration.

These power spectra were found to be very nearly
Lorentzian for frequencies less than, and of the order
of, the half-width at half power. This suggested the
usefulness of the usual expansion” of the conditional
probability distribution in the eigenfunctions corre-
sponding to the temporal eigenvalues of the Fokker-
Planck equation, since a nearly Lorentzian power spec-
trum implies that the contribution of the lowest non-
zero eigenvalue is dominant. The half-widths at half
power of these power spectra were found to be given
by the lowest nonzero eigenvalues. We compare the
exact results to what has been called an intelligent
quasilinear approximation in V.

We want to emphasize that our exact results need

17See M. Lax, in Brandeis Summer Institute in Theoretical
Physics Lecture Notes (Gordon and Breach Science Publishers
Inc., New York, to be published).
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only be scaled by the scaling factors given in Appendix
A to give the results for a gas laser, and by the scaling
factors in Appendix B to give the results for a large
class of oscillators.

The present work differs from that of previous au-
thors in the following respects:

(1) From the direct correspondence between the
density matrix and a classical probability distribution
established in QIX, the quantum-mechanical spectrum
and moments are precisely calculated in terms of the
corresponding classical spectra and moments.

(2) All results and figures shown here were obtained
by numerical integration of the appropriate Fokker—
Planck equations and are essentially exact.

(3) A direct calculation is made of the power spectra
of phase and amplitude fluctuations and of amplitude
(intensity) fluctuations by Green’s-function methods.

(4) The results are checked by eigenfunction meth-
ods. For this latter purpose, numerical computations
were made of the ten lowest nonzero eigenvalues and
their corresponding eigenfunctions. This was done both
for the usual spectrum (phase and amplitude fluctua-
tions) and for intensity fluctuations for values of p
covering the threshold region. Risken® estimated (by
variational methods only) the lowest eigenvalues A,
A, in these two series.

(5) The Scully-Lamb procedure® (even if they per-
formed a time scaling) would retain two parameters
since the discrete photon number # cannot be scaled
without approximation. Our scaling down to a single
parameter p permits numerical solution of differential
equations exploring a one-dimensional parameter space.
The Scully-Lamb procedure, as presently used, must
perform the much greater labor of exploring a two-
parameter space. Moreover, for each point in that
space, they solve not a single second-order differential
equation but an N XN system of simultaneous equa-
tions where N must be large compared to the mean
number of photons.

2. THE LANGEVIN AND FOKKER-PLANCK
EQUATIONS

Our remarks of the preceding section establish the ap-
propriateness of beginning with the “reduced” Langevin
equations for the normalized rotating-wave Van der Pol
oscillator, V [Eq. (9.4)].¥

dw/di=[p— (*+y?) Jx+Fa(1),
dy/dt=[p— (2249?) y+F, (1),

where the Langevin forces F, and F, represent Gaussian
white-noise sources with the following moments:

(Fz)=(Fy)=0,
(Fa(t) Fo(u) Y= (Fy(8) Fy(u) ) =28(t—u),
(Fa(t) Fy(u) )= (Fy(t) Fa(u) ) =0.

(2.1)
(2.2)

(2.3)
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Since these Langevin forces are assumed Gaussian'®
(Fi(t) ++*Fa(t,) Ye=0 for n>2; (2.4)

where ( )F denotes a linked average'®? and F;(#;) =
Fz(t,') or Fy(ti).

Because our noise sources are white, this process is
Markoffian and therefore the conditional probability
P(x,y, t| %, v, o) obeys a generalized Fokker-Planck
equation [IV(5.13)7:

P &
i 21 (—=1)~(0/0a)":[Da(a, 1) P(a, 1) ], (2.5)
where a=ay, ap- - -are the set of random variables—in

this case x and y—and the diffusion coefficients D, are
defined by

n!Dy(a, f)

= lim (Af)— f P(a’, 1At | a, 1) (a'—a)"da!, (2.6)
At>0
where D, has # (suppressed) subscripts, and : is a short-
hand notation which tells us to multiply corresponding
terms, e.g., the moment of (a;,’—a1)%(a2’—az) would be
written Dy, and the corresponding term in the Fokker-
Planck equation would be (—1)3(8%/9%a:19as)[ DuaP].
The =1 and n=2 terms correspond to the ordinary
Fokker-Planck equation, and the Gaussian property
of our Langevin forces guarantees that all higher-order
diffusion coefficients for our process vanish.?

To obtain the first- and second-order diffusion coeffi-
cients,?? we must write the Langevin equations as inte-
gral equations:

Ax=x(t+Af) —x(2)
= [ o= ] 7)), (22D

where p(s) =[x(s) P+[y(s) J* and similarly for Ay. We
now iterate these integral equations by first replacing
x(s), and y(s) inside the integral by «x(¢) and y(?),
respectively, yielding the first approximation:

AL
(ai=Lo—pOTe)art [ Fu(s)ds 28
and similarly for (Ay)i.

18Tn Sec. 6 of QIV, the assumption that the Langevin forces
are Gaussian is shown to be a good approximation for lasers.

19 Linked moments, also known as Thiele semi-invariants or
cumulants (see Ref. 20) are defined by III (6.8) or IV (2.5).
We rewrite the latter in the form

(expfq(s) -F(s)ds—1)E=In(expfq(s) -F(s)ds)

and expand both sides in powers of q(s) and compare correspond-
ing terms to obtain the definitions of the linked moments of first,
second, third, etc. order. For use in (2.4), we must regard q(s)
as a two-component vector function so that q(s)-F(s)=
4= (8) Fz (5) +qy () Fy (s).

20 R, Kubo, J. Phys. Soc. Japan 17, 1100 (1962).

21 See IV, Sec. 3.

22 We repeat here, for our process, the method of IV, Sec. 3 for
determining the diffusion coefficients.
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From the definition of the diffusion coefficients D,,
Eq. (2.6), we see that Ax and Ay need be calculated
to only first order in At. Care must be exercised, how-
ever, since means of products of the Langevin forces
are singular, hence nominally higher-order terms may
contain a contribution which is first order in AZ. To
resolve this question, we must examine

t+A¢ tHAt t+At t+At
/ dsye e [ dsm / dsy e / ds,’
¢ ) t t
XA(Fo(s1) =+ Fo(sm) Fy(s1) =+« Fy(sa') ).

Since the Langevin forces are Gaussian random vari-
ables

(2.9)

(Fa(s1) ++  Fo(sm) Fy(st) +++ Fy(sa) )
vanishes if (m-4#) is odd and is equal to
(Fa(s51) Fa(s2) )(Fa(ss) Fa(ss) )+ =« (Fy(sura) Fy (') )
+all other pair decompositions

if (m-+n) is even. Thus, our term (2.9) vanishes if
(m+n) is odd and is of order (m-+n)/2 in Atif (m+n)
is even. Hence, only products of two Langevin forces
yield terms which are first order in Af. Thus, in gen-
eral,2 we would have to iterate once more to calculate
(Ax) s, the contribution to Ax of second order, in the
random forces. Because our Egs. (2.7) have a simple
structure in which the random forces are not multi-
plied by random variables, no such second-order terms
arise.®® Therefore, (Ax); and (Ay), are correct to first
order in A¢, and we can calculate the drift coefficients
Az and A,:

A.=D,= ((Ax)1)/At=[p—x2—y*Jx, (2.10)
Ay=Dy= ((Ay)1)/At=[p—a2—y"]y. (2.11)

We have used the vanishing of (F.) and (F,) which
follows from the definition of Langevin forces. In order
to calculate the diffusion coefficients, D,, and D,,, we
must square (Ax)1, which gives us a nominally second-
order expression but contains a product of Langevin
forces of the type mentioned above:

__1 ((Ax)ﬁ)
SN

1
241

AL AL
f ds f s (Fa(s) Fa(s)) )=1.  (2.12)

Similarly,
D,,=1. (2.13)

The diffusion coefficient D,, vanishes as a result of the

23 Such products of random variables times forces would have
appeared if we had worked in circular variables 7, ¢ instead of
Cartesian variables ¥, y. Such extra terms appear in a different
way [see the last term of (3.1)] when we transform from rec-
tangular to circular coordinates.
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absence of correlation between the Langevin forces F,
and F,:

1 ((A0)1(89)1)

D:
) At

2At/ s f N (FAs) By )=0. (2.14)

All higher-order diffusion coefficients are computed
from {(Ax)™(Ay)i™) for m~+n>2, which will be a sum
of terms of the form

L AL t+AL AL At
(At) H"/ dsye . 'f dSm._i/ dsl'f dSn_j’
t t t t

XA(Fu(s1) =+ Fo(Sm—i) Fy(s1') « + « Fy(sn-i") )

0<i<m; 0<j<n (2.15)

From our discussion of the time integrals, we see that
{(Ax)™(Ay)1*) is of order % (m~+n) in At for (m~+n)
even and of order §(m~+n+1) for (m+n) odd. Hence,
all higher-order diffusion coefficients vanish, and our
process is a Fokker-Planck process.

Our conclusion is that the conditional probability
P(x,y,t|x,y0, o) satisfies the following Fokker-Planck
equation:

aP d
e = [(p—a=y)zP]— 2 [(p—2—3)yP]
y
2P 9P
+_+a —, (2.16)

3. TRANSFORMATION TO POLAR COORDINATES

The transformation to polar coordinates a=x—iy=
re¢~* is a natural consequence of our interest in ampli-
tude noise as well as fluctuations in (x—4y). To accom-
plish this transformation, we use the transformation
laws for the drift and diffusion coefficients given in
Egs. IV(3.27) and IV(3.28):

ai'=ai(a,1),
Dij’ = (aa//aak) (aa,’/aal) Dkl,

A =0a;/dt-+ (0a)/dar) Ax+ (920 /3am3as) Dn;
(3.1)
and preservation of normalization requires that

P(a,t)=JP(a,t), (3.2)

where

J=det(da;/da;) (3.3)

is the Jacobian of the transformation.
Using the above transformation laws, the Fokker-
Planck equation in polar coordinates is found to be

Ie] 102P
L L) P

y o (3.4)
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4. INTEGRATION OVER THE PHASE VARIABLE

In order to calculate the spectrum of phase and
amplitude fluctuations
S, (w) =2 / T @ (0a(0) emetdr,  (41)

where a=x—1y, and of amplitude (intensity) fluctu-
ations,

Sa(w) =2 /:: [{a*(0)a*(¢) a(f) a(0) )— (a*a 2 ]e~""dt,

(4.2)

we must perform an integration over the phases. This
suggests that it is not necessary to compute P, but
only the simpler quantities:

B(r, t|r, 0;))

= [ d(6=60) expl-+ir(6—0TP(r, 6, ¢ 70,60, 0)

(4.3)

with A=1 for .S, (phase) and A=0 for S, (amplitude).
For \=0, R will be the conditional probability distribu-
tion of the amplitude 7.

The equation satisfied by R may be derived from
the Fokker-Planck equation by recognizing that R is
the Fourier transform of P; therefore P may be ex-
pressed as the inverse transform of R. Substituting
this expression for P into the Fokker-Planck equation
yields

.
[ 2 esl-ino-e01 %]

= / d\ exp[—iN(p—¢0) ] [H,—);] R, (44

where the differential operator H, is defined to be
H,=0/dr[r*—pr—r=1]+(8%/0r%). (4.5)

The inverse transform of this equation yields the de-
sired equation for .

oR/at=H,R— (\2/r*)R. (4.6)

Notice, that by this procedure, we have eliminated
the phase variable from our Fokker-Planck equation.
The new “probability” distribution R(r, t| 7o, f; \) is
the conditional probability distribution of the ampli-
tude » when A=0 and is an unnormalized distribution
for » when A=1.2¢

5. STEADY-STATE AMPLITUDE PROBABILITY
DISTRIBUTION

The steady-state amplitude probability distribution,
P(r), will be used to compute p= (#*) as a function of

24 See III for a discussion of the usefulness of defining an un-
normalized probability distribution in treating nonlinear Markoff
processes.
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the dimensionless pump parameter p. This functional
dependence, shown in Fig. 1, allows the experimenter
to determine the value of our pump parameter p for
his oscillator by measuring the power output and using
the appropriate scaling laws. We also use P(r) in
Sec. 6 for the calculation of the power spectra, and in
the eigenfunction expansion of Sec. 7.

As stated in Sec. 4, by setting A=0 in Eq. (4.6),
we obtain an equation for the conditional probability
of the amplitude. Using the stationary property

lim P(z, t|n, &) =P(r),

(t—tg)>
and taking this limit on both sides of Eq. (4.6), we
obtain an equation for P(r).
0=(8/0r) {[r*—pr—r="]1P+(8P/0r)} =—a8J/0r.
(5.1)

If we regard
J=[r—pr—r 1P+ (3dP/0r) (5.2)

as a probability current, then (5.1) describes a conser-
vation of probability. The boundary condition J=0 is
a detailed-balance condition which is obeyed by our
process.?52¢ With this boundary condition we obtain

P(r) =r exp(—3r*+3pr?) / /m r exp(—irit-3pr?)dr.
0
(5.3)

Since the experimenter measures the power output
of the laser (or any other oscillator), we must relate

10 T T T T T T T T T
,/

9 7/
Yy

8 / .

/)
7+ / R
/
s} //

//EXACT

P> st Y e

/, ~
af / o
QuAsi- / -
3l LINEAR,// - i
7/ _~Quasi-
2F 7/ " GAUSSIAN |
oL

1 T 4

R ! 1 ! 1 1

0
-0 -8 -8 -4 -2 0 2 4 6 8 10
NET PUMP RATE, p

F1c. 1. The mean amphtude squared (intensity) p=(|a[?)
for the NRWVP oscillator is plotted as a function of the pump
parameter p. For a laser, p is the normalized mean number of
photons (b%b)/82, where £ is defined by Eq. (A. 13). The solid
curve gives our exact values. The upper dashed curve is the quasi-
linear approximation, which was obtained as usual from (4 (p) )=~
A({p)) =0 and yields por=3[p+ ($*>+8)2]. Below threshold,
the Gaussian nature of the radiation field suggests (p® »=2¢p )2
which yields pge=3i[p+ (p>416)12], an excellent approximation
below threshold but a poor one above (lower dashed curve).

2% In general J need not be zero, and detailed balance is not
obeyed. See IV, Sec. 4 for an example in which J#0. For further
discussion of detailed balance see III, Sec. 7B, and Ref. 17, Chap.
8

"2 For the relation between time-reversal, detailed balance and
orthogonality, see Ref. 17, Chap. 8.
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TaBLE I. Mean intensity = (| a |2) and total intensity fluctu-
ation ((Ap)?)= (p?)— (P)? for NRWYVP oscillator versus net pump
parameter p.

b4 b ((ap)?)
—10 0.1927006 0.03586023
-9 0.2124018 0.04326977
- 8 0.2363771 0.05310890
-7 0.2660998 0.06649266
— 6 0.3037539 0.08521009
-5 0.3526810 0.1122112
- 4 0.4181610 0.1524975
-3 0.5088015 0.2147167
-2 0.6389659 0.3137907
-1 0.8327063 0.4738940
0 1.128379 0.7267611

1 1.577956 1.088010

2 2.225271 1.498711

3 3.060490 1.815462

4 4.010358 1.958462

5 5.001089 1.994553

6 6.000070 1.999583

7 7.000003 1.999981

8 8.000000 2.000000

9 9.000000 2.000000

10 10.000000 2.000000

the power output p= (r*) to our dimensionless pump
parameter p. Integrating 72P(r), numerically using
(5.3), we obtain 5 as a function of p in the region
near threshold.?” The results are shown in Fig. 1 and
Table I.

The integrated spectrum of phase and amplitude
fluctuations using (4.1) can be written

(w) dw

2] T = (e (0)a(0) )= (o) =7

(5.4)

if we use

/w exp (twt) dw

—» 2T

=0(%).
Similarly, the total amplitude noise, using (4.2), can

27 The results for p= (o) were also checked by expressing (o)
in terms of error integrals

® -1
<P>=P+2“"2[el’”4/ e‘“/zdt] .
-/

For <0, we also have the continued fraction

2
{p)=

9+
6
| p|+————

| p | +——
PIEEE

Higher moments can be computed directly or by the recursion

formula
y=p () +2(n=1) (72).

In particular, {o*)=p{p)+2 and ((Ap) = {p2)—{p)* which
govern total amplitude noise are plotted in V, Fig. 5 and QVII,
Fig. 3 and quoted in Table I of this paper.
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TaBie II. Spectrum S,(w) for phase (and amplitude) fluctuations.

Pump parameter p
-1 0

Frequency w —10 -2 1 2 10e

0 0.07429 0.8259 1.420 2.677 5.535 12.18 389.8
0.25 0.07425 0.8205 1.404 2.618 5.274 10.85 367.7
0.5 0.07412 0.8047 1.357 2.457 4.619 8.179 314.4
1.0 0.07361 0.7474 1.199 1.971 3.088 4.128 199.0
2.0 0.07163 0.5816 0.8188 1.101 1.333 1.400 80.61
5.0 0.06029 0.2281 0.2551 0.2723 0.2751 0.2636 15.62

10.0 0.03852 0.07222 0.07438 0.07522 0.07460 0.07258 4.033

20.0 0.01576 0.01943 0.01956 0.01959 0.01951 0.01930 1.024

50.0 0.003068 0.003184 0.003187 0.003188 0.003185 0.003178 0.1721

100.0 0.0007916 0.0007990 0.0007992 0.0007992 0.0007990 0.0007986 0.04870

& For =10 the correct frequency is le)‘th the tabulated frequency.

be written
© Sa ®
%/_w*%%d—w=<(Ap)2)E<p2>—<p>2. (5.5)

The results?” for 5 and ((Ap)?) are summarized in
Table I.

6. CALCULATION OF THE POWER SPECTRA

The time integrals in Eq. (4.1) and (4.2) suggest
that we need not compute B, which obeys a partial
differential equation, rather only its one-sided Fourier
transform.

G(r, r0; \, w) = /w dt e@tR(r, t|7,0;N). (6.1)
0

The equation obeyed by G may be obtained by taking
the one-sided Fourier transform of both sides of Eq.
(4.6).

<) » AZ
/ dt et i1~€=[H,——] G(r, ro; N\, w).  (6.2)
0 at 7%

The left-hand side of the above equation may be inte-

grated by parts to give an inhomogeneous ordinary

differential equation for G:

@G aG (1—»)

ﬁ—*_ (P—pr—r7) d—r+[37’2—1’+‘—;2———w] G
=—R(r,0]|7,0;\)=—58(r—r) (6.3)

of the Green’s-function form.

We define U(r) to be the homogeneous solution to
the above equation which satisfies the boundary condi-
tion for G at =0, and we define V() to be the homo-
geneous solution which satisfies the boundary condition
for G at r=0o. The solution, G(r, 7; A, w), may be
written in terms of U(r) and V(7):

G(r,r) ==[UMN)V(r)/W(r)], r<n
=—[U@)V(")/W(r)], r=rn (64)
where W (7,) is the Wronskian
Wr)=U@r)V'(r)=V(r)U'(r)
— A7 exp(—3ri+3pr), (6.5)

where 4 is a constant. We notice that the Wronskian
is just a constant times the steady-state amplitude
probability distribution P(7).

The spectra Sp(w) and S;(w) can now be computed
directly from G(r, ro; N\, w) by the following integra-
tions:

S, () =4 Re f * droroP(ry) / T dr rG(r, 5 1, ©)
0 0

Su(w) =4 Re / * dro(ré—5) P(ro)
0

X / " ir(P—p)G(r, 7050, ). (6.6)
0

Equation (6.6) displays the subtraction of the § func-
tion at w=0in the amplitude spectra, which corresponds

TaBLe III. Spectrum S,(w) for intensity fluctuations.

Pump parameter p
1 2

Frequency w —10 -2 -1 0 4 6 8 10
0 0.006680 0.1571 0.2791 0.4966 0.8260 1.158 1.101 0.7122 0.5174 0.4053
1.0 0.006665 0.1546 0.2729 0.4817 0.7945 1.110 1.075 0.7059 0.5151 0.4042
2.0 0.006622 0.1477 0.2561 0.4421 0.7133 0.9878 1.002 0.6878 0.5084 0.4010
- 5.0 0.006336 0.1123 0.1792 0.2817 0.4201 0.5686 0.6956 0.5847 0.4663 0.3798
10.0 0.005489 0.06079 0.08718 0.1249 0.1763 0.2395 0.3543 0.3860 0.3606 0.3198
15.0 0.004489 0.03459 0.04736 0.06578 0.09188 0.1263 0.2025 0.2502 0.2627 0.2534
20.0 0.003577 0.02163 0.02902 0.03985 0.05557 0.07697 0.1284 0.1692 0.1911 0.1967
30.0 0.002263 0.01048 0.01384 0.01886 0.02631 0.03673 0.06354 0.08888 0.1082 0.1204
50.0 0.001041 0.003966 0.005193 0.007050 0.009846 0.01383 0.02450 0.03564 0.04573 0.05408
100.0 0.000295 0.001014 0.001323 0.001794 0.002508 0.003533 0.006337 0.009409 0.01241 0.01519
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POWER SPECTRUM AT THRESHOLD

5p(w)

10

o] of

| 1 i
o 20 4.0 6.0 8.0
FREQUENCY w

10.0

Fic. 2. Power spectrum for phase and amplitude fluctuations
Sp(w) for the NRWVP oscillator at threshold (p=0). The di-
mensionless frequency w is given by w=wexp I, where T is ob-
tained from Egs. (A14) or (B13).

to the dc component

pP=()y of (#(1)r*(0)).

To obtain the U and V functions, we must numeri-
cally integrate the homogeneous part of the equation
for G, Eq. (6.3), with A, w, and p treated as parameters.
In order to use Numerov’s metnod® of numerical inte-
gration, the first derivative term of Eq. (6.3) must be
eliminated by the following transformation on U.

U(r) =r' exp(—gr+1pr)u(r) (6.7)

and the same transformation from V(r) to »(r). The
resulting differential equation for # (and v) is

@
Tt -t pio

L =99

o ]u=0. (6.8)

The question of the power boundary conditions for
G at r=0 and r=c now arises. Since P must be

05
POWER SPECTRUM OF INTENSITY

oal FLUCTUATIONS AT THRESHOLD
_ o3|
3
o
[}

0.2}

0.1}

1 1 1 i 1
o 50 10.0 15.0 20.0 250 30.0

FREQUENCY w

F16. 3. Power spectrum for amplitude (intensity) fluctuations
Sa(w) for the NRWVP oscillator at threshold (p=0).

% A review of this method may be found in D. R. Hartree,
ISVum;r;csal Analysis (Oxford University Press, England 1958),
ec. 7.23.
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POWER SPECTRA OF re""’ AT Ww=0 VS p

250
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2
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P

F1c. 4. Height of the power spectrum of phase and amplitude
fluctuations S, (w=0) in the NRWVP oscillator versus the mean
intensity . For lasers this is the normalized maximum of the one-
sided Fourier transform of (b (£)b(0)) plotted versus ®to)y/8,
where (b7b) is the mean number of photons and the scaling
parameter £ is defined in Appendix A.

normalized, it must go to zero as 7 goes to infinity.
This is the only boundary condition we have for a
second-order equation. Another boundary condition
must somehow be imposed at r=0. A detailed discus-
sion of the choice of boundary conditions may be
found in Appendix C. The results of that appendix
are that the least singular solution at r=0 is to be
taken for U(r), and the exponentially decaying WKB
approximation for large 7 is used to start the numerical
integration for V.

The power spectrum of phase and amplitude fluctu-
ations S,(w) was computed for the pump parameter
$ equal to —10, —2, —1, 0, 1, 2, and 10. See Table II.
The power spectrum of amplitude fluctuations Sa(w)
was computed for p equal to —10, —2, —1,0, 1, 2, 4,
6, 8, and 10. See Table III. When compared to a least-
squares fit using a single Lorentzian with adjustable
height and width, the power spectra were found to be
nearly Lorentzian, with deviations only far out in the
wings, i.e., for frequencies large compared to the half-

o 1.4

AT W=
N
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POWER SPECTRUM OF p—p
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o
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o
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e
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| S S I 1
3 4 5 6 7 8 9 10

P

F1c. 5. Height of the power spectrum of amplitude (intensity)
fluctuations S, (w=0) for the NRWVP oscillator is plotted versus
the mean intensity g. For lasers this is the maximum of the one-
sided Fourier transform of [ (b7(0)dT(8)b(#)b(0) )— (670)2]/¢¢
plotted versus (b7b)/g.

o

o
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TaBre IV. Ten lowest eigenvalues: phase and amplitude noise.

P Aiy A1 A1 A Ass A A1 A7 Ass Ao
—10 10.376 32.858 57.133 82.994 110.293 138.918 168.778 199.798 231.918 265.508
— 2 3.0840 12.889 25.219  39.593 55.721 73.408 92.511 112.292 134.556 157.337
-1 2.3316 11.008 22.166  35.381 50.359 66.905 84.874 104.157 124.664 146.323

0 1.668 9.400 19.468 31.591 45.480 60.939 77.823 96.021 115.447 136.026
1 1.1206 8.1331 17.186  28.284 41.143 55.568 71.416 88.577 106.963 126.502
2 0.7132 7.299 15.392 25.525 37.411 50.855 65.716 81.885 99.274 117.813
10 0.10212 19.237 27.687 35.064 41.062 47.270 55.227 64.658 75.324 87.111

width at half power. See, for example, Figs. 2 and 3
for the spectra S,(w) and S,(w) at threshold (p=0).

To show how these spectra vary with power output,
at low frequencies, we show S,(w) and S.(w) at w=0
in Figs. 4 and 5 plotted against 5 rather than p. We
plot against p because this variable is more directly
accessible to the experimenter than the net pump rate
p. Since 5=1.128 at p=0 (threshold), the abscissa can
be interpreted by the experimentalist to mean

p=1.128 <bTb >/ <bTb >threshold

=1.128 (power out)/(threshold power out). (6.9)

7. EIGENFUNCTION EXPANSION

Since the power spectra were found to be nearly
Lorentzian, the time dependence of the correlation
functions (a¢*(¢)a(0) ) and (a*(0)a*(¢)a(?)a(0) ) must
be dominated by the lowest nonzero eigenvalues of the
equation for &, Eq. (4.6), with A\=1 and \=0, respec-
tively. This suggests that another approach to the
spectra can be made by seeking the eigenfunctions of
the operator [H,— (\2/7?)]:

OR,/0t=[H,— (/) IR,= —M.R.. (7.1)
We assume the same boundary conditions for R, (r)
that we found for G(r, 7)) in Appendix C. From Eq.
(6.7) we can see that the transformation R,(r)=
[P () J"2Q.(r) transforms the above eigenvalue equa-
tion to

(1= )\2)}@”

=—Mn0On (7.2)
Using Eq. (7.2) and Numerov’s method?® of numerical

dZ
{;—»M pr 2= —pt

integration, the first ten eigenfunctions and the corre-
sponding eigenvalues Aj, and Ao, were computed.
These eigenvalues are given in Tables IV and V.

The Hermiticity of the operator in braces { } guar-
antees that its eigenfunctions Q, obey the unweighted
orthogonality?® condition

f " Qu(r) Qur) dr =y, (7.3)
0
If we assume completeness
22 0u(n)Qulr) =8(r—7"), (7.4)

we can expand” the unnormalized conditional prob-
ability R(r, {7, 0;\):
E(r, t] 7, 0;X) P(r0)

= > Ru(r, N Ru(ro, \) exp(—Ayal).  (7.5)

Substituting this expression into our expressions, Eq.
(4.1) and Eq. (4.2), for S,(w) and S.(w) we obtain

Aln © 2
Sp(w) = 4,§,w2+A1m [/ rRa(r, 1)dr],
& AOn © ) 2

Sa(w) = 4§w2+A0n[f ar(r,O)dr], (7.6)

after making use of the reality?® of R,(r, \) and Ay,,.
Note that S,(w) and S,(w) both have peaks at w=0
but that the observed spectrum is really S,(w—awq)
because of the transformation (B4). [ A similar trans-
formation in the laser case is made in QIV (6.12).]
The intensity-fluctuation spectrum remains S, (w).

TaBLe V. Ten lowest nonzero eigenvalues for amplitude fluctuations.

V4 Aoa Ao 2 Ao Ao,u Ao Ao Ao, Ags Ao Ao,10
—10 21.4686 44.8706  69.9541 96.5457 124.516 153.765 184.211 215.786 248.433 282.101
-2 7.87875 18.9482  32.3125 47.5728 64.4872 82.8880 102.6504 123.676 145.887 169.215
-1 6.63585 16.4978  28.6881  42.7910 58.5589 75.8210 94.4508 114.349 135.435 157.643

0 5.62661 14.3627  25.4521  38.4612 53.1393 69.3145 86.8594 105.674 125.679 146.806
1 4.92840 12.6035 22.6637 34.6420 48.2869 63.4268 79.9346 97.7109  116.676 136.762
2 4.63584 11.2857 20.3871  31.3963 44.0638 58.2196 73.7376 90.5198  108.487 127.572
4 5.69759 10.2361  17.6572  26.9004 37.7745 50.1112 63.7894 78.7141 94.8086 112.009
6 9.44989 11.5823 18.0587 25.6136 34.8815 45.5776 57.5878 70.8197 85.1997  100.666
8 14.6507 14.9666  23.6663 28.3892 36.2892 45.3983 55.8580 67.5238 80.3198 94.1834
10 19.1140 19.1235 34.5180 35.3941 44,4958 50.7800 59.7451 69.8125 81.0688 93.3482

2 If our oscillator had been detuned, the eigenfunctions ﬁ,l(r, A) and the eigenvalues Ay, would not have been real. Equation (7.6)
would then be replaced by a shghtly more general equation. [See M. Lax, in Tokyo Summer Lectures in Theoretical Physics, 1966

(W. A. Benjamin, Inc., New York, 1967), Sec. 22.] See also Ref. 17.
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Tasre VIIL. Lowest nonvanishing eigenvalues A,=Ao;,
Ap=A1, appropriate to intensity and phase fluctuations, re-
spectively.

V4 Aq Ap
-10 21.47 10.376
9 19.61 9.412
-8 17.77 8.456
-7 15.96 7.509
— 6 14.19 6.574
-5 12.48 5.657
— 4 10.84 4.763
-3 9.295 3.901
- 2 7.879 3.084
-1 6.636 2.332
0 5.627 1.668
1 4.928 1.1206
2 4.636 0.7132
3 4.856 0.4489
4 5.698 0.3003
5 7.237 0.2221
6 9.450 0.1780
7 12.08 0.1495
8 14.65 0.1293
9 16.96 0.1141
10 19.11 0.1021

At t=0, Eq. (7.5) reduces to
2 Bu(r, N Rulro, N) =8(r—r0) P(ro),  (1.7)

so that

> /m rR,(r, 1)dr /m 1ol (70, 1) dro
n Yo 0

= /°° r*P (7o) dro=p. (78)
0
Similarly, by adding and subtracting the »=0 term,

| [ n 0| = (- = (a2, (19

Thus, we can rewrite (7.6) in the form

oo}

) =4 3 22 g, (7.10)
n=0 A1,2" T W
& AO,n
Sa(w) =4((8p)2) 20— pom,  (T.11)

n=1 AO.n2+w2

m=[ [t 1>dr]2 /»

| [ a0 o[ /(o @12

are given in Tables VI and VII for a range of values
of p.
The relationships (7.8) and (7.9) guarantee that

ipl,n—:l, iﬁo,n=1.
=0

n=1

where

(7.13)
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In view of (5.4) and (5.5), we see that p1,» and po,a
represent the fractional contribution of the nth mode
to the integrated spectrum of S,(w) and S,(w), re-
spectively.

In the calculation of the power spectra of the preced-
ing section, we found that these spectra were nearly
Lorentzian. One possible explanation is that

P1.4aLp1 0 n>1
P0aKpoy w22 (7.14)

Since these coefficients py,, are all positive, we can get
upper and lower bounds for these spectra:

Spl (‘*’) < Sp(w) < Sp“(w)
Sat(w) < Sa(w) < S (w), (7.15)
where
Spt(w) =p1,64005/ (A +o?), (7.16)
Sat(w) = po,4((Ap) Ao/ (A2+w?),  (7.17)
Ap=A10;  Aa=Ahos (7.18)

Our simpler upper bounds are valid only up to a fre-
quency equal to a geometric mean between the lowest
(nonvanishing) eigenvalue and the next larger eigen-
value:

Spt(w) =4pA,/ (A2+w?), ?<Ajp0A; (7.19)
Sa¥ (“’) =4 ( (AP) 2 )Aa/ (Aa2+"-’2) 5
wZS Ao,le,a. (720)

A good estimate of the width of the spectra S,(w)
is given by A,. A plot of A, versus p is given in Fig. 6,
and a tabulation versus p is given in Table VIII. A
plot of A, versus g is compared with the quasilinear
estimate of the linewidth of S,(w) (discussed in V)
in Fig. 7 and A, is tabulated versus p in Table VIIL.

20

|« — THRESHOLD

F1c. 6. The lower curve is the half-width at half power A, of
the Lorentzian that is a close approximation to the power spec-
trum of phase and amplitude fluctuations in the NRWVP oscilla-
tor versus the dimensionless intensity . For lasers this is approx-
imately the half-width at half-maximum of the one-sided Fourier
transform of (b'(£)5(0)) plotted in dimensionless form A,=
$W,T against the dimensionless number of photons 5, where
p and T are defined in Appendix A. The upper curve is p times
the half-width, which shows the transition in the threshold re-
gion between the value 2 below threshold predicted correctly by
mean value methods and the value 1 above threshold predicted
correctly by the quasilinear approximation.



161

O COMPUTED
X APPROXIMATE

] 1
(o] 1 2 3 4 5 6 7 8 9 10

F1c. 7. Half-width at half power A, of the Lorentzian that is
a close agproximation to the power spectrum of amplitude (in-
tensity) fluctuations in the NRWVP oscillator versus the dimen-
sionless pump parameter p. For lasers this is approximately the
half-width at half maximum of the one-sided Fourier transform
of (dT(0)5T(2)b(£)b(0) )— (b76)? plotted in dimensionless form
Ao=3W.T versus the net pump rate p, where 7 and p are defined
in Appendix A.

A comparison of Sy*(w) with S,(w) demonstrates
close agreement (within 39 at all operating levels.
For amplitude noise similar agreement between .S;*(w)
and S,(w) is obtained except in the region (roughly)
of 2<p<6 where differences as large as 209, were
observed.®

This complexity arises from the asymptotic degener-
acy of the lowest nonzero eigenvalue for amplitude
fluctuations as the pump parameter becomes positive
and infinite.! This degeneracy may be best understood
by considering the analogy to a one-dimensional Schré-

50

40

~N [
o o

POTENTIAL V(r)
=]

-20 1 ! 1 L
[oX] 0.5 10 15 20 25 30 35 4.0
AMPLITUDE, r

Fic. 8. The curves are the potentials for amplitude fluctua-
tions [defined by (7.21)] for the dimensionless pump parameter
# equal to O (threshold of oscillation, no near degeneracies), +6
(height of barrier just above lowest nonzero eigenvalue), and
+10 (two pairs of nearly degenerate eigenvalues). The lines
above each of the outer potential wells give the values of the four
lowest nonzero eigenvalues for the corresponding values of the
pump parameter p in addition to the steady-state (zero) eigen-
value.

3 By comparing [72R,(r, 0)dr, with ((Ap)?) using variationally
selected wave functions, Risken found that the lowest mode, in
the amplitude case, did not supply almost all of the total fluctua-
tion. The work to be described below explains the importance of
the lowest two modes in the region p>2.

3 The existence of this degeneracy was emphasized by W. Lamb,
Jr. (private communication),
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50 T T T T T T T T T
——— EIGENVALUES

BARRIER HEIGHT

PUMP PARAMETER p

F16. 9. The solid curve is the height of the barrier in the po-
tential for amplitude fluctuations plotted versus the dimension-
less pump parameter p for operation above threshold. The dashed
curves are the four lowest nonzero eigenvalues. As the height of
the barrier approaches the lowest nonzero eigenvalue, it becomes
nearly degenerate with the second lowest nonzero eigenvalue, and
similarly for successively higher pairs of eigenvalues.

dinger equation with the potential
V=1r—iprd (AP =D p—tre (120)

For negative p this potential is just a single well, how-
ever for positive p a bump in the well appears, here-
after referred to as the potential barrier. The height
of this barrier is an increasing function of p so that as
p becomes positive and infinite the potential transforms
into two wells. It is well known that the eigenvalues
of a double-well potential are doubly degenerate. We
expect and find that as the height of the barrier ap-
proaches the lowest nonzero eigenvalue, this eigenvalue
becomes nearly degenerate. To demonstrate this we
plot in Fig. 8 the potential for p equal to O (threshold,
no near degeneracies), 46 (height of potential barrier
is just above the lowest nonzero eigenvalue), and 410
(lowest-four nonzero eigenvalues are below the height
of the barrier and are nearly pairwise degenerate). The
four lowest nonzero eigenvalues for each value of p are
plotted as horizontal lines above the corresponding
outer wells. In Fig. 9 we plot the height of the barrier

\ PEAK OF POTENTIAL
N BARRIER

Qon(r)FORpP=8,n =1, 2
[e]

-4
-6
-8
-1.0
1 2 3 a
AMPLITUDE, r

F1c. 10. The two lowest amplitude eigenfunctions Qq..(7) for
n=1, 2 of Eq. (7.2) are plotted versus 7 for p=8. This is suffi-
ciently far above threshold for these eigenfunctions to be nearly
degenerate. The wave functions agree to the right of the potential
barrier and are out of phase to the left of the potential barrier,
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F1c. 11. The lowest eigenfunction Qy,0(7) of (7.2) appropriate
to phase fluctuations is plotted versus » for p=—10 (well below
threshold), p=0 (at threshold) and p=10 (well above threshold)

as a function of p and the four lowest nonzero eigen-
values as a function of p. The continuous approach to
near pairwise degeneracy and its correlation with the
height of the barrier is clearly shown by this graph.
It is only the near degeneracy of the lowest nonzero
eigenvalue which is important to us here, since domi-
nant contributions to the power spectrum by the fwo
lowest nonzero eigenvalues will still yield a nearly
Lorentzian power spectrum.

The eigenfunctions Qo (7) for n=1, 2 are shown in
Fig. 10 for p=8 a case in which an appreciable bar-
rier exists. These eigenfunctions agree near the peak
r=(p) 2~ p'/? but are out of phase near the peak
at r=0. After multiplication by [P(r) ]2 to obtain
R.(r, 0) the peak at ()2 is accentuated and that
near »=0 becomes unimportant. This is why the con-
tribution of the =1 and #=2 modes to amplitude
noise becomes nearly equal for large p, as shown in
Table V. For phase noise, we show in Fig. 11 Q;,(7)
for n=0 and p=—10, 0 and 10, i.e., well below, at,
and well above threshold. The peak at (5)Y2 asserts
itself as we move well above threshold.

8. ACCURACY OF COMPUTATIONS

When the power spectra computed by the Green’s-
function method of Sec. 6 were compared to the results
of the eigenfunction method, discrepancies were found.
The differences were of the order of 0.59%, for phase
and amplitude fluctuations and 29, for amplitude fluc-
tuations. By using the same two methods to compute
the (known) power spectra for a harmonic oscillator,
the errors in the Green’s function calculations were
approximately the same as the percentage differences
given above. On the other hand, the eigenfunction
method was accurate to 0.019. These relative accu-
racies could have been anticipated since the numerical
integrations required in the Green’s-function method
introduce greater numerical errors than the moment
integrations of the eigenfunction method. Furthermore,
the larger errors of the Green’s-function calculation of
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the power spectra for amplitude fluctuations, than for
the Green’s-function calculation of the power spectra
for phase and amplitude fluctuations, are a result of the
delicate subtraction of the § function in the former
calculation. The rapid oscillation of the eigenfunctions
with more than ten nodes guarantees that the trun-
cation of the summation in Eq. (7.6) at »=10 intro-
duces a much smaller error than the numerical errors
in the computation of the first ten moments. Thus, we
expect that the errors in the power spectra calculated
by the eigenfunction method are less than one part in
10¢, since the power spectra in the harmonic oscillator
were calculated to this accuracy. The values that we
quoted in Tables IT and III for the power spectra are
those computed by the eigenfunction method.

9. SUMMARY

An examination of Fig. 7 shows that outside the
region —10<p<10 or 0.2<5<10 the quasilinear ap-
proximation A,~(25+4/5) of V (9.16) is an excellent
approximation to the linewidth for intensity fluctua-
tions. In Fig. 6 the curve for A, varies smoothly from
2 below threshold to 1 above threshold. Thus for > 10
(5>10) the phase linewidth A, is adequately approxi-
mated® by the quasilinear result V (4.14), (9.15):

(Ap) @1/, (9.1)

whereas well below threshold (p<—10, 5<0.2) the
phase linewidth is accurately approximated by the
mean-value approximation®

(Ap> MVNZ/T’

of V (7.9) or V (9.15).

Thus we have established that elementary lineariza-
tion methods work for a self-sustained oscillator outside
the threshold region (—10<p<10). Inside the thresh-
old region, Fokker—Planck methods are needed. In Ap-
pendix B, using a circuit model, we have shown that
any well-designed oscillator will be represented to a
good approximation by the rotating-wave Van der Pol
oscillator over a broad region including the threshold
region. Thus, in the only region requiring nonlinear
techniques the problem has been reduced to the normalized
rotating-wave oscillator problem, for which the present
paper supplies detailed, accurate numerical solutions.

A well-designed oscillator is one whose output is
sinusoidal rather than periodic, and whose output is
large compared to typical thermal fluctuations in posi-
tive resistance circuits. In Appendix A we use the
description of a gas laser taken from QXII and show
explicitly that the RWVP description is valid near
threshold. For such an oscillator, the spectrum is nearly
sinusoidal, and the criterion of large output is merely
that the number of photons at threshold be large com-
pared to unity.

# See for example V, QV; Refs. 6, 9.

(9.2)
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APPENDIX A: THE LASER MODEL

In QXII, Lax and Louisell study a model for a maser
in which the Fokker-Planck equation for the associ-
ated classical function P(B, 8*, Ni, Ny, {) which corre-
sponds dynamically to the density matrix of the electro-
magnetic field and atomic population variables. The
Langevin equations for this Fokker-Planck process are
obtained. For a gas laser, the atomic response rates
are fast compared to the photon rates so that the
population variables NV; and N, follow the instantane-
ous value of the radiation field. Thus, an adiabatic
approximation for the population variables yields a
Fokker-Planck equation for the associated classical
function P(B, B* t) which corresponds dynamically
to the density matrix of the electromagnetic field
p(b, b1, 1).

The Langevin equations corresponding to the
P(B, B*, t) Fokker-Planck process are found to have
the form

dB/dt=%(1—ia) B{ —y+r[ (Re+Gs) Jo— (Ri+Gy) J11}
+Gﬁ) (Al)

where « is a measure of the detuning (which we shall
set equal to zero in this paper), Ry=Nwy and Ry=Nwy
are the pump rates into the upper (2) and lower (1)
states, respectively, and

Jz= (Pl—wlg)/A,
Ji=(Te—wa) /A,
A=TTy—wiwan+r (T1+Te—wi—wa)l,

(A2)
I= |8

The radiative rate constant = is such that the rate of
downward transitions are 7 No(I-+1) whereas the rate
of upward transitions are N/ where N, and N; are
the upper and lower state populations and (I)=
{| B8 2)= (number of photons). The nonradiative tran-
sition rate from 1¢=2 is wis. The total decay rate out
of state 1 (or 2) excluding the radiative rate to 2 (or 1)
is Ty (or I'y).

Typical parameters® for a gas laser are I';, T'y~108
sec™l, 7~ (1/10) sec’l. From the quasilinear treatment
of QVII [(6.5)-(6.7)] and Eq. (A18) below we see
that the number of photons at threshold is of order
(T'z/w) 2, The nonlinearity in J; and J, is of the form
(TetnI)™, where

Io= (T Te—wiwer) / (T1+Ta—wie—wa), (A3)

so that near threshold #/<<T. and we may expand J;
and J» keeping terms linear in /. In this region, the
noise sources 7JoGo~(w/T.)Gs and wJ1G1 are entirely
negligible. Our Langevin process then reduces to the
form

dg/di=3(1—ia)By{I—Ro | B 2} +Gs,  (A4)

3 See. D. E. McCumber, Phys. Rev. 141, 306 (1966) and Table
1 of QVIL
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where
II=(7:) Ry(T1—wie) — Ry (Ta—wa) —1, (A5)
Y Il —wiewn
R _(7r) Ry(T'y—wi2) — Ri(Te—wa1)
o=(Z
9% Il —wigwa
I+ Te—we—
X(W( 1+ Te—wie w21)) (A6)
e —wiswn
and _ _
(Gs(2) *Gp(u) y=2Dp 3 (t—u), (A7)
ZDB *B ='yﬁ+1r]\—72
_ Ry (14wuRy/T)
L G e Lo AL VRN
L Ty 1— (wiswn/T1I's) (48)
where N, is the adiabatic value of N, and
A=[exp(fiw/kT) —11 (A9)

describes the blackbody noise of the electromagnetic
field at the frequency wp of oscillation.
Under the scale and time transformations

B=¢a, t=Tr, (A10)
our equation can be made to take the canonical form
da/dr=(1—ia)a(p— | a ) +k(r), (All)
¥ k(') y=48(r—7'), (A12)
by choosing
g = (Dgs/vRo)*, (A13)
T=2(yRoDg+s) 2, (A14)
p=37TIL (A15)

All calculations of this paper set a=0, i.e., neglect
detuning. In Table I we find that p=(| ¢ [?)=1.128
when p=0, so that at threshold (g [2)=1.128¢2.

To see the order of magnitude of the above expres-
sions, let wip=ws = R;1=0, so that

= (R2/Rt) -1, (A16)
where
Ri=~To/m (A17)
is the threshold pump rate. Then
g=(T./2x)"?[14 (AR:/ Ra) I, (A18)
p=28[1+(ARy/R) T'[1— (R/R) . ~ (A19)

Thus we see that the spectrum associated with
(*()5(0) ) and the intensity spectrum associated
with (b7(0)d7(£)5(£)b(0) Y)— (b'd)? are, aside from scal-
ing factors (£ and #, respectively) just the classical
spectra associated with (a*(#)a(0) ) and (r(#)p(0) )—
(p)?, respectively. Moreover, one can avoid the use of
(A15 (A19) if one plots not against pump rate but
against 5=1.128(5%0)/(b%0 s, i.e., against the number
of photons relative to the number at threshold.
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To assess the accuracy of our expansion of J; and
Jo to linear terms, we compare the ratio of the first
neglected terms to the first retained term:

(7I/Te)*/ (xl/Te) =wl/T~p/ (28).

Since p is of order unity in the threshold region, we see
that the first neglected term has relative importance
1/£2~1/(number of photons at threshold). In a well-
designed laser, the number of photons at threshold is
large (10% or 10%) and the neglected terms are un-
important.

APPENDIX B: THE CIRCUIT MODEL

We review here a general model of a self-sustained
oscillator, and examine the reduction of its equations
of motion to the Langevin equation for the normalized
rotating-wave Van der Pol (NRWVP) oscillator.3
While this approach is motivated by the study of laser
noise by Lax and Louisell, it is to be viewed as a study
of the extent to which the noise analysis of this paper
may be applied to other self-sustained oscillators. Spe-
cifically, if the equation of motion of a self-sustained
oscillator is of the type studied below, with suitable
scaling parameters this paper gives the power spectra
of the fluctuations in that oscillator for operation near
the threshold of oscillation. We will find that the basis
for this generality is the relative narrowness of the
threshold region, which is analogous to a phase transi-
tion.

Let us consider an oscillator that possesses no react-
ance other than that associated with a tuned circuit,
but which contains a nonlinear resistance® which is a
function of a control parameter D. Using the standard
notation for the circuit parameters, the equation of
motion is

L(dI/dt) +CQ+R(D)I=e(t), (B1)

where ¢(f) is a fluctuating voltage source assumed to
have the following properties:

(1) e(#) is a Gaussian random variable of mean
zero, i.e., {e(t) )=0.
(2) The power spectrum of e(?),

Red f (et (1) e(0) Yoiotdt,

is approximately independent of w for | w—wo| S1/A,
where A is a characteristic decay time of the circuit.
We must now examine R(D). The control parameter
could depend upon the history of the circuit. While
this case is common (e.g., solid-state lasers), we shall
treat here only those oscillators for which an adiabatic

3 See Vand Ref. 17,

% The reactance and the frequency dependence of the resistance
(omitted here) were shown in V (3.22) to have the sole effect of
introducing a detuning parameter [ the « in (A.11) ] which couples
amplitude and phase fluctuations. Since the numerical work in
this paper omits detuning, we can start directly with the Eq.
(B.1) rather than the more general V (3,13),
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approximation may be made which will allow us to
express D in terms of the instantaneous excitation of
the circuit.?® Thus,

RLD(8) J=R[Q(1), I(1) ]. (B2)

For a high-Q circuit the harmonic content of the
output may be neglected. In order to identify this
harmonic content we introduce complex amplitudes a
and ¢*. By analogy with the definition of the creation
and annihilation operators of the electromagnetic field,
we define ¢ and ¢* to be

o=I—iwQ;  a*=I+iwQ, (B3)

where wg is the resonant frequency of the circuit. In
the absence of fluctuations, ¢ would contain only the
negative frequency —wo, and a* would contain only
the positive frequency —+wo. The introduction of fluc-
tuations smears out the power spectra of ¢ and a*
about —w and —-wy, respectively. We seek a “pure-
spectrum’ solution of the form

a*=A% exp(+iwet), (B4)

where 4 and A* are to be slowly-varying functions of
time. We can now expand R(Q, I)I as a polynomial in
a and a* and replace ¢ by A4 exp(—iwi) and ¢* by
A* exp(iwt) to get

a=A exp(—iwt);

o2

R(Q, DI=% 2 [Ru(|a ) (A*)™ exp(—imcl)

+R.(|al?)*A" exp(inwot) ].

We see from the equation of motion for the circuit Eq.
(B1) that 4 and A* will be slowly varying only if we
neglect terms containing exp(—inwi) and exp(imwot)
for n>2. Thus, the harmonic content of the output is
neglected by taking®

R(Q, DI=iRi( | a ) (a+a*)=R(|a )1, (B6)

where R;( | a |?) is required to be real by the constraint
that R(Q, I)I contains no reactive part.

The equation of motion may be further simplified
by restricting our attention to the region of operation
near threshold. If we make a Taylor-series expansion
of the nonlinear resistance about the operating point
po [see, e.g., V (8.19)] where p= | a |2 and neglect all
second-order and higher-order terms, we obtain

R(p)=2R(po) +[3R(p0) /3po](p— po) = Rop—1I,

where
Ry=[3R(r0)/9p5];

(BS)

(B7)

H=P0[3R(F0)/aﬁo]_R(Po) .
(B8)

3 Qur results will not depend on the adiabatic approximation,
since, in the vicinity of threshold, amplitude and phase fluctua-
tions become slow, so that D will in general be able to follow
them instantaneously.

3 The choice R( | @ [?)I is equivalent to assuming that the non-
linearity depends primarily on the energy stored in the circuit,
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In order to make the rotating-wave approximation,
we rewrite the equation of motion in terms of the com-
plex variables ¢ and a*:

da/di+iwa+(2L) " R(p)a= (2L)R(p) a*+Le(?).
(B9)

Since @ contains only frequency components centered
about —wo, and ¢* appears as a driving term which
contains frequency components centered about —-wp,
we can neglect the term in ¢* for a sufficiently high Q
circuit. Therefore, we neglect the coupling between @
and ¢* by neglecting the term in a* of the above
equation and the term in @ of the complex conjugate
equation. This “rotating-wave approximation” must
in fact be made if we wish the solution to have no
harmonic content in the absence of noise.

Substituting our linear approximation for R(p) and
introducing 4 =x—1y, we obtain Langevin equations
in the variables x and y for the rotating-wave Van der
Pol (RWVP) oscillator:

dx/dt=—[ Ry(x*+v?) =11 Jx/2L+F,

dy/dt=—[Ro(a*+y*) —I]y/2L+F,, (B10)

where®

F,(#) = Le(f) coswyt; Fy()=—L"(?) sinw.

(B11)

As for the laser treated in Appendix A, we can
introduce a scaling transformation to dimensionless
variables:

t=Tt. (B12)

The scaling can be chosen so that only one parameter
# remains in the Langevin equations. This is a measure
of the negative resistance in the circuit. By analogy
with the laser, it is called the pump parameter. In V
(Sec. 9) it is shown that the desired choice for ¢ and
T is

£=[(¢)w/2LR]";  T=4L8/(")u, (B13)

where (e?) ., is the power spectrum of the noise source
e(t) evaluated at the resonant frequency. With this
transformation, we obtain the NRWVP oscillator
Langevin equations given in Egs. (2.1) and (2.2),
where we have dropped the primes. The pump param-
eter p is defined to be II/£, and the new Langevin
forces are

’
a=ta,

Fz,=(T/£)Fa:)

and similarly for F,/.

(B14)

3 Note that the noise sources of (B.11) are those of a non-
stationary process. Over a time interval A>>we™! this nonstation-
ary process can be replaced, to an excellent approximation, by a
stationary process as discussed in V, Sec. 5. The most relevant
portion of the argument is repeated here. The random forces
F, and F, of (2.1) and (2.2) are those of the “reduced” stationary
process whereas those of (B.11) are appropriate to the original
process.
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We are now in a position to treat the case where
the noise source ¢(?) is not exactly white, i.e., the noise
source is not exactly delta correlated. We anticipate
that if the power spectrum of the noise source e(%) is
a slowly-varying function of frequency, a Markoffian
description is approximately valid. We must, therefore,
determine the diffusion coefficients. To do this, we
calculate Ax=x({+Af) —x(¢) in the limit of Af much
less than the relaxation time, 1/A, of the circuit with
no negative resistance. Thus, following the iterative
procedure of Sec. 2, the correlation of the Langevin
forces enters only in the calculation of the second-order
diffusion coefficients. For example,

((Ax)2)= /,HM dsftw ds'(Fo(s) Fa(s') ). (B1S)

Substituting our definition for F, in terms of the noise
source e(#), Eq. (B11), and introducing the power
spectrum (e2),, of e(¢), we obtain

) 1 fo t+AL t+AL
(= [* do@. [ as [ ay
’L2 —00 t t
X exp[iw(s—s") T3 {cos[wo(s—s") J4cos[wo(s+s") 1}.
(B16)
As shown in V (4.10) and V (4.11), the rapidly oscillat-
ing term cos[wo(s-+s’)] yields a negligible contribution
if we choose At large compared to the period of the
oscillation, i.e., woA>1. With this Af the first term
yields

((Ax)2) =zl5 f_z dw(€?) o {SlnT(f :ij;:;c;) At]
sin?[ 4 (w—wo) Af]
+ (w—w0)? } (B17)

We see that if we can choose a Af such that (w) <K
AtKA™! and if the spectrum (e?), is nearly constant
for frequencies within A of the resonant frequency,
then the term in the brackets { } of Eq. (B17) may
be replaced by

{ }=3rA 8 (0+two) +8(w—wo) ], (B13)
and we obtain
Dyo={(A%) 2)/ 208 = (%) oo/ 4 L2 (B19)

By similar methods, discussed in V, we obtain D, =D,
and D,,=0. These are exactly the results that we would
have obtained if we had assumed a pure white-noise
source with a power spectrum (e?).,. This white noise
value (B19) is to be expected since we are exciting a
resonant circuit so that only the frequency components
of the noise source within the natural bandwidth A of
the resonant frequency will be important in exciting
the circuit. Thus, if the power spectrum of the noise
source is approximately constant over that range of
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frequencies, it must be a good approximation to re-
place our noise source by white noise with a constant
power spectrum equal to the real noise source power
spectrum evaluated at the resonant frequency.

From these diffusion coefficients we see that the
Langevin forces for the “reduced”®® NRWVP oscillator
have just those correlations given in Eq. (2.3).

To see the generality of this procedure, we return
to the truncated power-series expansion of Eq. (B7).
The next term in the expansion would be the second-
derivative term. The ratio of the second-derivative
term to the first-derivative term is

(p—p0) [3°R(p0) /3p®]/[OR(p0) /dral-

In general, our nonlinear resistance has a form

R(p) =Kf(p/p1), (B21)

where p; is a measure of the range of variation in p
required to produce an appreciable change in R(p),
and f(x), f'(x) and f”(x) are all of order unity. Our
error is then of order

(p=p0)/ 1= (4p) /pr~[{(Ap)2) ]/ pr=pn/p1, (B22)

where p, is a noise fluctuation in p. In a well-designed
oscillator, the typical operating level, which is of order
p1, is made large compared to the noise p, .Thus the
error due to neglecting second-derivative terms, p,/pi,
will usually be small.

(B20)

APPENDIX C: THE BOUNDARY CONDITION FOR
G(ry 103 Xy @)

The only condition we have for a second-order equa-
tion is that the probability distribution be normalized.
This implies that we choose the least-singular solution
at =0 and r= . To do this, we must determine the
asymptotic behavior of the two linearly independent
homogeneous solutions to the equation for U (and V)
for small # and for large ». For convenience, we define
the coefficient of # on the right-hand side of Eq. (6.8)
to be

== 3 (pr') + Qi) —p—iw+ (1-40) /4.

(C1)
For small », we may approximate g by

g2 — p—iwt (1—402) /42, (C2)
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With this approximation for ¢, the equation for #, Eq.
(6.8), may be put into the form of Bessel’s equation
by the following transformations. We first transform
to a new dependent variable

T=u/r
The equation for T is
(BT /dr) +r(dT/dr) +(—p—iw— (N2/r2)) T=0.
(C4)

If we now scale the independent variable # by the
following transformation

(C3)

z2=Pr, (C5)

where
B=(p*+w?)* exp[ 3 tan~(w/p) ]

we obtain Bessel’s equation of order . Thus, the two
linearly independent solutions for a small 7 are

Ur=r/\(Br);  Us=rT\(Br).

(Co)

(C7)

For phase and amplitude fluctuations (A=1), we find
that one solution, Uy, goes to zero and the other solu-
tion U, goes to a finite, nonzero constant as » goes to
zero. For amplitude fluctuations, (A=0), both U; and
U. go to zero as 7 goes to zero. In both cases we take
the least-singular solution, namely U;. For phase and
amplitude fluctuations this is equivalent to assuming
that the probability distribution in rectangular coordi-
nates,  and v, is finite at the origin. For amplitude
fluctuations, this is equivalent to assuming that the
probability distribution in the amplitude-squared co-
ordinate p is finite at the origin.
For large 7, the WKB approximation is valid:

) =L e [+ [ [ 10 | (co

We take the least-singular solution »_(r). This is con-
sistent with our detailed-balance condition in Sec. 5.

Since a similar choice of boundary conditions is nec-
essary for the harmonic oscillator, our ability to calcu-
late the (known) power spectra for the harmonic
oscillator using the same method (and machine pro-
gram) confirms the validity of our choice of boundary
conditions.



