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Because of the relative narrowness of the threshold region, a general model for spectrally pure self-
sustained oscillators (both classical and quantum, including gas lasers) can be reduced, in the threshold
region, to a rotating-wave Van der Pol (RWVP) oscillator. By a scaling transformation, we reduce to the
normalized RWVP oscillator which contains only one dimensionless parameter, a net pump rate p, which
determines the operating point. The power spectra of phase and amplitude fluctuations and of amplitude
(intensity) fluctuations in the normalized RWVP oscillator near threshold are calculated "exactly" by
numerical Fokker-Planck methods. Using the appropriate scaling transformation, our results yield these
power spectra for any oscillator of this general type. In particular, for gas lasers our results yield the one-
sided Fourier transform of (bt(t)b(0) ) (the spectrum) and of (b t(0) b(tt) b(t)b(0) )—(b"b)' (the intensity
spectrum), where bt and b are the creation and destruction operators for the radiation field. Except for
intensity fluctuations just above threshold, the power spectra were found to be nearly Lorentzian, with
half-widths at half power approximately equal to the lowest nonzero temporal eigenvalue of the Fokker-
Planck equation. For intensity Quctuations above threshold, the second-lowest nonzero eigenvalue was
found to yield a significant contribution to the power spectrum as well as the lowest nonzero eigenvalue.
These two eigenvalues become nearly degenerate for operation well above threshold. Thus the intensity
fluctuation spectrum is Lorentzian below and well above threshold, but more complex in the threshold
region.

1. INTRODUCTION

~

CONSIDERABLE attention has been given recently
~ to the Van der Pol oscillator as a semiclassical

way of describing noise in masers and lasers. ' It has
been shown for the gas laser, and any other laser for
which the atomic rate constants are fast compared to
the photon-decay constants, that the electromagnetic-
Geld operators have a Markman behavior and obey
"Heisenberg" equations of the rotating-wave Van der
Pol form" (RWVP) with quantum-noise sources that
can be calculated from Grst principles. 4

~ The work reported here overlaps appreciably the contents of
a thesis submitted by R. D. H. to the Department of Electrical
Engineering, Massachusetts Institute of Technology in September
1965, in partial fulfillment of the requirements for a Master of
Science degree. Part of this work was previously presented at the
New York meeting of the American Physical Society, Bull. Am.
Phys. Soc. 11, 111 (1966).

f Present address: Physics Department, University of Illinois,
Urbana, Illinois.' The importance of Van der Pol oscillators in describing lasers
and laser noise has been emphasized by a number of authors:
W. Lamb, Jr., Phys. Rev. 134, A1429 (1964); H. A. Haus, J.
Quant. Electron. 1, 179 (1965); C. Freed and H. A. Haus, Appl.
Phys. Letters 6, 85 (1965); Phys. Rev. 141, 287 (1966); J. A.
Armstrong and A. W. Smith, Phys. Rev. Letters 14, 68, 208
(1965); Phys. Letters 16, 38 (1965); Phys. Rev. 140, A155
(1965);H. Risken, Z. Physik 191, 302 (1966).' M. Lax and W. H. Louisell, J. Quant. Electron. 3, 47 (1967).
hereafter referred to as QIX (see Ref. 3).

s QIX stands for the ninth paper in a series of papers on quan-
tum noise by M. Lax: QI: Phys. Rev. 109, 1921 (1958); QII:
129, 2342 (1963); QIII: J. Phys. Chem. Solids 25, 487 (1964);
QIV: Phys. Rev. 145, 110 (1966); QV: in Physics of Quantum
Electronics, edited by P. L. Kelley, B. Lax, and P. E. Tannen-
wald (McGraw-Hill Book Company, Inc. , New York, 1966)
p. 735; QVI: (with D. R. Fredkin) (to be published); QVII:
J. Quant. Electron. 3, 37 (1967); QVIII: H. Cheng and M. Lax
in QNantum Theory of the Solid State, edited by Per-Olav Lowdin
(Academic Press Inc. , New York, 1966), p. 587; QIX: (with
W. H. Louisell), J. Quant. Electron. 3, 47 (1967); QX: Phys.
Rev. 157, 213 (1967); QXI: (to be published); QXII: with W.
H. Louisell (to be pubhshed),

~ See QIV.

With the exception of the density-matrix treatment
of Scully, Stephen and Lamb, ' previous treatments
have made quantum-mechanical calculations of diffu-
sion coefFicients and inserted them into a classical
Fokker-Planck equation. ' Even then, quasilinear ap-
proximations' have usually been used to avoid the
solution of the Fokker-Planck equations that consti-
tute the exact description of the classical random proc-
esses. For operation near the threshold of oscillation,
quasilinear approximations are not valid, and one is
forced to solve the Fokker-Planck equation.

Two different linearization schemes have been in
common use. The mean-value method, ' as explained
in V, deals with the real and imaginary parts of the
GeM as variables and replaces a nonlinear resistance
by a mean value. For a laser, the population difference
is not treated as a fluctuating variable, but replaced
by a mean value. ' In V, we suggested that this method
should be adequate well below threshold, since the

s M. Scully, W. E. Lamb, Jr. , and M. J. Stephen, in Physics of
QNantum Electronics, edited by P. L. Kej.ley, B. Lax, and P. E.
Tannenwald (McGraw-Hill Book Company, Inc. , New York,
1966),p. 759; M. Scully and W. E. Lamb, Jr., Phys. Rev. Letters
16, 853 (1966).

'H. Haken, Z. Physik 190, 327 (1966); H. Sauermann, ibid.
188, 480 (1965); 189, 312 (1966);H. Risken, C. Schmid, and W.
Weidlich, Phys. Letters 20, 489 (1966).' For a general discussion of quasilinear methods see I; for a
quasilinear treatment of seH-sustained oscillators see V, the first
and fifth papers in the series on classica] noise by M. Lax: I:
Rev. Mod. Phys. 32, 25 (1960); II: J. Phys. Chem. Solids 14,
248 (1960); III: Rev. Mod. Phys. 38, 359 (1966); IV: 38, 541
(1966); V: Bull. Am. Phys. Soc. 11, 111 (1966) and Phys. Rev.
160, 290 (1967).

'W. G. Wagner and G. Birnbaum, J. Appl. Phys. 32, 1185
(1961); D. E. McCumber, Phys. Rev. 130, 675 (1962); A. L.
Schawlow and C. H. Townes, ibid. 112, 1940 (1958);J. A. Fleck,
Jr., J. Appl. Phys. 34, 2997 (1963); R. V. Pound, Ann. Phys.
(N. Y.) 1, 24 (1957); M. P. W. Strandberg, Phys. Rev. 106, 617
(1957);J. Weber, Rev. Mod. Phys. 31, 681 (1959);K. H. Wells,
Ann. Phys. (N. Y.) 12, 1 (1961);G. Kemeny, Phys. Rev, 133,
A69 (1964); H. Risken, Z. Physik 180, 150 (1964).
350
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nonlinear term, although crudely treated, is small com-
pared to the linear term which then is dominant in
determining the over-all response. The second lineariza-
tion scheme' used the amplitude and phase of the field
variables, and makes a quasilinear approximation in
the amplitude only. This method used, for example,
by the Haken School, ' and by us' in QV, was recog-
nized' in V to be valid only well above threshold.

The present paper supplies exact numerical solutions
of the Fokker-Planck equation. In the region near
threshold, (power output within a factor of 10 of the
threshold value), we demonstrate that neither lineariza-
tion scheme is sufFiciently accurate. We also demon-
strate our previous conjectures that the mean-value
method is adequate well below threshold, and that the
quasilinear method becomes increasingly accurate well
above threshold. These qualitative conclusions are also
suggested by Risken's" variational treatment of the
lowest eigenfunctions of the Fokker-Planck operator.

The spectrum of our oscillator (for a laser, this is
the Fourier transform of (bt(t) b(0) ), where bt and b

are creation and destruction operators for the harmonic
oscillator describing the field) is shown to be nearly
Lorentzian. Thus the linewidth of this noise spectrum
will be determined, as demonstrated below, primarily
by the lowest eigenvalue h~ (tb for phase) of the Fokker-
Planck operator for the restricted set of eigenfunctions
which vary as exp(ip), that determine the spectrum
of phase @ (and amplitude r=

~
ls

~ ) fluctuations con-
tained in (r(t) expLig(t)]r(0) expL —ip(0) j).

As is well known, the linewidth A„ is inversely pro-
portional to the power. The proportionality constant
obtained by the mean-value method (see for example
the Schawlow-Townes' formula) is twice that obtained
by the quasilinear method. ' Our present numerical re-
sults for A„display the transition from the Schawlow-
Townes formula, below threshold, to the quasilinear
formula above threshold.

The spectrum of intensity (pure amplitude) fluctua-
tions )for a laser this is the Fourier transform of
(bt(0) bt (t) b(t) b(0) )] is also demonstrated to be nearly
Lorentzian except for a region just above threshold. In
the Lorentzian region, the linewidth is determined by
the lowest nonvanishing eigenvalue A, for the phase-
independent solutions of the Fokker-Planck equation.
The quasilinear estimate of this linewidth, as well as A,
display a minimum near threshold in agreement with
experimental measurements of amplitude fluctuations. "

See for example, W. A. Edson, Proc. IRE 48, 1454 (1960);
J. A. Mullen, ibid. 48, 1467 (1960); M. E. Golay, ibid. 48, 1473
(1960};P. Grivet and A. Blaquiere, in Optical Physics (John
Wiley R Sons, Inc. , New York, 1963), p. 69. See also the many
relevant papers in P. I. Kuznetsov, R. I. Stratanovitch, and V.
I. Tikhonov, Non-Linear Transformations of Stochastic Processes
(Pergamon Press, Oxford, England 1965).

'o H. Risken, Z. Physik 191, 302 (1966).
"C.Freed and H. A. Haus, Phys. Rev. 141, 287 {1966);J. A.

Armstrong and A. W. Smith, ibid. 140, A155 (1965); F. T.
Arecchi, Phys. Rev. Letters 15, 912 (1965); F. T. Arecchi, A.
Berne, and P. Bulamacchi, ibid. 16, 32 (1966); W. Martienssen
and F. Spiller, Phys. Rev. 145, 285 (1966).See also Ref. 1.

The basis for our ability to apply the results of a
classical random problem to the laser, which is a quan-
tum random problem, is given in QIX' by Lax and
Louisell, who have set up a dynamical correspondence
between the density matrix of the electromagnetic
field p(b, bt, t) and an associated classical function
p" (p, p*, t)."The correspondence is simply that the
density operator is to be obtained from its associated
classical function by replacing P by ls and P* by bt

obeying the antinormal ordering rule: all b~'s are to be
placed to the right, and all b's are to be placed to the
left. The classical average of any classical function
3f&"'(p, p*, t) of p and p* over the classical probability
distribution pt'&(p, p*, t) corresponds to the quarttuttt
average of the quantum operator M(b, bt, t) obtained
from M&"'(P, P*, t) by replacing P by b and P* by bt

and obeying the normal ordering rule: All bt's are to
be placed to the left, and all li's are to be placed to the
right. (The relation between our ordering procedure
and the classical correspondences, adopted by other
authors are discussed, " "with references, in QIX and
QX.)

In QXII, Lax and Louisell obtain a Fokker —Planck
equation for p'i(P, P*, 1Vt, 1V&, t) where 1V, and 1V s are
populations of the lower and upper laser levels, respec-
tively. "For a laser in which all of the atomic response
rates are fast compared to the photon rates, an adia-
batic approximation for the population variables E~ and
1Vs yields a Fokker-Planck equation for p&'(P, P*, t).
In Appendix A we quote the Langevin process appro-
priate to this Fokker-Planck process. Treatment of the
nonlinearity by an expansion in

~ p ~

is shown in Ap-
pendix A (a) to lead to the Van der Pol oscillator,
(b) to be valid from zero photons up to a number of
photons greatly exceeding the number at threshold.

In Appendix 8 we consider a classical circuit model
of an oscillator to demonstrate that the reduction to

» We have established in QIX that, at any one time, our "classi-
cal" function p&'& (p, p~, t) is identical {aside from a factor s.) to
the P(P} function of Glauber (see Ref. 13), Sudarshan (see
Ref. 14) and Klauder (see Ref. 15). Our procedure is dynamical
in that we calculate P(P, t) using a Fokker-Planck equation de-
scription of the field plus reservoirs rather than using a conjec-
tured steady state P(P) plus free field dynamics (Refs. 13-15).
A demonstration of the full equivalence between averages of
time-ordered, normally-ordered operators in the quantum prob-
lem and ordinary averages in the associated "classical" problem
is established in QXI. See also M. Lax, in Brartdess Sgmmer Irssti
tute in Theoretica/ Physics Lecture Notes (Gordon and Breach,
Science Publishers, Inc. , New York, to be published}, Chap. 11.

'3 R. J. Glauber, Phys. Rev. 130, 2529 (1963);131,2766 (1963).
'4E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963);

Proceedings of the Symposium on Optical &users (John Wiley and
Sons, Inc. , New York 1963), p. 45.

» See also J. R. Klauder, J. Math. Phys. 4, 1055 (1963); 5,
177, 878 (1964) and Phys. Rev. Letters 16, 534 (1966'). For an
excellent review, see L. Mandel and E. Wolf, Rev. Mod. Phys.
37, 231 (1965).

'6 See also M. Lax, in Dynamical Processes in Solid State Optics
(W. A. Benjamin Tnc. , New York, 1967},p. 195. A description
in terms of the field, NI, and N2 is appropriate when the popula-
tion equilibration times are comparable (or slower) than those
of the field. If NI empties rapidly, a simpler description in terms
of p(b, bt, fVs, t) is possible as shown in QX.
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Van der Pol form over a broad region including thresh-
old is valid for nearly all "well-designed" oscillators.
We define a well-designed oscillator to be one whose

output is sinusoidal rather than periodic, and whose

output is large compared to thermal noise in a similar
circuit in which all resistances are positive.

In Appendices A and 3, we show that it is possible
to scale our amplitude variable and the time in such
a way as to eliminate all parameters but a single
dimensionless parameter p. For a laser, P is propor-
tional to the excess of the pump rate over the threshold

pump rate. Our scaled Langevin equations are just
those of the normalized rotating wave Van der Pol
(NRWVP) oscillator equations studied in V r by quasi-
linear methods.

We can, therefore, for a broad class of oscillators
start with the NRWVP-oscillator Langevin equations.
The corresponding Fokker-Planck equation is derived
using the real and imaginary parts of the complex

amplitude of the oscillator as variables. Since we are
interested in phase and amplitude noise, a transforma-
tion to the magnitude and phase of the complex ampli-
tude is made in Sec. 3. In order to reduce the number
of variables in the Fokker-Planck equation, certain
integrals over the phase variable are performed since
it is only these integrals over the probability distribu-
tion which are needed. In Sec. 5 we obtain the steady-
state amplitude probability distribution, which is used
to obtain the dependence of the scaled photon number
(or scaled intensity) p on our dimensionless pump
parameter p. By taking the one-sided Fourier trans-
form of the equation resulting from the phase integrals
over the Fokker-Planck equation, we obtain an ordimary

differential equation for a Green's function whose mo-
ments give directly the power spectra of phase and
amplitude fluctuations and of amplitude (intensity)

fluctuations.

This linear differential equation was numerically
integrated and the power spectra for operation near
threshold were obtained. Appendix C is a discussion
of the boundary conditions used in this numerical inte-
gration.

These power spectra were found to be very nearly
Lorentzian for frequencies less than, and of the order
of, the half-width at half power. This suggested the
usefulness of the usual expansion' of the conditional
probability distribution in the eigenfunctions corre-
sponding to the temporal eigenvalues of the Fokker-
Planck equation, since a nearly Lorentzian power spec-
trum ixnplies that the contribution of the lowest non-
zero eigenvalue is dominant. The half-widths at half
power of these power spectra were found to be given

by the lowest nonzero eigenvalues. We compare the
exact results to what has been called an intelligent
quasilinear approximation in V.

We want to emphasize that our exact results need

2. THE LANGEVIN AND FOKKER-PLANCK
EQUATIONS

Our remarks of the preceding section establish the ap-
propriateness of beginning with the "reduced" Langevin
equations for the normalized rotating-wave Van der Pol
oscillator, V LEq. (9.4) j.'r

dh/dt = [p (x'+y') ]x+—F,(t),

dy/dt =Lp
—(x'+y') jy+&, (t),

(2.1)

(2.2)

where the Langevin forces P, and P„represent Gaussian
white-noise sources with the following moments:

(P,&= (P„)=0,

only be scaled by the scaling factors given in Appendix
A to give the results for a gas laser, and by the scaling
factors in Appendix 8 to give the results for a large
class of oscillators.

The present work divers from that of previous au-

thors in the following respects:

(1) From the direct correspondence between the
density matrix and a classical probability distribution
established in QIX, the quantum mec-ltanicat spectrum
and moments are precisely calculated in terms of the
corresponding classical spectra and moments.

(2) All results and figures shown here were obtained

by numerical integration of the appropriate Fokker-
Planck equations and are esseeti atty exact.

(3) A direct calculation is made of the power spectra
of phase and amplitude Quctuations and of amplitude
(intensity) fiuctuations by Green's-function methods.

(4) The results are checked by eigenfunction meth-
ods. For this latter purpose, numerical computations
were made of the ten lowest nonzero eigenvalues and
their corresponding eigenfunctions. This was done both
for the usual spectrum (phase and amplitude fluctua-

tions) and for intensity fluctuations for values of P
covering the threshold region. Risken'e estimated (by
variational methods only) the lowest eigenvalues Ao

A, in these two series.
(5) The Scully-Lamb procedure~ (even if they per-

formed a time scaling) would retain two parameters
since the discrete photon number e cannot be scaled
without approximation. Our scaling down to a single
parameter p permits numerical solution of differential
equations exploring a one-dimensional parameter space.
The Scully-Lamb procedure, as presently used, must
perform the much greater labor of exploring a two-

parameter space. Moreover, for each point in that
space, they solve not a single second-order diGerential
equation but an X)&X system of simultaneous equa-
tions where T must be large compared to the mean
number of photons.

"See M. Lax, in Brandeis Summer Institute ~e Theoretical
Physics Lectlre Notes (Gordon and Breach Science Publishers
Inc., Neer York, to be published). (2.3)
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Since these Langevin forces are assumed Gaussian"

(Fi(fi) ~ ~ F„(t„)&z=0 for n) 2; (2.4)

where ( )~ denotes a linked average"" and F;(t;) =
F.(f,) or F„(f;).

Because our noise sources are white, this process is
Markoffian and therefore the conditional probability
P(x, y, t

~
xp yp, fp) obeys a generalized Fokker-Planck

equation LIV(5.13)g:

()P co—= 2 (—1)"(~/~a) ":LD-(a, f) P(a, f) 1, (2 5)
Bt

where a=a~, a2 ~ are the set of random variables —in
this case x and y—and the diffusion coeKcients D„are
defined by

I!D„(a,t)

= pm (at)-' f p(a', tpd((a, t) (a' —a) "sa', (2.|p
At~0

where D„has ss (suppressed) subscripts, and: is a short-
hand notation which tells us to multiply corresponding
terms, e.g. , the moment of (ui' —ai)'(as' —as) would be
written Bi~2 and the corresponding term in the Fokker-
Planck equation would be ( —1) (8'/8'ai())as) LDiisP).
The m=1 and m=2 terms correspond to the ordinary
Fokker-Planck equation, and the Gaussian property
of our Langevin forces guarantees that all higher-order
diffusion coefFicients for our process vanish. "

To obtain the first- and second-order diffusion coefB-
cients, "we must write the Langevin equations as inte-
gral equations:

ax=x(f+af) —x(f)
t+b, t

I LP p(s)]x(s)+F (s) }ds (2 ")
t

where p(s) =—
t x(s) ]'+Ly(s) $' and similarly for hy. We

now iterate these integral equations by first replacing
x(s), and y(s) inside the integral by x(t) and y(t),
respectively, yielding the first approximation:

t+LL t

(Ax) =Pp p(t) jx(t) At+— F,(s) ds (2.8)
t

and similarly for (hy) i.

From the definition of the diffusion coeS.cients D„,
Eq. (2.6), we see that hx and Ay need be calculated
to only first order in ht. Care must be exercised, how-
ever, since means of products of the Langevin forces
are singular, hence nominally higher-order terms may
contain a contribution which is 6.rst order in At. To
resolve this question, we must examine

t+/est t+d t t+b, t

dSy ' ' d$22g dSy ' ' dS
t t t

X(F*( )" F.(-)F.( ')" F.( ')& (29)

Since the Langevin forces are Gaussian random vari-
ables

(F,(si) ~ ~ F,(s„)F„(si') ~ ~ ~ F„(s„'))

vanishes if (m+n) is odd and is equal to

(F.(») F.(») )(F.(») F.(ss) & "(F.(s=i') F,(s-') &

+all other pair decornpositions

if (s)s+I) is even. Thus, our term (2.9) vanishes if
(m+ss) is odd and is of order (m+I) /2 in hf if (m+ss)
is even. Hence, only products of two Langevin forces
yield terms which are erst order in At. Thus, in gen-
eral, "we would have to iterate once more to calculate
(dx)s, the contribution to hx of second order, in the
random forces. Because our Eqs. (2.7) have a simple
structure in which the random forces are not multi-
plied by random variables, no such second-order terms
arise ps Therefore, (hx)i and (dy) i are correct to first
order in At, and we can calculate the drift coeScients
A and A„:

D.= ((hx—) i&/ht =$p x' y']x (—2.10—)

D„= ((hy) i&/—i(f=LP —x' —y'jy. (2.11)

We have used the vanishing of (F,) and (F„) which
follows from the definition of Langevin forces. In order
to calculate the diffusion coeScients, D„and D», we
must square (hx) i, which gives us a nominally second-
order expression but contains a product of Langevin
forces of the type mentioned above:

1 ((Ax) i'&

2

)() In Sec. 6 of QIV, the assuinption that the Langevin forces
are Gaussian is shown to be a good approximation for lasers.

'9Linked moments, also known as Thiele semi-invariants or
cumulants (see Ref. 20) are defined by III (6.8) or IV (2.5).
We rewrite the latter in the form

(expfq(s) F(s)ds —1)s=ln(expfq(s) F(s)ds)

and expand both sides in powers of q{s) and compare correspond-
ing terms to obtain the dehnitions of the linked moments of 6rst,
second, third, etc. order. For use in (2.4), we must regard q(s)
as a two-component vector function so that q(s) F(s) =-

q, (s) F (s)+q„(s)F„(s)."R. Kubo, J. Phys. Soc. Japan 17', 1100 (1962).
"See IV, Sec. 3.
"We repeat here, for our process, the method of IV, Sec. 3 for

determI~ing the diffusion coefBcients.

t+b t t+h t
ds ds'(F, (s) F,(s') )=1.

2at

Similarly,

(2.12)

(2.13)

The diffusion coeKcient D,„vanishes as a result of the

» Such products of random variables times forces would have
appeared if we had worked in circular variables r, p instead of
Cartesian variables x, y. Such extra terms appear in a different
way )see the last term of (3.1)g when we transform from rec-
tangular to circular coordinates.
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In order to calculate the spectrum of phase and
amplitude Quctuations

S,( ) =2 f (s~(ps(0) )e 'dt', (4.1)

1((~) (~y) &

D+g
2 ht

j ~At
ds ds'(F, (s) F„(s') )=0.

26t g t
(2.14)

where a=x —iy, and of amplitude (intensity) Quctu-
ations,

All higher-order diGusion coefficients are computed
from ((Ax)) (Ay) P) for m+e) 2, which will be a sum g, (p)) —2 [(a+(0)a+(t) a(t) a(0) ) (a+a)&gt,—'«dt
of terms of the form 00

absence of correlation between the Langevin forces F 4. INTEGRATION OVER THE PHASE VARIABLE
and Ii„:

~+a, ~ ~b, ~

(St) '+"f de. ~ fd.s;f dsi' f ds
t t t

X P'.(.,) "P.(s;)P„(s,') "P„(s„,') )

0&i&m; 0&j&e (2.15)

(4 2)

we must perform an integration over the phases. This
suggests that it is not necessary to compute P, but
only the simpler quantities:

R(r, t (rp, 0; X)

From our discussion of the time integrals, we see that
((Ax)& (Ay)p) is of order ', (m+-e) in t) t for (m+I)
even and of order ~p (m+n+1) for (m+m) odd. Hence,
all higher-order diffusion coefficients vanish, and our
process is a Fokker-Planck process.

Our conclusion is that the conditional probability
P (x, y, t

~
xp, yp, tp) satisfies the following Fokker-Planck

equation:

BP 8 8
L(p *'——y') xPj— —L(p *'—y') yPl- —

at 8$8$
82P O'P

(2.16)

The transformation to polar coordinates a=—x—iy=
re '& is a natural consequence of our interest in ampli-
tude noise as well as fluctuations in (x—iy). To accom-
plish this transformation, we use the transformation
laws for the drift and difI'usion coeKcients given in
Eqs. IV(3.27) and IV(3.28):

a =a (a, t),

D,,' = (Ba /Ban) (aa„'/aa/) D),),

A,' =Ra,'/Bt+(Ba,'/Bap) Ap+(8'a /Ba Ba„)D„„;
(3 1)

and preservation of normalization requires that

where

P(a', t) = JP(a, t), —

J—=det (pja;/Ba, ')

(3.2)

(3.3)

is the Jacobian of the transformation.
Using the above transformation laws, the Fokker-

Planck equation in polar coordinates is found to be

3.TRANSFORMATION TO POLAR COORDINATES

d —
p exp iA —

p Pr, , t rp p 0

(43)
with X=1 for S„(phase) and X=O for 5, (amplitude).
For X=O, 8 will be the conditional probability distribu-
tion of the amplitude r.

The equation satisfied by R may be derived from
the Fokker-Planck equation by recognizing that 8 is
the Fourier transform of P; therefore P may be ex-
pressed as the inverse transform of 8. Substituting
this expression for P into the Fokker-Planck equation
yields

f

dic
B, exp[ —iX(y —yp) $—

Bt

X2
dX exp —iX —

p H„—— 4.4"
r2

where the differential operator H„ is defined to be

B„=8/Br[r' pr r 'j+ (8'/B—r') . ——(4.5)

The inverse transform of this equation yields the de-
sired equation for A.

BA/Bt =H,8 (X'/r') R—
Notice, that by this procedure, we have eliminated

the phase variable from our Fokker-Planck equation.
The new "probability" distribution A(r, t

~
rp tp' X) is

the conditional probability distribution of the ampli-
tude r when X=O and is an unnormalized distribution
for r when P =1.24

5. STEADY-STATE AMPLITUDE PROBABILITY
DISTRIBUTION

The steady-state amplitude probability distribution,
P(r), will be used to compute p=—(r') as a function of

BP 8 82P 1 82P=—[(" pr ~') Pj+ +- . (3.4)— —
Bt Br

'4 See III for a discussion of the usefulness of defining an un-
normalized probability distribution in treating nonlinear MarkoG
processes.
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0= (B/Br) I fr' pr r '—)P+—(B—P/Br) J
= BJ/—Br

If we regard

J=fr' pr r' jP—+(B—P/Br)

(5 1)

(5 2)

as a probability current, then (5.1) describes a conser-
vation of probability. The boundary condition J=O is
a detailed-balance condition which is obeyed by our
process.""With this boundary condition we obtain

P(r) =r exP( —4rr'+sr Pr') r exp( ——,'r'+ ,'pr') dr. -
0

(5.3)

Since the experimenter measures the power output
of the laser (or any other oscillator), we must relate

10

the dimensionless pump parameter p. This functional
dependence, shown in Fig. 1, allows the experilnenter
to determine the value of our pump parameter p for
his oscillator by measuring the power output and using
the appropriate scaling laws. We also use P(r) in
Sec. 6 for the calculation of the power spectra, and in
the eigenfunction expansion of Sec. 7.

As stated in Sec. 4, by setting X=O in Kq. (4.6),
we obtain an equation for the conditional probability
of the amplitude. Using the stationary property

lim P(r, t ) rp, tp) =P(r),
(g—gp)-+m

and taking this limit on both sides of Eq. (4.6), we
obtain an equation for P(r) .

TAnLE I. Mean intensity p= ( I
a I') and total intensity Quctu-

ation ((/1p) ') = (p') —(p) ' for NRWVP oscillator versus net pump
parameter p.

—10
9—8—7—6—5

—3—2—1
0
1
2
3

5
6
7
8
9

10

0.1927006
0.2124018
0.2363771
0.2660998
0.3037539
0.3526810
0.4181610
0.5088015
0.6389659
0.8327063
1.128379
1 ~ 577956
2.225271
3 ' 060490
4.010358
5.001089
6.000070
7.000003
8.000000
9.000000

10.000000

((/1/)')

0.03586023
0.04326977
0.05310890
0.06649266
0.08521009
0.1122112
0.1524975
0.2147167
0.3137907
0.4738940
0.7267611
1.088010
1.498711
1.815462
1.958462
1.994553
1.999583
1.999981
2.000000
2.000000
2.000000

=(*(O) (O))=( &=-1 " S~(/o) do/

2 2' (5 4)

if we use

f
~ exp(io/t) do/

=B(t).
QQ 2r

the power output /o=—(r') to our dimensionless pump
parameter p. Integrating r'P (r), numerically using
(5.3), we obtain p as a function of p in the region
near threshold. "The results are shown in Fig. 1 and
Table I.

The integrated spectrum of phase and amplitude
fluctuations using (4.1) can be written

gp) s- Similarly, the total amplitude noise, using (4.2), can

0 — i I I - I I I I I I

-10 -8 -8 -4 -2 0 2 4 8 8 'l0

NET PUMP RATE, p

FIG. 1. The mean amplitude squared (intensity) p—= ( I
a I2)

for the NRWVP oscillator is plotted as a function of the pump
parameter p. For a laser, p is the normalized mean number of
photons (btb) /P, where P is defined by Eq. (A.13). The solid
curve gives our exact values. The upper dashed curve is the quasi-
linear approximation, which was obtained as usual from (A (//) )~
A((//)) =0 and yields pot, =-', Lp+(p'+g)'"g. Below threshold,
the Gaussian nature of the radiation field suggests (pm)=2(p)l
which yields pug=-,'Lp+(p'+16)'"j, an excellent approximation
below threshold but a poor one above (lower dashed curve).

"In general J need not be zero, and detailed balance is not
obeyed. See IV, Sec. 4 for an example in which 7&0. For further
discussion of detailed balance see III, Sec. 78, and Ref. 17, Chap.
8.

'6 For the relation between time-reversal, detailed balance and
orthogonality, see Ref. 17, Chap. 8.

"The results for /o= (p) were also checked by expressing (//)
in terms of error integrals

00 -1

(// ) p+ 2 //2 egl /4 e /2/2/tt

—pl&2

For p&0, we also have the continued fraction

lpl+

lpl+

Ipl+
I pl+".

Higher moments can be computed directly or by the recursion
formula

(pfL ) p ( m 1)+2(+ 1) (//eM—
)

In particular, (//')=p(//)+2 and ((/1//)')= (//') —(p)' which
govern total amplitude noise are plotted in V, Fig. 5 and QVII,
Fig. 3 and quoted in Table I of this paper.
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TABLE II. Spectrum Sdr (ca) for phase (and amplitude) fluctuations.

Frequency co —10
Pump parameter P—1 0

0
0.25
0.5
1.0
2.0
5.0

10.0
20.0
50.0

100.0

0.07429
0.07425
0.07412
0.07361
0.07163
0.06029
0.03852
0.01576
0.003068
0.0007916

0.8259
0.8205
0.8047
0.7474
0.5816
0.2281
0.07222
0.01943
0.003184
0.0007990

1.420
ie404
1.357
1.199
0.8188
0.2551
0.07438
0.01956
0.003187
0.0007992

2.677
2.618
2.457
1.97i
1.101
0.2723
0.07522
0.01959
0.003188
0.0007992

5.535
5.274
4.619
3.088
1.333
0.2751
0.07460
0.01951
0.003185
0.0007990

12.18
10.85
8, 179
4.128
1.400
0.2636
0.07258
0.01930
0.003178
0.0007986

389.8
367.7
314.4
199.0
80.61
15.62
4.033
1.024
0.172i
0.04870

~ For p=10 the correct frequency is iqth the tabulated frequency.

be written

1 S,(o)) d(p = &(~p)')=—(p') —&p)' (5 5)
2 — 2Ã

The results'r for p and &(Ap)') a,re summarized in
Table I.

6. CALCULATION OF THE POWER SPECTRA

We de6ne U(r) to be the homogeneous solution to
the above equation which satis6es the boundary condi-
tion for G at r =0, and we define V(r) to be the homo-
geneous solution which satisfies the boundary condition
for G at r= po. The solution, G(r, rp, 'A, (d), may be
written in terms of U(r) and V(r):

G(r, rp) =—$U(r) V(rp)/W(rp) j, r&rp

= —$U(rp) V(r)/W(rp) ), r) rp (6.4)
The time integrals in Eq. (4.1) and (4.2) suggest

that we need not compute 8, which obeys a partial
diGerential equation, rather only its one-sided Fourier
transform.

where W(rp) is the Wronskian

W(r) =U(r) V'(r) V(r) U'(r)—
= df r exp( —,'r'+ ', Pr'), - (6.5)

dt e-'"'A(r, t i r„0;X). (6.1)G(r, rp, X, pp) —= where A is a constant. We notice that the Wronskian
is just a constant times the steady-state amplitude
probability distribution P(r) .

The spectra S„(o)) and S,(o)) can now be computed
directly from G(r, rp, X, o)) by the following integra-
tions:

The equation obeyed by G may be obtained by taking
the one-sided Fourier transform of both sides of Eq.
(4.6).

f
88 x'

dt e '"'—= H„, G(r, r(), X—, o—)). (6.2)
0

r' S ( )=dsef drrrrP(rr) f drrG(r, rr; 1, )
0 0

d2G dG, (1—X')+ (r' pr r') —+ 3r' —p+ — —ip) G—
dr dr r2

= —A(r, 0 i rp, 0; X) = t')(r r,)——
dr r —p Gr ro'O, M . 6.6

0
(6 5)

Equation (6.6) displays the subtraction of the t) func-
tion at co =0 in the amplitude spectra, which correspondsof the Green's-function form.

The left-hand side of the above equation may be inte-
grated by parts to give an inhomogeneous ordinary OO

differential equation for G: S,(o)) =4 Re drp(rp' —p) P(rp)
0

7~x,z III. Spectrum S (or) for intensity Quctuations.

Frequency co

Pump parameter P
1 2

0
1.0
2.0
5.0

10.0
15.0
20.0
30.0
50.0

100.0

0.006680
0.006665
0.006622
0.006336
0.005489
0.004489
0.003577
0.002263
0.001041
0.000295

0.1571
0.1546
0.1477
0.1123
0.06079
0.03459
0.02163
0.01048
0.003966
0.001014

0.2791
0.2729
0.2561
0.1792
0.08718
0.04736
0.02902
0.01384
0.005193
0.001323

0.4966
0.4817
0.4421
0.2817
0.1249
0.06578
0.03985
0.01886
0.007050
0.001794

0.8260
0.7945
0.7133
0.4201
0.1763
0.09188
0.05557
0.02631
0.009846
0.002508

l.158
1.110
0.9878
0.5686
0.2395
0.1263
0.07697
0.03673
0.01383
0.003533

1.101
1.075
1.002
0.6956
0.3543
0.2025
0.1284
Oe06354
0.02450
0.006337

0.7122
0.7059
0.6878
0.5847
0.3860
0.2502
0.1692
0.08888
0.03564
0.009409

0.5174
0.5151
0.5084
0.4663
0.3606
0.2627
0.1911
0.1082
0.04573
0.01241

Oe4053
0.4042
0.4010
0.3798
0.3198
0.2534
0.1967
0.1204
0.05408
0.01519
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POWER SPECTRA OF t'e AT QP 0 VS P

2.0

3 1.5
C1.

CA

1,0

0.5

SHOLD 250

200
D

150

100

O
50

I

2.0
I I

4.0 6.0
FREQUENCY cu

I

8.0 10.0
0
0 1 2 3 4 5 6 7 8 9 10

P

FIG. 2. Power spectrum for phase and amplitude fluctuations
S„(au) for the NRWVP oscillator at threshold (p=0). The di-
mensionless frequency eo is given by co=or, ~ T, where T is ob-
tained from Eqs. (A14) or (813).

to the dc component

p2 (y2)2 of (y2(f) y2(0) )
To obtain the U and V' functions, we must numeri-

cally integrate the homogeneous part of the equation
for 6, Eq. (6.3), with X, ce, and p treated as parameters.
In order to use Numerov's metnod" of numerical inte-
gration, the first derivative term of Eq. (6.3) must be
eliminated by the following transformation on U.

U(y) =y"' exp( ——',y'+-', py')N(y) (6.7)

and the same transformation from V(y) to e(y). The
resulting differential equation for se (and v) is

+ —reys+Psry4+ (2—r Ps) ys —P+s(g

(1—4Xs)+, I=0. (6.8)

The question of the power boundary conditions for
Q at r=0 and r=~ now arises. Since P must be

PxG. 4. Height of the power spectrum of phase and amplitude
fluctuations S„(or=0) in the NRWVP oscillator versus the mean
intensity P. For lasers this is the normalized maximum of the one-
sided Fourier transform of (bt(e)b(0) ) plotted versus (btb)/fe,
where (btb) is the mean number of photons and the scaling
parameter P is dehned in Appendix A.

normalized, it must go to zero as r goes to ininity.
This is the only boundary condition we have for a
second-order equation. Another boundary condition
must somehow be imposed at r=0. A detailed discus-
sion of the choice of boundary conditions may be
found in Appendix C. The results of that appendix
are that the least singular solution at r=0 is to be
taken for U(y), and the exponentially decaying %KB
approximation for large r is used to start the numerical
integration for t/'.

The power spectrum of phase and amplitude Quctu-
ations S„(~) was computed for the pump parameter

p equal to —10, —2, —1, 0, 1, 2, and 10. See Table II.
The power spectrum of amplitude fluctuations S,(co)

was computed for p equal to —10, —2, —1, 0, 1, 2, 4,
6, 8, and 10. See Table III. %hen compared to a least-
squares 6t using a single Lorentzian with adjustable
height and width, the power spectra were found to be
nearly Lorentzian, with deviations only far out in the
wings, i.e., for frequencies large compared to the half-

0.5

0.4
TENSITY

SHOLO

0.5
3
C$

CA 0.2

0.1

5.0
l

10.0 15.0 20.0
FREQUENCY M

l 1

25.0 50.0

Fro. 3. Power spectrum for amplitude (intensity) fluctuations
So(&o) for the NRWVP oscillator at threshold (p=0).

~SA review of this method Inay be found in D. R. Hartree,
Nsssaeyeeol ANofyses (Oxford University Press, England 1958),
Sec. f.23.

1.4
s
3

1.2

IO 1,0-
I

o.e
0
~~0.8—
tK

+~ 0.4—
O.
Ol

a: 0.2-
O

2 3 40 I 5 B 7

P
Fro. $. Height of the power spectrum of amplitude (intensity)

fluctuations S (co=0) for the NRWVP oscillator is plotted versus
the mean intensity p. For lasers this is the maximum of the one-
sided Fourier transform of P (bt (0)bt (t) b (1)b (0) )—(btb )'7/$4
plotted versus (btb )/1st
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TABL,E IV. Ten lowest eigenvalues: phase and amplitude noise.

—10—2—1
0

2
10

A],o

10.376
3.0840
2.3316
1.668
1.1206
0.7132
0.10212

32.858
12.889
11.008
9.400
8.1331
7.299

19,237

312

57.133
25.219
22. 166
19.468
17.186
15.392
27.687

A1 3

82.994
39.593
35.381
31.591
28.284
25. 525
35.064

110.293
55.721
50.359
45.480
41.143
37.411
41.062

~1,5

138.918
73.408
66.905
60 ' 939
55.568
50.855
47.270

A16

168.778
92.511
84.874
77.823
71.416
65.716
55.227

h.1 7

199.798
112.292
104.157
96.021
88.577
81.885
64.658

h.1 8

231.918
134.556
124.664
115.447
106.963
99.274
75.324

A1 g

265.508
157.337
146.323
136.026
126.502
117.813
87.111

width at half power. See, for example, Figs. 2 and 3
for the spectra S„(&p) and S,(cp) at threshold (p=O).

To show how these spectra vary with power output,
at low frequencies, we show S„(cp) and S (&p) at cp=0
in Figs. 4 and 5 plotted against p rather than p. We
plot against p because this variable is more directly
accessible to the experimenter than the net pump rate
p. Since p=1.128 at p=O (threshold), the abscissa can
be interpreted by the experimentalist to mean

p =1.128 (btb )/ (b"b )sgre, g, )p

=1.128 (power out)/(threshold power out) . (6.9)

7. EIGENFUNCTION EXPANSION

Since the power spectra were found to be nearly
Lorentzian, the time dependence of the correlation
functions (a*(t)a(0) ) and (a*(0)a*(t)a(t) a(0) ) must
be dominated by the lowest nonzero eigenvalues of the
equation for R, Eq. (4.6), with it=1 and it=0, respec-
tively. This suggests that another approach to the
spectra can be made by seeking the eigenfunctions of
the operator [H, (lt'/r') j:—

BR„/Bt= [H„(lt'/r') jR„=—Ag, „R„. (—7.1)

We assume the same boundary conditions for 8„(r)
that we found for G(r, rp) in Appendix C. From Eq.
(6.7) we can see that the transformation 8„(r)=
[P(r) Ji'Q„(r) transforms the above eigenvalue equa-
tion to

I 6 1 (1—4lt')
1rp+ 1prp+ (2 r pp) rp p+ Q4 2 4r'

= —Ag, „Q„. (7.2)

Using Eq. (7.2) and Numerov's method" of numerical

Q (r) Q„(r)dr = b „. (7.3)

If we assume completeness

Z Q-(r) Q-(") =b(» —"), (7 4)

we can expand'~ the unnormalized conditional prob-
ability R(r, t

t rp, 0; lt):
8(r, t

( rp, 0; lt) P(rp)

= g R (r, l~)R„(rp, lt) exp( —Ay, „t). (7.5)

Substituting this expression into our expressions, Eq.
(4.1) and Eq. (4.2), for S„(cp) and S,(cp) we obtain

S„(cp) =4 Q
n pep +At,=n

OO 2

rB„(r, 1)dr

S,(cp) =4 Q
n,=l cp +Ap, m

00 2

r'8 (r, 0)dr, (7.6)

after making use of the reality" of R„(r, X) and Az, .
Note that S„(cp) and S (pp) both have peaks at cp=o
but that the observed spectrum is really S„(cp—cpp)

because of the transformation (B4) . [A similar trans-
formation in the laser case is made in QIV (6.12).)
The intensity-fluctuation spectrum remains S,(cp) .

integration, the erst ten eigenfunctions and the corre-
sponding eigenvalues A~,„and Ao,„were computed.
These eigenvalues are given in Tables IV and V.

The Hermiticity of the operator in braces I I guar-
antees that its eigenfunctions Q„obey the unweighted
orthogonality" condition

TABLE V. Ten lowest nonzero eigenvalues for amplitude fluctuations.

—10—2
1
0
1
2
4
6
8

10

&01

21.4686
7.87875
6.63585
5.62661
4.92840
4.63584
5.69759
9.44989

14.6507
19.1140

AO2

44.8706
18.9482
16.4978
14.3627
12.6035
11.2857
10.2361
11.5823
14.9666
19.1235

~0,8

69.9541
32.3125
28.6881
25.4521
22.6637
20.3871
17.6572
18.0587
23.6663
34.5180

Ao4

96.5457
47. 5728
42. 7910
38.4612
34.6420
31.3963
26.9004
25. 6136
28.3892
35.3941

h.o 5

124.516
64.4872
58.5589
53.1393
48.2869
44 ' 0638
37.7745
34.8815
36.2892
44.4958

Ao, 6

153.765
82.8880
75 ' 8210
69.3145
63.4268
58.2196
50. 1112
45.5776
45.3983
50.7800

AO7

184.211
102.6504
94.4508
86.8594
79.9346
73.7376
63.7894
57.5878
55.8580
59.7451

~o,s

215.786
123.676
114.349
105.674
97.7109
90.5198
78.7141
70.8197
67.5238
69.8125

hog

248. 433
145.887
135.435
125.679
116.676
108.487
94.8086
85. 1997
80.3198
81.0688

~0,10

282. 101
169.215
157.643
146.806
136.762
127.572
112.009
100.666
94. 1834
93.3982

A"If our oscillator had been detuned, the eigenfunctions R„(r, ) ) and the eigenvalues A~, would not have been real. Equation (7.6)
would then be replaced by a slightly more general equation. /See M. Lax, in Tokyo Sesaraer Lectures isc Theoretical Physics, lp66
{W.A. Benjamin, Inc. , New York, 1967), Sec. 22.j See also Rei. 17.
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—10—9—8—7—6—5
4—3—2—1
0

2
3
4
5
6
7
8
9

10

21.47
19.61
17.77
15.96
14.19
12.48
10.84
9.295
7.879
6.636
5.627
4.928
4.636
4.856
5.698
7.237
9.450

12.08
14.65
16.96
19.11

10.376
9.412
8.456
7.509
6.574
5.657
4.763
3.901
3.084
2.332
1.668
1.1206
0.7132
0.4489
0.3003
0.2221
0.1780
0.1495
0, 1293
0.1141
0.1021

TABLE VIII. Lowest nonvanishing eigenvalues A, =Ao, &,

A„=A10 appropriate to intensity and phase fluctuations, re-
spectively.

In view of (5.4) and (5.5), we see that pr, „and po,„
represent the fractional contribution of the nth mode
to the integrated spectrum of S„(co) and S, (oo), re-

spectively.
In the calculation of the power spectra of the preced-

ing section, we found that these spectra were nearly
I.orentzian. One possible explanation is that

pi, «pi, o

po,a«po, x (7.14)

where

S,'(co) & S„(a))& S~"(co)

S.'(I) (S,((o) (S. ((v),

S„'(oo) =—p),o4pA„/(A„'+oo'),

(7.15)

(7.16)

S '( )
—=po, 4((hp)')A, /(A. '+ '), (7.17)

Since these coefIicients px,„are all positive, we can get
upper and lower bounds for these spectra:

h.y =Al, 0' A =A.0,l. (7.18)

At t=0, Eq. (7.5) reduces to

Q 8„(r, X)8„(ro, X) =8(r—ro)1 (ro), (7.7)

Our simpler upper bounds are valid only up to a fre-
quency equal to a geometric mean between the lowest
(nonvanishing) eigenvalue and the next larger eigen-
value:

so that S„"(oo) =4ph.„/(A„'+oP), Or'& h.l,PA.l, l (7.19)

r8„(r, 1)dr roR„(ro, 1)dr,
n 0

rooP(ro) dro= p. (7.8)

Similarly, by adding and subtracting the e=o term,

r'8„(r 0) dr = (p') —p'= ((dp)'). (7.9)
n&0 0

Thus, we can rewrite (7.6) in the form

(o'& Ao, ~ho, o. (7.20)

A good estimate of the width of the spectra S„(co)
is given by A„. A plot of A„versus p is given in Fig. 6,
and a tabulation versus p is given in Table VIII. A
plot of A, versus p is compared with the quasilinear
estimate of the linewidth of S,(~) (discussed in V)
in Fig. 7 and A, is tabulated versus p in Table VIII.

Al,„
So(~) =4p Q, '",pi...

n-o Al, m

(7.10) 10

where

S.(«) =4((~p)') Q,'",po. ,
1 Aon +~ (7.11) Ap b —1.4 gfA&

—1.2

pl, m

0

r8„(r, 1)dr 0 1 2 3 4 5 e 7 S 9 10
P

po, n

0

r'8 (r, 0)dr ((Ap)') (7 12)

P p, ,„=1,
n=O

(7.13)

are given in Tables VI and VII for a range of values
of p.

The relationships (7.8) and (7.9) guarantee that

FlG. 6. The lower curve is the half-width at half power A.„of
the Lorentzian that is a close approximation to the power spec-
trum of phase and amplitude fluctuations in the NRWVP oscilla-
tor versus the dimensionless intensity p. For lasers this is approx-
imately the half-width at half-maximum of the one-sided Fourier
transform of (b'(t)b(0) ) plotted in dimensionless form A~=
)lV„T against the dimensionless number of photons p, where
p and T are de6ned in Appendix A. The upper curve is p times
the half-width, which shows the transition in the threshold re-
gion between the value 2 below threshold predicted correctly by
mean value methods and the value 1 above threshold predicted
correctly by the quasilinear approximation.
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FIG. 11. The lowest eigenfunction Q1,0(r') of (7.2) appropriate
to phase fIuctuations is plotted versus r for p= —10 (well below
threshold), p=0 (at threshold) and p=10 (well above threshold)

1.2

1.0

8. ACCURACY OF COMPUTATIONS

When the power spectra computed by the Green's-
function method of Sec. 6 were compared to the results
of the eigenfunction method, discrepancies were found.
The differences were of the order of 0.5%%uo for phase
and amplitude fluctuations and 2%%uo for amplitude fluc-
tuations. Sy using the same two methods to compute
the (known) power spectra for a harmonic oscillator,
the errors in the Green's function calculations were
approximately the same as the percentage differences
given above. On the other hand, the eigenfunction
method was accurate to 0.01%. These relative accu-
racies could have been anticipated since the numerical
integrations required in the Green's-function method
introduce greater numerical errors than the moment
integrations of the eigenfunction method. Furthermore,
the larger errors of the Green's-function calculation of

as a function of p and the four lowest nonzero eigen-
values as a function of p. The continuous approach to
near pairwise degeneracy and its correlation with the
height of the barrier is clearly shown by this graph.
It is only the near degeneracy of the lowest nonzero
eigenvalue which is important to us here, since domi-
nant contributions to the power spectrum by the tmo

lowest nonzero eigenvalues will still yield a nearly
Lorentzian power spectrum.

The eigenfunctions Qs „(r) for n=1, 2 are shown in
Fig. 10 for p=g a, case in which an appreciable bar-
rier exists. These eigenfunctions agree near the peak
r~(p)'t'~p't' but are out of phase near the peak
at r=0 After .multiplication by PP(r)]'t' to obtain
A„(r, 0) the peak at (p)"' is accentuated and that
near r=0 becomes unimportant. This is why the con-
tribution of the m=1 and v=2 modes to amplitude
noise becomes nearly equal for large p, as shown in
Table V. For pha, se noise, we show in Fig. 11 Qt,„(r)
for n=0 and p= —10, 0 and 10, i.e., well below, at,
and well above threshold. The peak at (p)'ts asserts
itself as we move well above threshold.

the power spectra for amplitude fluctuations, than for
the Green's-function calculation of the power spectra
for phase and amplitude fluctuations, are a result of the
delicate subtraction of the 8 function in the former
calculation. The rapid oscillation of the eigenfunctions
with more than ten nodes guarantees that the trun-
cation of the summation in Eq. (7.6) at n=10 intro-
duces a much smaller error than the numerical errors
in the computation of the first ten moments. Thus, we
expect that the errors in the power spectra calculated
by the eigenfunction method are less than one part in
104, since the power spectra in the harmonic oscillator
were calculated to this accuracy. The values that we
quoted in Tables II and III for the power spectra are
those computed by the eigenfunction method.

9. SUMMARY

An examination of Fig. 7 shows that outside the
region —10&p&10 or 0.2&p&10 the quasilinear ap-
proximation A, (2p+4/p) of V (9.16) is an excellent
approximation to the linewidth for intensity fluctua-
tions. In Fig. 6 the curve for pA„varies smoothly from
2 below threshoM to 1 above threshold. Thus for p) 10
(p) 10) the phase linewidth A„ is adequately approxi-
mated" by the quasilinear result V (4.14), (9.15):

(tt.)etc=1/p, (9.1)

whereas well below threshold (p( —10, p(0.2) the
phase linewidth is accurately approximated by the
mean-value approximation"

(Ap) srv~2/p (9 2)

''-See for example V, QV; Refs. 6, 9.

of V (7.9) or V (9.15).
Thus we have established that elementary lineariza-

tion methods work for a self-sustained oscillator outside
the threshold region ( —10&p& 10) . Inside the thresh-
old region, Fokker —Planck methods are needed. In Ap-
pendix 8, using a circuit model, we have shown that
any mell-designed oscillator will be represented to a
good approximation by the rotating-wave Van der Pol
oscillator over a broad region including the threshold
region. Thus, ie the oddly region requirirIg eoelieeur
techniques the proMem has been reduced to the nornsaHsed
rotating wave oscillator -problem, for which the present
paper supplies detaited, accurate nunMricat solutions.

A well-designed oscillator is one whose output is
sinusoidal rather than periodic, and whose output is
large compared to typical thermal fluctuations in posi-
tive resistance circuits. In Appendix A we use the
description of a gas laser taken from QXII and show
explicitly that the RWVP description is valid near
threshold. For such an oscillator, the spectrum is nearly
sinusoidal, and the criterion of large output is merely
that the number of photons at threshold be large com-
pared to unity.
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J,= (r, -w„)/~,

J,= (r,-w„)/~,

rl F2 w12w21+2r (F1+F2 w12 w21) Ii

(A2)

The radiative rate constant m is such that the rate of
downward transitions are 2rX2(I+1) whereas the rate
of upward transitions are xX1I where S2 and X1 are
the upper and lower state populations and (I)=
( ( P i2) = (number of photons). The nonradiative tran-
sition rate from 1~2 is m12. The total decay rate out
of state 1 (or 2) excluding the radiative rate to 2 (or 1)
is F, (or F,).

Typical parameters" for a gas laser are F1, I'2 10'
sec ', 2r (1/10) sec '. From the quasilinear treatment
of QVII L(6.S)—(6.7) j and Eq. (A18) below we see
that the number of photons at threshold is of order
(I"2/2r)"'. The nonlinearity in Ji and J2 is of the form

(F,+2rI) ', Where

rs (rlr2 w12w21) /(F1+F2 w12 w21) i (A3)

so that near threshold mI((F, and we may expand J&

and J2 keeping terms linear in I. In this region, the
noise sources 2r J2G2 (2r/F, )G, and 2r J161 are entirely
negligible. Our Langevin process then reduces to the
folol

dP/dt = ', (1 i )Py I II -Ro —
i P i'}+Gp,— (A4)

"See. D. E. McCumber, Phys. Rev. 141, 306 (1966) and Table
1 of QVII.

APPENDIX A' THE LASER MODEL

In QXII, Lax and Louisell study a model for a maser
in which the Fokker-Planck equation for the associ-
ated classical function P(p, p*, Ni, N2, t) which corre-
sponds dynamically to the density matrix of the electro-
magnetic field and atomic population variables. The
Langevin equations for this Fokker-Planck process are
obtained. For a gas laser, the atomic response rates
are fast compared to the photon rates so that the
population variables E1 and X2 follow the instantane-
ous value of the radiation Geld. Thus, an adiabatic
approximation for the population variables yields a
I'okker —Planck equation for the associated classical
function P(P, P*, t) which corresponds dynamically
to the density matrix of the electromagnetic Geld

p(b, bt, t).
The Langevin equations corresponding to the

P(P, P*, t) Fokker-Planck process are found to have
the form

dP/dt=2(1 2') pI ——y+2rE(R2+G2) J2—(Ri+Gi) J1J}

+Gp, (A1)

where n is a measure of the detuning (which we shall
set equal to zero in this paper), R2=Xw2o and Ri =own
are the pump rates into the upper (2) and lower (1)
states, respectively, and

where

(2r& R2(F1—w12) —Ri(F2 —w21)II=I —
i

~1~2 ~1221
(AS)

(2r R2(F1—w12) —Ri(I'2 —w21)
R,=i—

~1~2 ~12~21

and

X i, (A6)
2r ( F1+F2—w12 —w21) )

I 1I 2 12~21 )

(Gp(t)*Gp( ) )=2Dp p~(t —)

2Dp. p yn+——2rN2

R2 (1+w21R1/I'1)
=Vn+~ r, 1—(w„w„/r, r,)

'

where E2 is the adiabatic value of N2 and

(A7)

(A8)

da/dr = (1 ia) a—(p 1
a p—) +h(r),

(h*(r) h(r') )=4b(r —r'),
by choosing

8= (Dp*p/VR2) "',

T=2 (yRpDp ep) '12,

p = rj. 'll. —

(A11)

(A12)

(A13)

(A14)

(A15)

All calculations of this paper set a=0, i.e., neglect
detuning. In Table I we find that p= ( i a i2)=1.128
when p=0, so that at threshold ( i P i2) =1.128P.

To see the order of magnitude of the above expres-
sions, let m12=m21=81=0, so that

where
II= (R2/Rg) —1,

R, =yr2/~

(A16)

(A17)

is the threshold pump rate. Then

P = (r,/22r) 'I'L1+ (nR,/R, ) j'I'

p =2pp+ (nR,/R, ) j-1L1—(R,/R, )).
(A18)

(A19)

Thus we see that the spectrum associated with
(bt (t) b (0) ) and the intensity spectrum associated
with (bt (0) bt (t) b(t) b(0) )—(btb)' are, aside from scal-

ing factors (P and $4, respectively) just the classical
spectra associated with (a*(t)a(0) ) and (r (t) p(0) )—
(p)', respectively. Moreover, one can avoid the use of
(A1S (A19) if one plots not against pump rate but
against p=1.128(btb)/(btb), h„ i.e., against the number
of photons relative to the number at threshold.

n =(exp (5(op/h T) —1g
—' (A9)

describes the blackbody noise of the electromagnetic
field at the frequency oro of oscillation.

Under the scale and time transformations

P=)a, t= Tr, (A10)

our equation can be made to take the canonical form



364 R. D. HEMP STEAD AND M. LAX 161

To assess the accuracy of our expansion of J& and
J2 to linear terms, we compare the ratio of the first
neglected terms to the erst retained term:

(orI/P, ) s/(7rI/I', ) =orI/P, p/(2P) .
Since p is of order unity in the threshold region, we see
that the Grst neglected term has relative importance
1/P 1/(number of photons at threshold). In a well-
designed laser, the number of photons at threshold is
large (10' or 104) and the neglected terms are un-
important.

APPENDIX B:THE CIRCUIT MODEL

%e review here a general model of a self-sustained
oscillator, and examine the reduction of its equations
of motion to the Langevin equation for the normalized
rotating-wave Van der Pol (NRWVP) oscillator s4

While this approach is motivated by the study of laser
noise by Lax and Louisell, it is to be viewed as a study
of the extent to which the noise analysis of this paper
may be applied to other self-sustained oscillators. Spe-
cifically, if the equation of motion of a self-sustained
oscillator is of the type studied below, with suitable
scaling parameters this paper gives the power spectra
of the fIuctuations in that oscillator for operation near
the threshold of oscillation. We will find that the basis
for this generality is the relative narrowness of the
threshold region, which is analogous to a phase transi-
tion.

Let us consider an oscillator that possesses no react-
ance other than that associated with a tuned circuit,
but which contains a nonlinear resistance" which is a
function of a control parameter D. Using the standard
notation for the circuit parameters, the equation of
motion is

L(dI/dt) +C 'Q+R(D) I=e(t), (B1)
where e(t) is a fluctuating voltage source assumed to
have the following properties:

(1) e(t) is a Gaussian random variable of mean
zero, i.e., (e(t) )=0.

(2) The power spectru'm of e(t),

Re4 (e*(t)e(0) )e-*'"'dt,

is approximately independent of oo for [ to —too
~

&1/A,
where h. is a characteristic decay time of the circuit.

We must now examine R(D) . The control parameter
could depend upon the history of the circuit. While
this case is common (e.g. , solid-state lasers), we shall
treat here only those oscillators for which an adiabatic

~ See V and Ref. 17.
'~ The reactance and the frequency dependence of the resistance

(omitted here) were shown in V (3.22) to have the sole efI'ect of
introducing a detuning parameter /the n in (A.11)jwhich couples
amplitude and phase Quctuations. Since the numerical work in
this paper omits detuning, we can start directly with the Eq.
(8,1) rather than the more general V (3,1i),

approximation may be made which will allow us to
express D in terms of the instuetuneols excitation of
the circuit. "Thus,

RLD(~) 7—=RLQ(t) I(t) 7 (B2)

For a high-Q circuit the harmonic content of the
output may be neglected. In order to identify this
harmonic content we introduce complex amplitudes a
and u*. By analogy with the definition of the creation
and annihilation operators of the electromagnetic field,
we de6ne a and a~ to be

u =I—i~oQ; u*=I+i&ooQ, (83)
where coo is the resonant frequency of the circuit. In
the absence of fluctuations, a would contain only the
negative frequency —coo, and u* would contain only
the positive frequency +too. The introduction of fluc-
tuations smears out the power spectra of u and a*
about —too and +ooo, respectively. We seek a "pure-
spectrum" solution of the form

u=A exp( itoot); —u*=A* exp(+icosa), (B4)

where A and A* are to be slowly-varying functions of
time. We can now expand R(Q, I)I as a polynomial in
u and u* and replace u by A exp( i&sot) a—nd u* by
A* exp(i&oot) to get

R(Q, I)I= ', Q LR„( )
-u P) (A*)"exp( —ingot)

n=l

+R„( ) u )') *A"exp(i~~st) 7 (BS).

We see from the equation of motion for the circuit Eq.
(B1) that A and A* will be slowly varying only if we
neglect terms containing exp( —ingot) and exp(i@sot)
for m&2. Thus, the harmonic content of the output is
neglected by taking"

R(Q, I)I~-,'Rt(
) u I') (u+u*) =R(

)
u (')I (B6)

where Rt(
~

u ~') is required to be real by the constraint
that R(Q, I)I contains no reactive part.

The equation of motion may be further simplified
by restricting our attention to the region of operation
near threshold. If we make a Taylor-series expansion
of the nonlinear resistance about the operating point
po Lsee, e.g., V (8.19)7 where p—=

I u )' and neglect all
second-order and higher-order terms, we obtain

R(p) =R(po)+L~R(po)/r)po7(p po) =Rop —& —(B&)

where

Ro= E~R(Po) /r)pr 7i ff =PopR(po) /r)&o7 R(Po)~—
(Bs)

'6 Our results will not depend on the adiabatic approximation,
since, in the vicinity of threshold, amplitude and phase Auctua-
tions become slow, so that D will in general be able to follow
them instantaneously.

"The choice 2( I a P) I is equivalent to assuming that the non-
ljnearity depends primarily on the energy stored jn the ctrcgif. ,
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where"

F,(t) =L'e(t) c—ostppt; F„(1)—= L'e(t) sin—tppt.

(811)

As for the laser treated in Appendix A, we can
introduce a scaling transformation to dimensionless
variables:

a=)a', t= Tt'. (812)

The scaling can be chosen so that only one parameter
p remains in the Langevin equations. This is a measure
of the negative resistance in the circuit. By analogy
with the laser, it is called the pump parameter. In V
(Sec. 9) it is shown that the desired choice for $ and
T 1s

3'= [(e') -o/2LRo]"' T'=4LV/(e') - (813)

where (e') „,is the power spectrum of the noise source
e(t) evaluated at the resonant frequency. With this
transformation, we obtain the NRWVP oscillator
Langevin equations given in Eqs. (2.1) and (2.2),
where we have dropped the primes. The pump param-
eter p is defined to be II/p, and the new Langevin
forces are

F,'= ( T/&) F.,
and similarly for Ii„'.

(814)

"Note that the noise sources of (B.11) are those of a non-
stationary process. Over a time interval dt))co0 this nonstation-
ary process can be replaced, to an excellent approximation, by a
stationary process as discussed in V, Sec. 5. The most relevant
portion of the argument is repeated here. The random forces
P, and F„of (2.1) and (2.2) are those of the "reduced" stationary
process whereas those of (B.til are appropriate to the original
process.

In order to make the rotating-wave approximation,
we rewrite the equation of motion in terms of the com-
plex variables a and u*:

da/dt+i(u(p+(2L) 'R(p) a=(2L) 'R(p) a*+L 'e(t).

(89)

Since u contains only frequency components centered
about —coo, and a* appears as a driving term which
contains frequency components centered about +ppp,
we can neglect the term in a* for a suKciently high Q
circuit. Therefore, we neglect the coupling between a
and u~ by neglecting the term in a* of the above
equation and the term in u of the complex conjugate
equation. This "rotating-wave approximation" must
in fact be made if we wish the solution to have no
harmonic content in the absence of noise.

Substituting our linear approximation for R(p) and
introducing 2=x—iy, we obtain Langevin equations
in the variables x and y for the rotating-wave Van der
Pol (RWVP) oscillator:

dx/dt = —[Rp(x'+y') II]x/2L—+F,
dy/dt = —[Rp(x'+y') II)y/2—L+F„, (810)

We are now in a position to treat the case where
the noise source e(t) is not exactly white, i.e., the noise
source is not exactly delta correlated. We anticipate
that if the power spectrum of the noise source e(t) is
a slowly-varying function of frequency, a Marko%an
description is approximately valid. We must, therefore,
determine the diGusion coefficients. To do this, we
calculate Dx= x(t+D—t) x(—t) in the limit of At much
less than the relaxation time, 1/A, of the circuit with
no negative resistance. Thus, following the iterative
procedure of Sec. 2, the correlation of the Langevin
forces enters only in the calculation of the second-order
diffusion coefFicients. For example,

&(») i') = 8$ ds'(F, (s) F,(s') ). (815)

Substituting our definition for Ii, in terms of the noise
source e(1), Eq. (811), and introducing the power
spectrum (e') „ofe(t), we obtain

00

((»)p) =—,
L2

sin'[pr(to+cop) ht]
(G)+Mp)

sinp[pr((o —
ppp) At]

(tp tpp)

We see that if we can choose a At such that (&op)

At«A'and if the sp. ectrum (e') „ is nearly constant
for frequencies within A. of the resonant frequency,
then the term in the brackets { I of Eq. (817) may
be replaced by

I I +pxht/b(pp+pip-)+8(tp —cop)], (818)

and we obtain

D„=((»)P )/2at = (e') „,/4l. '. (819)

By similar methods, discussed in V, we obtain D» ——D„
and D,„=O.These are exactly the results that we wouM
have obtained if we had assumed a pure white-noise
source with a power spectrum (e') „,. This white noise
value (819) is to be expected since we are exciting a
resonant circuit so that only the frequency components
of the noise source within the natural bandwidth A. of
the resonant frequency will be important in exciting
the circuit. Thus, if the power spectrum of the noise
source is approximately constant over that range of

00

((») tp) =—, dtp(e') „ds ds'
L2

)& exp[io& (s—s') ]-', {cos[tpp (s—s') ]+cos[tpp (s+s') ]I .

(816)

As shown in V (4.10) and V (4.11), the rapidly oscillat-
ing term cos[p~p(s+s )] yields a negligible contribution
if we choose At large compared to the period of the
oscillation, i.e., cook)))1. With this ht, the Grst term
yields
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frequencies, it must be a good approximation to re-
place our noise source by white noise with a constant
power spectrum equal to the real noise source power
spectrum evaluated at the resonant frequency

From these diffusion coefBcients we see that the
Langevin forces for the "reduced'"' NRWVP oscillator
have just those correlations given in Eq. (2.3).

To see the generality of this procedure, we return
to the truncated power-series expansion of Eq. (B7).
The next term in the expansion would be the second-
derivative term. The ratio of the second-derivative
term to the first-derivative term is

(p —
po) L~'R( po) /rtpo' j/L~R(po) /it poj (B2O)

T=u/r~t2.

The equation for T is

(d'T/dr') +r '(d T/dr)+( p i—cv —(72/r—') ) T =O.

(C3)

(C4)

If we now scale the independent variable r by the
following transformation

With this approximation for q, the equation for I, Eq.
(6.8), may be put into the form of Bessel's equation
by the following transformations. Ke first transform
to a new dependent variable

In general, our nonlinear resistance has a form

R(p) =&f(p/m), (B21)
where

p= (p'+(u')'" e pxt-,'i tan —'(co/p)]

(C5)

(C6)

where p1 is a measure of the range of variation in p
required to produce an appreciable change in R(p),
and f(x), f'(x) and f"(x) are all of order unity. Our
error is then of order

(p —po)/e=(~p)/m-E((~p)')7"/pl= p /p~, (B22)

where p„ is a noise fluctuation in p. In a well-designed
oscillator, the typical operating level, which is of order
p~, is made large compared to the noise p .Thus the
error due to neglecting second-derivative terms, p„/p~,
will usually be small.

APPENDIX C: THE BOUNDARY CONDITION FOR
G(r, rp, 2, (a)

The only condition we have for a second-order equa-
tion is that the probability distribution be normalized.
This implies that we choose the least-singular solution
at r=0 and r=~. To do this, we must determine the
asymptotic behavior of the two linearly independent
homogeneous solutions to the equation for U (and V)
for small r and for large r. For convenience, we define
the coefficient of u on the right-hand side of Eq. (6.8)
to be

q== —4r'+ ,' (pr4) + (2 'p-') r' —p-i(g+—(1——4&2)/4r&.

(Ci)
For small r, we may approximate q by

q p i(—u+—(1—4X') /4r—' (C2)

we obtain Bessel's equation of order X. Thus, the two
linearly independent solutions for a small r are

U~ re(Pr); ——U2 ——r Yg(Pr) . (C7)

We take the least-singular solution v (r) . This is con-
sistent with our detailed-balance condition in Sec. 5.

Since a similar choice of boundary conditions is nec-
essary for the harmonic oscillator, our ability to calcu-
late the (known) power spectra for the harmonic
oscillator using the same method (and machine pro-
gram) confirms the validity of our choice of boundary
conditions.

For phase and amplitude fluctuations (X=1), we find
that one solution, U1, goes to zero and the other solu-
tion U2 goes to a finite, nonzero constant as r goes to
zero. For amplitude fluctuations, (X=O), both U~ and
U2 go to zero as r goes to zero. In both cases we take
the least-singular solution, namely U&. For phase and
amplitude fluctuations this is equivalent to assuming
that the probability distribution in rectangular coordi-
nates, x and y, is finite at the origin. For amplitude
Ructuations, this is equivalent to assuming that the
probability distribution in the amplitude-squared co-
ordinate p is finite at the origin.

For large r, the WEB approximation is valid:

r

w+(r) =Lq(r)1 't' exp & Lq(r') Jt'dr' .


