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Planar and axial channeling effects of 3-11-MeV protons in 25-50-u-thick silicon and germanium single
crystals were investigated by studying the direction and energy distributions of the transmitted particles.
The total energy distributions were investigated as a function of crystal orientation using a large-acceptance-
angle solid-state detector. Limiting angles of incidence for channeling were obtained at several incident
energies and crystal thicknesses. The energy and intensity as a function of emergence angles (for a fixed
angle of incidence) were obtained by scanning the emergent proton distributions with a small-acceptance-
angle detector (75.X1077 sr) or a masked lithium-drifted position-sensitive detector in a plane 102 cm
from the crystal. The least energy loss for protons transmitted para'lel to the (110) and (111) axes and
the {111}, {110}. and {100} planes of silicon were investigated, and it was found that the least energy
loss for each axis was the same as that of the most open planes intersecting at that axis. Measurements of
the least energy loss and its strageling were made for the {111} and {110} planes of silicon and germanium.
A mechanism of least energy loss is presented for which it is assumed that the energy loss of the well-chan-
neled protons is due to interactions with the weakly bound valence electrons only. The measurements agree
well with the theory and are used to extract the local density of valence electrons sampled by the well-
channeled protons. A theoretical model of channeling is presented and comparisons made with experi-
ment. Average potentials for the atom rows and planes of silicon are calculated for the static lattice at
different temperatures. Multiple Coulomb scattering into channels is considered, as well as the trajectories
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of the high-loss particles.

1. INTRODUCTION

HE established theories of the interaction of charged

particles with matter'~2 make no distinction between
crystalline and amorphous matter. Experiments carried
out in recent years have shown, however, that particles
incident at small angles to atomic rows or planes in
single crystals exhibit anomalous penetrations*~” and
energy-loss rates,>® as well as orientation-dependent

*This work has been performed under the auspices of the
National Science Foundation (Rutgers, The State University),
Bell Telephone Laboratories, and the U. S. Atomic Energy Com-
mission (Brookhaven National Lahoratory).
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atomic and nuclear?% reaction yields. These effects
are usually referred to as particle “channeling.” Related
anomalous effects (so-called ‘‘blocking”) also occur
near symmetry directions in a crystal when charged
particles are emitted from lattice sites® % or are scat-
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tered to large angles by the lattice atoms.?6:%0-% The
investigations reported in this paper are a systematic
study of the “channeling” phenomenon by the energy
loss of 3-11-MeV protons transmitted through single
crystals of silicon and germanium.

The energy loss of charged particles of MeV energies
in matter is determined by the inelastic collisions, while
the trajectories of the particles are determined by de-
flection in the screened Coulomb fields of the nuclei.! For
interactions with atomic electrons, as well as with the
nuclei, the probability for the basic event to occur is
high only when the particle comes sufficiently close to
an atom or nucleus. In an amorphous solid, the impact
parameters of successive collisions suffered by the
particle are randomly distributed and the total yield of a
reaction over a given path length is independent of the
direction along which the particle moves. However, in a
crysralline solid atoms are regularly arranged in rows
and in planes. Under certain conditions the impact
parameters of successive collisions may become cor-
related and their distribution is not random. Hence, the
yield of the same reaction for a given path length of the
particle may strongly depend on direction. For example,
trajectories confined to regions between atomic planes
will sample a lower electron density than the average
and therefore will experience a lower energy loss than
normal, while some trajectories penetrating deeply into
the atomic planes will sample a higher electron density
than the average, and therefore yield an energy loss
larger than normal.

When the particle moves at a small angle to an atomic
row or plane, its trajectory is governed by successive
correlated small-angle deflections from a large number
of lattice atoms. These deflections tend to confine the
particle to the open “channels” between the atomic
planes or rows. The motion can, therefore, be treated
in terms of an average potential”#3 ¥ (p) in the trans-
verse plane normal to the trajectory.

A particle of mass M and energy E, making an angle
¢ with a channel axis, has a transverse momentum
(2M E)Y and the criterion for stable channeling may
be written as

BP*<V (pmin) (1

Y<y, where Y= (V(pmn)/E)", (2)

and where pmin is the distance of closest approach to a
row of atoms.
In Sec. 2 the experimental apparatus is discussed and
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the types of measurements which were made are out-
lined. The results of these measurements are presented
in Sec. 3. Section 4 contains the theoretical calculations
and comparisons with experiment. Concluding remarks
are made in Sec. 5.

2. EXPERIMENTAL

The experimental apparatus used in these experi-
ments is shown schematically in Fig. 1 and is con-
veniently divided into three main parts for descriptive
purposes: (a) a collimating system for defining the
proton beam divergence, position, and direction; (b) a
goniometer for controlling the crystal orientation rela-
tive to the incident beam direction; (c) a system of
charged-particle detectors and their associated instru-
mentation for measuring the energy, intensity, and
angular distribution of the transmitted protons. The
essential details of these three parts are discussed below.

A. Beam Collimating System

The incident proton beam, produced and accelerated
in the Rutgers University—Bell Telephone Laboratory
Tandem Van de Graaff, was collimated by annular
collimators of various sizes and distances of separation.
The minimum collimator size used was 1-mm diameter
since it was found that smaller sizes caused proton
scattering from the collimator edges. In addition,
magnetic focusing and antiscattering collimators were
used to minimize collimator edge scattering from the
beam handling system. The angular divergence and
profile of the proton beam transmitted through the
collimating system was investigated in some cases by
scanning the beam at a distance of 1 m from the last
collimator with a small acceptance-angle detector. The
measured full angle of divergence agreed very well with
that calculated from the collimator geometry and there
was no evidence of appreciable collimator edge scatter-
ing. The full angle of divergence of the proton beam
varied from 0.17° to 0.03° and is noted with each corre-
sponding measurement.

B. Crystal Specifications and Orientation

Single crystals of silicon and germanium 2 cm in
diameter and of various thicknesses between 30 and
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Fic. 2. (a) Tilt (#) and rotational (¢) angles available with
the goniometer for orienting the single crystals relative to the
incident beam. (b) Stereographic projection of the planes and
axes of a diamond-type lattice centered on the (110) axial direc-
tion. The planes and axes shown are those investigated in silicon
and germanium.

50 u were used. The thin crystals were cut from vacuum
zone-refined crystals of high resistivity and long carrier
lifetime, mechanically lapped and polished, and chemi-
cally etched to their final thickness by the planar etching
technique described by Madden and Gibson.® In
each case a layer of at least 100 u was etched from each
surface to ensure removal of structural damage due to
cutting and polishing operations. The crystal thick-
nesses were initially determined from thickness gauge
measurements which indicated their nonuniformity to
be less than 19, and some were checked by x-ray
transmission measurement.®® In all cases accurate
thicknesses were derived from the energy loss of pro-
tons transmitted in a random direction in the crystals
(see Sec. 3).

The crystals were clamped gently in the center of the
goniometer where they could be tilted by an angle 6 and
rotated in the plane of the crystal by an angle ¢. These
angles are indicated in Fig. 1 and Fig. 2(a). The manner
in which different crystal directions could be aligned
with the incident beam by changing the angles 6 and ¢
can be seen from the diagram in Fig. 2(b). This figure
shows a stereographic projection of the low-index planes
and axes of a diamond-type lattice centered on the
(110) axial direction. Different points on this stereo-
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gram correspond to different directions of incidence
of the particle beam on a silicon or germanium crystal
having its (110) axis at =0 as the tilt angle 8 and the
rotational angle ¢ are varied. Beam directions corre-
sponding to a fixed value of 6 describe a circle centered
on the (110) axis, while ¢ defines the position on this
circle. With this arrangement the crystal thickness
offered to the beam does not change with ¢ for a given
6 and it is possible to investigate directional effects over
a wide range of angles. When the crystal is tilted by an
angle 6 and rotated around the normal axis by an angle
Ag, the beam direction changes by an angle A¥ given by
the relation

AV = Apsind. (3)

This is shown in Fig. 3. Therefore, when 8 is small the
change A¥ can be smaller than the change A¢. For
example, at §=5°, for a rotational change of 0.1°, the
actual change of the crystal orientation with respect
to beam is AT=0.01°.

The 6 and ¢ adjustments on the goniometer could be
made with a precision of 40.1° by direct reading of
vernier scales.

C. Experimental Arrangements

1. Wide Acceptance Angle Measurements

Measurements of this type were made by placing a
large solid-state detector directly behind the crystal.
The active area of this detector was sufficiently large
to accept essentially all the particles transmitted
through the crystal. In this way it was possible to study
the energy-loss characteristics of the transmitted pro-
tons as a function of their incidence angles in the
crystals.

The large detector produces a signal pulse height
which is proportional to the energy of the transmitted
proton. This signal was amplified by a charge-sensitive
preamplifier and linear amplifier, and the pulse-height
distribution, or energy spectrum, was then stored in a

8 (Tt Axis)

¢ (ROTATION AxIs)

Fic. 3. Sterogram model showing the change in actual internal
angle of the beam direction in a crystal lattice (Ay) resulting
from a change in ¢, (A¢), for a fixed 4,
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400-channel pulse-height analyzer or in an on-line
SDS-910 computer programmed as a 512-channel pulse-
height analyzer.

The energy spectra of the transmitted protons were
measured for different beam directions and for different
incident proton energies and crystal thicknesses. The
results of such measurements are reported in Sec. 3 A.

2. Energy and Angular-Distribution Measurements of
Emerging Particles

These measurements were designed to determine the
scattering patterns of protons emerging from the thin
single crystals and to investigate correlations between
the scattering distributions and energy loss. As Fig. 1
illustrates, a remote x-y drive on the end of an extension
attached to the goniometer chamber made it possible
to position a particle detector in the plane perpendicular
to the incident beam direction at 102 cm from the
crystal. For a fixed angle of incidence the energy and
intensity distribution of the emerging particles were
studied as a function of their angles of emergence.

Some measurements were made using a small surface-
barrier detector with a 1-mm-diam aperture, while
others were made with a lithium-drifted position-
sensitive detector. The small counter measurements
were recorded in the same manner described for the
large-acceptance-angle measurements of Sec. 2 A. The
energy and incidence positions of protons entering
the position-sensitive detector can be simultaneously
obtained by means of the electronic system represented
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PROMPT, I SEC
— DISPLAY

ANNULAR
DIVIDER DETECTOR
CIRCUIT
PXE| I SEC[E
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P
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80X

E
[ ADC
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E

F1c. 4. Position-sensitive-detector electronics diagram.
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in the block diagram of Fig. 4. Two charge pulses are
received from the position-sensitive detector (PSD)
for each incident proton; one proportional to the energy
loss of the incident particle ( E), and the other propor-
tional to the product of the position of incidence of the
particle and the particle energy loss (PEL). These are
divided in an analog divider circuit® to give a pulse
height proportional to P. Then the pulses proportional
to position and energy are analyzed and stored in the
SDS-910 computer programmed as a 4096-channel
two-dimensional pulse-height analyzer.

The fabrication of the position-sensitive detec-
tors, which had 2-mm to 3-mm sensitive thicknesses,
has been described by Ludwig.® The multiparameter
use of the computer is described more completely
elsewhere 4142

Measurements of the emerging protons were often
needed at various x—y locations for the same number of
incident particles on the crystal. In order to normalize
such measurements without interfering with the emerg-
ing particles of interest, a solid-state detector in the
form of an annular ring was used. A diagram of the
annular detector as it was utilized is shown in Fig. 5. An
annular brass collimator placed in front of the silicon
crystal shielded the annular detector from particles
that might be scattered from the beam collimators. The
detector was placed behind the crystal to intercept
protons scattered from the crystal at angles between
30° and 70°. For a fixed beam direction the number of
protons scattered to wide angles is proportional to the
number of incident protons and the scattered beam can
be used to normalize different runs.

3. RESULTS

A. Energy Spectra of Transmitted Particles

The energy loss was studied as a function of crystal
orientation by tilting the crystal by an angle = 10° and
rotating it about the (110) axis. The large acceptance

3% E. A. Gere and G. L. Miller, IEEE Trans. Nucl. Sci. 10,
382 (1964).

40 E. J. Ludwig, Rev. Sci. Instr. 36, 1175 (1965).

4 J. V. Kane, in Proceedings of the Conference on the Utiliza-
tion of Multiparameter Analyzers in Nuclear Physics, Sec. 6,
6.2, and 149, (unpublished).

42 J.) V. Kane and R. J. Spinrad, Nucl. Instr. Methods 25, 141
(1963).
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F1c. 6. Transmitted-energy spectra, normalized to the same
peak height, for 4.9-MeV protons incident parallel to the {111},
{110} planes, and in a random direction of a 33-u-thick silicon
crystal.

angle detector, Fig. 1, was placed directly behind the
crystal. The different spectra for an incident proton
energy of 4.9 MeV are shown in Fig. 6. The curve
labeled “normal” was obtained for the protons incident
in a direction far from any low-index planes or axes in
the crystal. This so-called random direction gives an
energy-loss spectrum equivalent to that expected for an
amorphous silicon sample of the same thickness. We
shall refer to the energy loss of particles in this case of
the misoriented crystal as the “normal” energy loss.
The maximum incident-beam divergence in these

Er=110MeV

COUNTS

A o ' | 1 0
o 0.2 0.4 0.6 0.8
ENERGY LOSS (MeV)

F1c. 7. Energy-loss spectra for 2.8-, 7.0-, and 11.0-MeV pro-
tons transmitted parallel to the {111} planes of a 33-p-thick
silicon single crystal. The spectra are plotted for equal areas.
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measurements was 0.06° at full width. The spectra for
incidence parallel to the {110} and {111} planes indicate
that a large fraction of the particles are transmitted
with lower energy loss than normal. This feature is
particularly pronounced when the beam is incident
parallel to the {111} plane. In addition, there is also
evidence from Fig. 6 that some particles have lost more
energy than normal. These two effects will be discussed
in Sec. 4.

The spectra of particles transmitted parallel to the
same crystal planes are also sensitive to the energy of
the incident proton beam, as shown in Fig. 7. These
spectra show the energy lost in a 33-u-thick silicon single
crystal by 2.8-) 7.0-, and 11-MeV protons incident
parallel to the {111} plane.

The fraction of low-loss particles is considerably
larger when incidence is parallel to a low-index axis
instead of a plane. This can be seen from Fig. 8, which

X103
9 1 T

COUNTS

1 l.' 1 Q
8.6 8.7 8.8 8.9
PROTON ENERGY (MeV)

BB300
1 1
83 8.4 8.5

Fic. 8. Transmitted-energy spectra for 9.0-MeV protons
transmitted parallel to the (110) axis and in a random direction
of a 48-u-thick silicon crystal. The spectra are plotted for the
same number of transmitted protons.

shows an energy spectrum for 9.0-MeV protons trans-
mitted parallel to the (110) axis of a 48-u-thick silicon
crystal and recorded in the large detector placed behind
the crystal. The incident-beam divergence was 0.03°
to 0.06° full angle. Also shown for comparison is a
normal energy spectrum taken at the same crystal
thickness and energy, but with the beam incident in a
random direction in the crystal. A large fraction
(~0.80) of all the particles transmitted have a lower
than normal energy loss. The relative importance of
axial and planar channeling for these crystal thicknesses
and proton energies was briefly treated in a previous
letter'®; this problem will be discussed in more detail in
Sec. 3 B.

Channeling effects in germanium were also investi-
gated and some of the results are shown in the next two
figures. Figure 9 shows three spectra taken with the
large-acceptance-angle detector for 9.0-MeV protons
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incident parallel to the {110} and the {111} planes of a
25-u-thick germanium crystal. The spectrum for a
random direction of incidence is also shown. Figure 10
compares the energy lost by 3.0-, 7.0-, and 11.0-MeV

protons in traversing a 25-u-thick germanium crystal
parallel to the {111} plane.

B. Planar and Axial Channeling Effects

It has been shown! that planar channeling effects
exist independently of any axial channeling in a lattice.
There is evidence to suggest that quite apart from this,
planar channeling effects are of importance even when
the narrowly collimated beam of particles is incident
along a crystal axis.®® Particles wandering from one

3
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0.8

Fic. 10. Energy-loss spectra for 3.0-, 7.0-, and 11.0-MeV pro-
tons transmitted parallel to the {111} planes of a 25-u-thick
germanium single crystal. The spectra are plotted for equal areas.

4 B. R. Appleton, W. L. Brown, L. C. Feldman, C. Erginsoy,

1(VL [;])tman, and J. K. Hirvonen, Bull. Am. Phys. Soc. 12, 391
1967).
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axial channel to another without changing™ their azi-
muthal angle must necessarily sample electron densities
that are characteristic of the different planar channels
rather than the substantially lower electron density
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F1c. 11. Energy spectra of 5.0-MeV protons transmitted
parallel to the (110) axis, {111}, {110}, and {100} type planes

of a 46-p-thick silicon crystal. The spectra are plotted for equal
areas.
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F1c. 12. Energy spectra for 7.0-MeV protons transmitted (a) parallel to the {111} planes, and (b) 0.14° to the {111} planes of a
33-u-thick silicon single crystal. The dashed energy spectra are for incidence in a random direction and the difference spectra, labeled
T and II, were obtained by the subtraction technique outlined in the text.

along a particular axial channel. One can test this
interpretation by comparing the energy lost by protons
transmitted parallel to an axis with that for protons
transmitted parallel to the planes which intersect to
form that axis. If some of the protons incident along the
axis sample the lower-electron-density characteristics
of a particular axial channel, then they should emerge
from the crystal with a higher energy than those for
any of the planes. Figure 11 shows the transmitted
energy spectra for 5.0-MeV protons incident parallel
to the (110) axis and the {111}, {110}, and {100} type
planes of a 46-u-thick silicon crystal. Note that the high-
energy edge of the (110) axial spectrum coincides with
that of the {111} planar spectrum. The same result
was found to be true at 7.0 and 9.0 MeV. This indicates
that the least energy loss for the (110) axis is the same
as that for the most open contributing plane, the {111},
and that few, if any, particles sample a substantially
lower electron density. The least energy loss was also
the same for the (111) axis and the {110} type planes
in a 50-u-thick silicon crystal at 5 and 7 MeV, as well
as for a 10-u-thick silicon crystal at 5 MeV. However, it
is possible that at low energies and for thin crystals
particles may be contained in a particular axial channel
and therefore exhibit smaller energy loss than for any
of the planes.** A thorough analysis of axial channeling
which included various axes and crystal thicknesses
has been reported® and will be presented in a future

paper.

# F., H. Eisen, Phys. Letters 23, 401 (1966).

C. Effect of Incidence Angle

We have seen that protons which undergo channeling
are characterized by their anomalously low energy-loss
rates. By investigating the fraction of the total beam
that suffers energy losses lower than normal, as a
function of incidence angle, one can derive the limiting
critical angle of incidence for channeling ¥, as outlined
in the Introduction. The dependence of the high-loss
fraction on incidence angle can also be investigated in
the same way. These two components of the incidence
beam behave anomalously, but result from essentially
different mechanisms (Sec. 4).

It is possible to distinguish the two components by
their abnormal energy. However, since there are also
particles behaving normally and emerging with energies
in the normal region, it is necessary to account for this
normal fraction and subtract their contribution from
the measured spectrum. A lower limit to the anomalous
fraction can be obtained by assuming that only normal
particles emerge with energies in the normal region and
that they have a normal energy distribution. With this
assumption, the two anomalous fractions can be esti-
mated by subtracting the normal spectrum (obtained
with incidence in a random direction) from the chan-
neled particle spectrum, both spectra being normalized
at the peak energy of the normal spectrum. Figures
12(a) and 12(b) show two spectra where this separation
has been made. These spectra were recorded by the
large-acceptance-angle detector for 7.0-MeV protons
incident parallel and at 0.14° to the {111} planes of a
33-u silicon crystal. The normal spectra are also shown
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on each figure. The high-loss and the low-loss fractions
are given by the areas I and II, respectively, divided
by the total area under the spectrum. These parameters
will be used in what follows as a measure of the trans-
mitted beam intensity for the two types of anomalous
energy loss.

The dependence of these high-loss and low-loss
components on incidence angle was investigated for the
{111}, {110}, and {100} planes of silicon at several
energies and crystal thicknesses. Results are shown in
Fig. 13 for 2.8-MeV protons incident with a full angle
of divergence of 0.06° on a 33-u-thick silicon crystal.

A number of features of this angular distribution
are of interest: (1) The intensities of the anomalous
energy-loss components for the different planes appear
to be related to the planar spacing and atomic density
in the planes. Both the high-loss and low-loss com-
ponents are largest for the widely spaced and dense
{111} planes, and least for the most closely spaced and
least dense {100} planes. (2) The low-loss component
drops rapidly as the angle of incidence increases to
about 0.14°) where it starts to decrease more slowly.
The rapid decrease is consistent with the idea of a
critical angle of incidence ¥, inside of which particles
can be confined by the average planar potential and
outside of which they cease to be confined. The presence
of low-loss particles for incidence angles outside this
critical angle (greater than 0.14°) are believed to be
due to initially “normal” particles which were fed into
the planar channels by multiple Coulomb scattering.
The slow decrease at larger angles is in good agreement
with the expected decrease in multiple Coulomb scatter-
ing through the indicated angle (Sec. 4). (3) The high-
loss component for each of the planes is a minimum at
0°, increases to a maximum for incidence of about
0.2° from the planes, and then decreases slowly at
larger angles, again at a rate consistent with multiple

ANGLE OF INCIDENCE TO PLANES (DEGREES)

Coulomb scattering. (4) The angular widths of the
rapidly decreasing portion of the low-loss component
distributions are greater than the divergence of the
incident beam, so that these widths provide a test of
the limiting incidence angles for planar channeling as
shown in Sec. 4.

The half-widths taken at the base of the rapidly
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Fic. 14. Fraction of the total particles which emerge with
energy loss less than AE as a function of the angle of incidence
of 2.8-MeV protons relative to the {111} plane of a 33-u-silicon
crystal for various AE’s.
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Fic. 15. Fraction of the total particles which emerge with
energy loss less than AE as a function of the angle of incidence of
2.8-MeV protons relative to the {110} plane of a 33-x silicon
crystal for various AE’s.

decreasing portion of the low-loss distribution in Fig. 13
are representative of the limiting incidence angle ¥, for
channeling.

It is possible to adopt an alternative method for
estimating ¥, from the measured spectra. In Fig. 14 the
fraction of the total particles which emerge with energy
loss less than AE is plotted as a function of incidence
angle to the {111} plane for different values of AE. The
data used are the same as before. Figure 15 shows similar
distributions for the {110} planes. For a given plane,
the widths obtained in this manner are identical for
all AE’s small compared to the normal energy loss. Also,
these widths agree well with those obtained by using
the subtraction technique.

In order to test the dependence of ¥, on energy,
(¥,x 1/+/E), measurements were made with incident
proton energies from 2.8 to 8.8 MeV on 33- and 48-u-
thick silicon single crystals. Table I lists the limiting
angles of incidence extracted from these measurements
for the {111} and {110} planes. These are compared
to the calculated widths in Sec. 4.

D. Direction and Energy Correlation of Emerging
Particles

Measurements of the energy and intensity distribu-
tion of the emerging particles were made using a lithium-
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drifted position-sensitive detector (PSD) as described
in Sec. 2C in conjunction with the on-line SDS-910
computer programmed as a two-dimensional pulse-
height analyzer.

The PSD was mounted on the x—y drive illustrated
in Fig. 1, at a distance of 102 cm from the crystal. With
the beam incident at the desired angle relative to the
crystal lattice, the pattern of the emergent particles
was scanned with the PSD, which was covered by a
mask with eight 1-mm holes, spaced 3 mm apart. The
detector could be moved vertically or horizontally with
the x—y drive in 1.0-mm steps, thus covering any
desired position. A typical measurement, then, would
be equivalent to eight separate measurements taken
with a small-acceptance-angle solid-state detector. The
counts recorded in each hole yield the intensity of pro-
tons at that position, as well as the energy distribution.

Such a measurement is illustrated in Fig. 16 for
4.9-MeV protons incident parallel to the {111} plane
of a 33-u-thick silicon single crystal. The insert shows
the energy distribution of all the emerging protons
independent of their angle of emergence. The masked
PSD was normal to the incident beam direction and
the {111} planes. Each 1-mm hole of the mask subtends
a solid angle of 7.5X 1077 sr.

It can be seen that the spectrum at the extreme right,
taken at an emergence angle of 3.0°, has an essentially
“normal” Gaussian shape and peaks at the normal
energy marked by an arrow labeled Ey. However, at
¢=0°, corresponding to particles emerging parallel to
the {111} plane, the spectrum peaks at a higher energy
and shows an almost complete absence of particles with
normal energy loss. At intermediate emergence angles
the intensity of this sharp peak decreases, the peak
broadens, and its position shifts to lower energies. Also,
a second peak appears at the normal energy Ey. This
shows, then, that the low-loss particles emerge pre-
dominantly at small angles to the {111} plane. In
Table IT the peak energy FE, is shown as a function of
emergence angle.

The intensity distribution of the emerging particles
can be obtained from position-sensitive detector meas-
urements by plotting the total number of counts re-
corded for each 1-mm hole as a function of emergence
angle. Also, the dependence of the anomalous-energy-
loss particles on emergence angle can be obtained by
analysis of the energy spectra obtained at each angle.
Figure 17 shows a comparison of the intensities for a

TasLE I. Measured limiting angles of incidence for the {111} and
{110} planes of 33- and 48-p-thick silicon crystals.

2¥, {111} 2%, {110} Crystal
Er (MeV) (measured) (measured) thickness
2.8 0.28° 0.29°
4.8 0.22° eee
33u
6.8 0.17° 0.19°
8.8 0.16° 0.18°
5.0 0.21° 0.20° 484
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“random” incidence and incidence parallel to the {111}
plane, in the case of 7.0-MeV protons transmitted
through a 48-u silicon crystal. For this measurement
the masked PSD was placed in the direction of the
incident beam at 102 cm from the crystal and spectra
were recorded in steps of 0.056° of emergence angle. The
data were recorded in the computer as position versus
energy in a 32- by 128-channel two-dimensional array.

At large angles of emergence the two distributions
have similar Gaussian shapes, indicating that particles
emerging at these angles are subject to normal multiple
scattering. At small emergence angles, however, the
channeled particles provide the sharp peak in intensity.

Figure 18 shows the anomalous energy-loss com-
ponents plotted as a function of the angle of emergence
relative to the {111} plane. The number of counts in the
high- and low-loss components was obtained from the
energy spectra at a given emergence angle by a similar
subtraction technique to that discussed in Sec. 3 C.
These anomalous component distributions exhibit
several interesting features.

(i) The low-loss component maximizes at 0° and
drops off rapidly for increasing emergence angles. At
larger angles it decreases more slowly. If the slope of
the sharply decreasing portion of the low-loss distribu-
tion is extrapolated to zero, one can extract a width
analogous to that obtained from the low-loss distribu-

Tasre II. Peak energy E. versus angle of emergence relative
to the {111} plane for 4.9 MeV protons incident parallel to the
{111} plane of a 33-u-thick silicon single crystal.

E. (MeV) € (deg)
4.68 0
4.65 0.056
4.64 0.11
4.61 0.22
4.60 0.28

CHANNEL NUMBER

tions taken as a function of incidence angle. Correcting
for the angle subtended by the counter aperture, this
full width is 0.20°. The sharp decrease of the low-loss
component is consistent with the idea of low-energy-loss
particles emerging with a well-defined angular cone of
emergence of half-width approximately given by the
critical angle ¢, and the measured angles agree well with
the values of ¥, obtained for incidence measurements
(Sec. 3C). The more slowly decreasing wings of the
distribution, on the other hand, are probably due to
particles which have been channeled for part of their
trajectory but escape the channels and then become
subject to multiple scattering.

(i) The magnitude of the high-loss component over
the angles investigated is very small compared to that
of the low-loss component. However, when all the
particles emerging from the crystal are detected (Sec.
3C) the high-loss particles contribute almost 15%.
Therefore, the high-loss component must have a much
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Fic. 17. Comparison, for the same number of incident protons,
of intensity as a function of emergence angle for 7.0-MeV protons
transmitted parallel to the {111} planes and in a random direc-
tion of a 48-p-thick silicon crystal.
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wider angular distribution on emergence than the low-
loss component.

E. Least Energy Loss and Straggling

We have seen in previous sections that (1) those
particles which lose the least energy when incident
parallel to a given crystal plane are those which emerge
with the least deflection (Sec. 3D); and (2) that even
when the beam was incident parallel to the (110) axis,
the least energy loss was the same as for incidence
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F16. 19. Energy spectra recorded in a small-acceptance-angle
detector (7.5X1077 sr) for 3.0-MeV protons, transmitted in a
random direction (left spectrum) and parallel to the {111} planes
of a 33-p-thick silicon crystal (middle spectrum). The incident
proton spectrum (at right) was taken with the crystal removed.
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parallel to the {111} plane (Sec. 3B). We have meas-
ured the energy loss of these well-channeled particles
and the dispersion of the energy loss both in silicon and
germanium crystals. The experimental arrangement was
similar to that shown in Fig. 1. A small surface-barrier
counter with a 1-mm aperture was placed 102 cm from
the crystal, and positioned exactly in line with the beam.
The crystal was placed in the goniometer and was
oriented with the beam parallel to the desired channel-
ing direction. With this crystal orientation and counter
position, the small counter then accepted only the
least deflected emerging particles, emerging within a
solid angle of 7.5X 1077 sr.

Figure 19 shows three different energy spectra of the
emergent protons as recorded in the small counter for
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F16. 20. Energy spectra obtained in the same manner as those
in Fig. 19 except for 11.0-MeV protons and a 25-u-thick german-
ium crystal.

3.0-MeV protons incident on a 33-u silicon crystal.

(i) The spectrum on the right refers to the incidence
protons and was taken with the crystal removed from
the beam. This incident energy is accurately known and
was used to calibrate the counter system.

(ii) The middle spectrum was taken with the crystal
in place and oriented with the beam incident parallel
to the {111} plane.

(ili) The spectrum on the left was taken with the
beam incident in a random direction in the crystal but
at the same crystal thickness.

The scaling factors beside each spectrum of Fig. 20
indicate the relative magnitudes of these spectra for the
same number of incident protons.

It can be seen that the energy loss of the well-chan-
neled protons (Er— E¢) is about one-half of the normal
energy loss (E;— En). This ratio is discussed in Sec.

Similar measurements were also made for germanium.
Figure 20 shows spectra for 11-MeV protons in trans-



161 ENERGY LOSS

OF 3-11-MeV PROTONS

KZ3|

Tasre III. Energy loss of channeled and normal protons in silicon crystals.

Er Eq {111} E¢ {110} Ey (Er—E¢)/(Er—Ey) (Er—Ec)/(Er—En)

Crystal (MeV) (MeV) (Mev) (MeV) (111} {110}
33-u Si 2.81 2.49 2.08 0.44 ..
2.97 2.68 oo 2.28 0.41 ..

3.00 2.70 2.60 2.32 0.44 0.59

4.43 4.21 4.11 3.94 0.45 0.65

6.53 6.36 6.29 6.16 0.46 0.65

7.00 6.84 6.79 6.64 0.43 0.58

8.58 8.44 8.39 8.27 0.47 0.61

9.00 8.88 8.82 8.71 0.43 0.62

11.00 10.90 10.85 10.75 0.42 0.59
48-u Si 7.00 6.78 6.48 0.43 ..
9.03 8.82 8.59 0.49 .

mission through a 25-u-thick Ge crystal. The middle
spectrum again refers to the {111} planar channeling.

A tabulation of results with different incident energies
and channeling directions is shown in Table III for
silicon and in Table IV for germanium.

It can be seen from the spectra in Figs. 19 and 20
that the straggling width of the channeling peak is
smaller than that of “normal” particles. The width of
the incident spectrum on the right is due to the energy
dispersion of the counter system since the incident beam
is for all practical purposes monoenergetic. Since the
same counter system was used in measuring the other
two spectra, their distribution results from a folding of
any real straggling process and the counter-system
dispersion. These two dispersion sources are independ-
ent so that they add as the squares. Therefore the frue
standard deviations of the well-channeled and normal
spectra can be obtained from their measured standard
deviations by subtracting out the measured standard
deviation of the incident-beam spectrum.

The normal spectrum and the incident-beam spec-
trum have a Gaussian shape, so that one can extract
their measured standard deviations by the so-called
“probit”® method which is illustrated in Fig. 21 for a
normal spectrum. By plotting the integral distribution
of the Gaussian in the figure one obtains an S-shaped
curve with a steepest slope proportional to the recip-
rocal of the measured standard deviation. The probit
method represents a linear transformation of the
integrated Gaussian into a straight line, as shown in
the figure. This method has the advantage that all the
points in the spectrum are used to determine the meas-

ured standard deviation allowing a very accurate
determination. The standard deviation is given directly
by the inverse slope of the probit line.

The energy spectrum of the well-channeled particles
of Fig. 19 differs from a Gaussian shape on its low-
energy side, because of the presence of particles which
have been fed into channels by multiple scattering
throughout the crystal and because of the finite ac-
ceptance angle of the detector. Therefore, in order to
extract the standard deviation due to the least-deflected
protons only, a Gaussian curve was fitted to the peak
and the high-energy side of the spectrum. Such a fit is
illustrated in Fig. 22,

A tabulation of the dispersion data for protons from
3.0 to 11.0 MeV for the {111} plane of a 33-u silicon
crystal is given in Table V. The first column on the left
gives the incident proton energy, the next three columns
give the measured standard deviation for the incident,
least-deflected, and normal protons, respectively. The
probit method was used to extract the A;’s and Ax’s
and the Gaussian-fit method just discussed was used
to extract the A¢’s. The true standard deviations Qy
and Q¢ are shown in the last two columns.

4. THEORETICAL MODEL OF CHANNELING AND
DISCUSSION OF RESULTS

A. Average Potentials for Atom Rows and Planes

The motion of charged particles at high energies may
be treated by the methods of classical mechanics. The
DeBroglie wavelengths are very small (107+-10-° A)

TasLE IV. Energy loss of channeled and normal protons in germanium.

E; E¢ {111} E¢ {110} Ex (Er—Ec)/(Er—Ex) (Er—Ec)/(Er—En)
Crystal (MeV) (MeV) (MeV) (MeV) {111} {110}
25-u Ge 3.00 2.67 2.52 1.95 0.31 0.45
5.00 4.78 4.68 4.33 0.33 0.48
7.00 6.83 6.76 6.47 0.33 0.45
9.00 8.84 8.79 8.54 0.34 0.46
11.00 10.86 10.81 10.61 0.33 0.47

% R. A. Fisher and F. Yates, Statistical Tables (Oliver and Boyd, London, 1938); or D. J. Finney, Probit Analysis (Cam-

bridge University Press, New York, 1952).
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F1c. 21. Representation of the probit-transformation method
of obtaining the standard deviation of a Gaussian-shape spectrum.
The probit method represents a linear transformation of the
integrated Gaussian into a straight line whose inverse slope is the
standard deviation.

and the particles move in highly localized wave packets.
As far as any coherent scattering or diffraction effects
are concerned, inelastic energy losses are so large® that
no coherence can be said to exist through any finite
distance in the crystal.

The trajectory of a particle in the classical sense is
always governed by deflections due to atomic fields,
even when the energy loss is primarily due to inelastic
encounters. The atomic fields are the screened Coulomb
fields of the nuclei.

In a “channeling” experiment in which the angle ¥
to an atomic row is very small, some simplifications
can be made in estimating deflections. Instead of solving
the equations of motion in three dimensions it is possi-
ble to make the approximation that the longitudinal
component of momentum remains constant. Thus the
trajectory of the particle can be projected on a plane
perpendicular to the atomic row and the motion of the

ERGINSOY, AND

GIBSON 161
ENERGY (MeV)
2.66 2.68 270 272 274
3000 T T T T T T T T 77
APPARENT PEAK
CHANNEL NUMBER ™,
236.5 | )
* FITTED PEAK
- L] -
2500 | .~ CHANNEL NUMBER
. 238.5
.
°
o 2000 B
z INCIDENT ENERGY
z 3.00 MeV
z {1} CHANNELING
APPARENT HWHM
T 1500}~ ° 7.7 CH. -
& HWHM OF
2 . FITTED
z . GAUSSIAN
3 6.5 CH.
S 1000}
500 (14 B
.
..
...o'.
Io) 1 1 L 1 L 1 | Il L
2156 220 225 230 235 240 245 250 255

2i0
CHANNEL NUMBER

F1c. 22. This figure shows the results of fitting a Gaussian to
the peak and high-energy side of a well-channeled energy spec-
trum to obtain its measured standard deviation.

particle becomes equivalent to the motion of a particle
of momentum Mv¥ or energy EV¥? in an average poten-
tial due to many atoms. This average potential ¥ (p)
at a distance p from the row can be calculated if the
potential V (r) between the particle and an individual
atom at a separation 7 is known. For an atomic row with
spacing d between atoms, V' (p) is given by

1 [tdr2

- 2 [
Vip) = - dz V(p*4a2)12 = (—i.[ dx V(p24-a2) 12,
2 0

4

As the particle trajectory approaches the atomic row
and moves away from it, it comes to a distance of
closest approach pmin given by the classical relation

1= (#*/punin) = [V (puin) / E¥*]=0, (5

where p is the impact parameter of the “collision” that
takes place in the transverse plane upon which the
trajectory has been projected.

As an extreme case (giving the lowest value of pmin
for a given ¥) we may put p=0. This occurs when the
trajectory is in the same plane as the row. Equation (5)

TasLE V. Energy widths of incident, least-deflected, and “normal” beams.

Er Ar Ac {111} Ax
(MeV) (keV) (keV) (keV) Qv= (A=A Q= (A?—ASD)
3.00 14.5 20.2 29.7 25.9 14.1
7.00 15.0 22.5 34.1 30.6 16.8
9.00 16.8 22.6 31.9 27.1 15.2
11.00 16.8 23.6 35.6 31.4 16.6

4 H. A. Fowler and C. Erginsoy, Phys. Letters 244, 390 (1967).
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then becomes _
V(Pmin) = EPZ, (6)

=LV (pmin) / EJ. (7

This relation was first used by Nelson and Thompson?
in defining the limiting incidence angle if the minimum
distance of closest approach pmin for stable channeling
is known. Lindhard? has suggested that pmi, may be of
the order of arr, the Thomas-Fermi screening radius of
the atom.

For an atomic plane there is only one angle ¥ between
the trajectory and the plane, and Eq. (7) can be used
directly, with V(p) as the planar average potential
given by

or

~ 2 ®
7o) == [“av et (®)
0
where 1/4 is the atomic density in the plane.
As far as V() is concerned, several types of screened
Coulomb potentials have been proposed.!#+#8 These
are shown in Fig. 23 for the case of a proton and a

silicon atom. The unscreened Coulomb potential is given
by

V(r) =212/, 9
10°
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Fic. 23. Interaction potentials between a proton and a silicon
atom at different separations. The distance arp=0.1943 A is the
Thomas-Fermi radius of the atom.

47 G. Moliere, Naturforsch. 2a, 133 (1947).
8 K, O. Nielsen, Eleciromagnetically Enriched Isotopes and Mass
Spectrometry (Academic Press Inc., New York, 1956), p. 68.
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F1c. 24. Average planar potentials for the {111} planes of
silicon for the static lattice and at different temperatures. U.
represents the rms vibration amplitude normal to the plane.

while Bohr’s exponentially screened Coulomb potential
is
V(r) = (Z1Z:*/7) exp(—r/az), (10)

where ap=ay/(Z:**+Z5?/3)12 is the Bohr screening
parameter and a,(=0.529 &) is the Bohr radius.

It is now generally believed that the Bohr potential
gives excessive screening at large separations and that
the Thomas-Fermi statistical atom potential might be
more appropriate. There is a good analytical approxima-
tion to the Thomas-Fermi potential due to Moliére.#
This potential is of the form

V(r) = (Z1Z4¢%) /7[0.1 exp(— 67/ arr) +0.55
Xexp(—1.27/arr) +0.35 exp(—0.37/arr) ], (11)

where arp=0.8853ay/(Z:23+Z2/3)12 is the Thomas-
Fermi screening radius of the atom.

Another and simpler approximation (but valid only
for > 2arr) has been given by Nielsen.®® This is of the

form
V(T) =Z1Z2e?ag/272. (12)

Of these different types of screened Coulomb poten-
tials we have chosen the Moliére approximation to the
Thomas-Fermi potential and have carried out calcula-
tions of the average potentials for atomic rows and
planes.®

The row average potential becomes

V(p) = (22,Z4¢*/d)[0.1K,(6p/arr) +0.55Ky(1.2p/ arr)

+0.35K,(0.3p/arr) ], (13)
where Ko(x) is a zero-order modified Bessel function

of the second kind.#
The planar average potential for the Moliére poten-

49 G. N. Watson, Theory of Bessel Functions (Cambridge Uni-
versity Press, Cambridge, England, 1958), 2nd ed., p. 698.
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F16. 25. Average planar potentials for the {110} planes of sili-
con for the static lattice and at different temperatures. U+ repre-
sents the rms vibration amplitude normal to the plane.

tial is of the form
V(p) = (27 Z:Zsf*ar/ A)[(0.1/6) exp(—6p/arr)
+ (055/12) CXp( - 1.2p/aTF>

+(0.35/0.3) exp(—0.3p/ars)]. (14)

B. Effect of Thermal Motion

The above potentials are, of course, for the static
lattice and do not take into account the thermal motion
of the atoms. The effects of this motion can be easily
incorporated in the calculation of average potentials.
The plane average potential given by Eq. (14) has
three terms, each of which has the general form

Vilp)=(Ci/4) exp(—p/as),  (i=1,2,3).

When thermal motion is taken into account, each

(15)
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Fic. 26. Average planar potentials for the {100} planes of Si
for the static lattice and at different temperatures. U1 represents
the rms vibration amplitude normal to the plane.
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Fic. 27. Experimental limiting angles of incidence as a func-
tion of energy (Sec. 3C) compared to calculated values for ppyin =
atr (Sec. 4A). ppmin is the minimum distance of closest approach,
@ is the Thomas—Fermi screening distance.

atom acquires a probability
f(x) = (2rus?)~12 exp(—x2/2u.?) (16)

of being found at a distance x to the ideal plane. Here
u;? is the transverse component of the square of the
vibration amplitude.

V'i(p)=(Ci/A) [/_1:’ dx f(x) exp(—| p—x I/a,-)].
(17)

The integral in (17) can be carried out explicitly to
give

Vi(p)=Vi(p) exp(us®/20:?)
1 o %L
S Bl C]

oz ) oo

where

2 z
P(x) = — / dte?®
(=) V7o
is the error integral function.’

TasLE VI. Calculated average planar potentials (eV) for a proton
in the planar channels of silicon (7'=301°K).

Plane V(=00 V(=u) V(o=arr)
111 25.6 22.7 16.2
110 22.8 20.1 13.5
100 12.9 10.8 6.3

5 Handbook of M athematical Functions, edited by M. Abramo-
witz and I. A. Stegun (U.S. Department of Commerce, National
Bureau of Standards, Washington, D.C., 1964), Appl. Math. Ser.
55, Chap. S, p. 227.
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As p becomes large we find that V(p) tends to the

limit®

Vi(p)=Vi(p) exp(us®/2a), (19)
indicating that V;/(p) increases slightly with increasing
temperature. However, for small p the average potential
(and therefore the critical incidence angle ¥¢) decreases
with increasing temperature.

We have calculated the effect of temperature on the
average planar potentials for different planes of silicon,
as shown in Table VI. Figures 24, 25, and 26 show the
potential for a proton in the {111}, {110}, and {100}
planar channels of silicon. In the case of {111} planes
the unequal spacing (alternating 0.78 and 2.35 &) is
taken into account and the potential zero is at the
mid-plane of the larger spacing. For other planes the
potential is zero at a distance equal to one-half of
the planar spacing. It can be seen that the potential
decreases substantially below its static-lattice value
for small p. Table VI gives the values of the calculated
potentials at p=0, p=%.(7T=301°K), and p=ary. The
corresponding critical incidence angles can be easily
calculated from Eq. (7).

The distance of closest approach to a plane—and,
therefore, the critical incidence angle—is not to be
taken as constant for all physical phenomena. For
Rutherford scattering, for instance, p=#.+ may be
appropriate, while for energy loss p=arr may be more
meaningful.

In Fig. 27 we compare the calculated values ¥e=
[V(a)/E]"* with the measured widths (Table I in
Sec. 3 C). The agreement with the experimental widths
is best for pmin=2err. The measurement shows the
predicted 1/+/E dependence.

For the axial channeling width we have measured®
V¢=0.2° for the (110) axis at 5 MeV. The calculated
value Yo=[V (arr)/E]V? is 0.2°.

The average row potential [Eq. (13)] diverges at
p=0 because of the logarithmic divergence of the K,
function. This is clearly an unrealistic situation since
it suggests that atomic rows are impenetrable. However,
when the thermal motion of the atoms is taken into
account, the potential at p=0 becomes finite.

Let f(r) be the differential probability that an atom
in thermal motion is at a distance » from the ideal
“string”

f(r)=2r/(a*) exp(—7*/ (a*)). (20)

If the correlation between nearest neighbors is neg-
lected, {(o?)=wus?=%(u?), where (u®) is the mean-
square thermal-vibration amplitude. The same model
could be used with a smaller value of {¢2) to represent
the effective, or relative, thermal-vibration amplitude
when positional correlation has to be taken into account.
In the absence of reliable data on the degree of correla-
tion in the case of Si, we shall assume that {o%)=wu.2.

The temperature-dependent average potential at

ENERGY LOSS OF 3-11-MeV PROTONS

345

200

I I I I

STATIC ROW

AVERAGE POTENTIAL

OR
0°K H* — SILICON

150 <110> ATOMIC ROW -—

100

vV (eVv)

50

uy (301 °K)

u, (543 °K)

’ J u, (905 °K)
L | 1 1

0.2 0.3 0.4 0.5

ug (0 °K)

° L
o 0.1
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tion of distance from the (110) atomic row of silicon. U+ repre-
sents the rms vibration amplitude normal to the row.

p=0 can be obtained by integrating

72(0) = / T arfn . (1)

Using [Eq. (13)] this gives
Vs (0) = (Z1Z2¢2/d) [0.1 exp(9u12/ars?) E1(9u1?/ars?)
+0.55 exp(0.362.1%/ars?) E1(0.36112/ ary?)

+0.35 exp(0.0225u.%/ ars?) E1(0.0225u.%/ are?) ],

where

(22)

Fi(x) = /we—;—dz

is the exponential integral function.%

Equation (22) shows that V,,(0) increases with
decreasing ., i.e., decreasing temperature. Such an
increase has been observed experimentally.:5

For p>0 the calculation of the temperature-depend-
ent average potential requires the numerical double
integration

- © 2r .
Tr(p) = /0 dr /0 08 f(r) V (02— 2pr cosd) 12 (23)

This was done in the case of the (110) atomic row
in silicon (d=3.84 &) and Fig. 28 shows the calculated
temperature-dependent average potential as a function
of distance from the row. It can be seen that at dis-

5 A. F. Tulinov, Usp. Fiz. Nauk 87, 585 (1966) [English transl.:
Soviet Phys.—Usp, 8, 864 (1966)].
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tances small compared to the thermal-vibration ampli-
tudes of the atoms the average potentials (and,
therefore, the angular widths for a given particle
energy) decrease more rapidly with increasing tem-
perature than in the case of the planar potentials. At
a distance p=2arr, however, the width should be rather
insensitive to temperature.

C. Scattering into Channels

Figure 13 in Sec. 3C shows that some particles lose
less energy than normal even when the incident beam
is at an angle large compared to the critical angle, i.e.,
when no particles enter the crystal within the accept-
ance angle of the channeling direction. This suggests
that particles are being fed into channels by multiple
scattering throughout the crystal.

Consider a well-collimated beam incident on the
crystal at an angle ¥, with respect to a planar channel
and let 2A be the full acceptance angle of the channel.
First, we shall obtain an upper limit to the fraction of
the beam that suffers a lower energy than normal by
neglecting the escape of the particles from the channel.
Once a particle is scattered into the channel by small-
angle multiple scattering, we shall assume that it main-
tains its direction within an angle 4=A to the plane
throughout the rest of its trajectory. This upper limit
is given by

Pmax (W0, A, ) =1/(m (9,2»1/2[“’

=3{1—3[ (Yo—2)/ (82 N""],

where (§2) is the mean-square scattering angle through
a crystal of thickness ¢ and

db, exp(—0.2/ 02 )
A

(24)

2 z
®(x) = E/‘; dze?

is the error integral function.®® The plane is assumed to
lie normal to the x axis.

If particles fed into the channel have a high prob-
ability of escape, the channeled fraction reduces to a
minimum value given by

a8, =1/ 020 [ at. exp(—02/ 02
— (LAY /(02) ]
L (o 2)/((62))])
§2A exp[ — (¥e2/ 62))] for ALYy,
25)

For a given crystal thickness and a given particle
energy, {92) is fixed. Therefore, when ¢, is changed as
in the experiments described in Sec. 3 C, pmin varies as
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exp(—¥¢%/ (*):). This should show a Gaussian shape
with increasing o, which is, in fact, observed (Fig. 13).

D. High-Loss Trajectories

Under optimum channeling conditions, that is, when
the angle of incidence with respect to a crystal axis or
plane is zero, the fraction of channeled particles in the
beam is maximized. However, energy spectra in Figs. 12
and 13 show that under the same conditions, there is a
certain number of particles in the beam that suffer a
larger energy loss than normal. Obviously these par-
ticles are not channeled, since both their emergence
pattern (Fig. 18) and their dependence on the incidence
angle are different from the channeled particles that
suffer a lower energy loss than normal. We have referred
to this fraction of the beam in Sec. 3B as the high-loss
component. It is necessary to discuss now the possible
mechanism that is responsible for high-loss trajectories.

Lindhard* has stated some compensation rules
according to which, if the crystal thickness is small and
there is no appreciable energy change, the yield of a
given reaction averaged over all incidence angles must
be equal to the yield for the amorphous solid. In other
words, energy loss averaged over all incidence angles is
equal to “normal” loss and, if there are directions that
give a low energy loss compared to normal, there must
be others that give a higher loss than normal. Although
Lindhard’s arguments for the validity of this rule are
convincing, the statement of the rule does not answer
the basic question regarding the physical mechanism
that must be responsible for the existence of a trajectory
that samples a consistently high density of electrons
so as to experience a higher energy loss than the random
path.

The following observations are important in this
regard:

(a) The high-loss component is maximized at an
incidence angle of 0.2°-0.3° for 3-MeV protons incident
on {111} planes. This angle is approximately equal to
¥(0)=[V(0)/E]", where V(0) is the value of the
average planar potential at p=0.

(b) For a crystal of the same thickness and at the
same proton energy the Rutherford-scattering yield is
also maximized at the same incidence angle.26

(c) The energy loss suffered by “blocked” trajec-
tories emerging from a single crystal after Rutherford
scattering is higher than that of random trajectories
following a scattering event of the same angle.® The
same is true for “blocked” particles directly emitted
from lattice sites.52:5

These observations are consistent with the model®

52 Measurements made recently at Bell Telephone Laboratories
and Rutgers University for protons of MeV energies transmitted
through Si.

5 B. Domeij, Arkiv Fysik 32, 179 (1966).
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TasLE VII. Measured energy loss for channeled particles and estimates by the equipartition rule (Refs. 11, 2).

Crystal Er(MeV) (AE) o) (AE)equip  (AE)cquin/ (AE)norma1  (AE) (113/ (AE) normal

Silicon 1 2.81 0.33 0.35 0.48 0.44
4.83 0.22 0.24 0.49 0.45

8.58 0.14 0.15 0.49 0.45

11.00 0.12 0.12 0.49 0.48

Silicon 2 7.00 0.22 0.25 0.48 0.43
9.03 0.21 0.21 0.49 0.49

Germanium 5.00 0.22 0.32 0.48 0.33
7.00 0.17 0.26 0.49 0.32

9.00 0.15 0.22 0.49 0.33

11.00 0.12 0.18 0.49 0.33

according to which the high-loss trajectories are essen-
tially those that become subject to the process of
“blocking.” This mechanism may be looked upon as a
case of strong scattering of particles initially moving
exactly along an atomic plane or a row with zero average
impact parameter. For an isotropic distribution of
initial directions, the distribution of emergence direc-
tions out of the plane or row is strongly peaked at a
certain angle given approximately by ¥(0). Since
energy loss is negligible in this process, the same angle
becomes the angle of incidence with respect to the next
plane or row. In view of the reversibility of trajectories,
it is exactly this angle that, on the average, deflects
the particles again info the planes or rows. (However,
unlike channeled trajectories that are simply reflected
by the atomic arrays, the blocked trajectories may
emerge from the planes also on the other side.) This
process may, therefore, repeat itself while the distribu-
tion of emergence angles gets broader and some par-
ticles are lost to the random group. There is reason to
suppose that the broadening of the distribution makes
this mechanism more sensitive to thickness?24% than
channeling, where the potential keeps the particles
away from just the same regions where random muitiple
scattering is strong.

More experimental and theoretical work is required
to verify whether the above model is adequate in treat-
ing high-loss trajectories and ‘“blocked” trajectories as
essentially subject to the same mechanism of scattering.
However, the present observations do not give any
counterindication in this respect.

E. Role of Valence Electrons in Limiting Least
Energy Loss

One of the important questions to which a theoretical
model of channeling is required to find an answer is that
of the least energy loss of the channeled particles. It has

been suggested by Lindhard®*:® that, on the average,
one-half of the stopping power of a fast particle in a
system of electrons is due to close collisions (which are
minimized by channeling) and one-half to resonance-
type distant interactions (which cannot be avoided by
channeling). Thus the stopping power of a particle
could be reduced by channeling by a factor of 2 at the
most.

This prediction by the equipartition rule was be-
lieved!® to be confirmed by early experiments on the
energy loss of protons in silicon, but later experiments!!-18
in germanium showed significant disagreements.

Figures 19 and 20 show the spectra of particles trans-
mitted through the crystal in the {111} planar channels
of silicon and germanium, respectively, with least de-
flection (width within a solid angle of 7.45X 107 sr)
and compare these spectra with those of the “normal”
particles Ex for the same thickness and the incident
beam FEr. The spectrum for the “normal” particles is
obtained by rotating the crystal away from any low-
index plane or axis and that of the incident beam
corresponds to the case of no crystal. It can be seen
that the channeling peak Ec¢ is almost half-way between
the incident energy FE; and the normal emergence
energy Ey in the case of silicon; but in germanium
E;— E¢/Er— Ey is as small as 0.33.

If equipartition held exactly we would expect

(—dE/dx) aiss.= (— AE/d%) close="% (— dE/d2x) tota1. (26)

The crystal thickness Ax can be expressed as

Er dE
Ax = — 27
Ee (_dE/dx)total ( )

8 J. Lindhard and A. Winther, Kgl. Danske Videnskab. Sel-
skab., Mat. Fys. Medd. 34, No. 4 (1964).
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Tasire VIII. Calculated number of effective electrons/atom
contributing to channeling loss.

Z1os (1) Zioo (11}
Er (Energy loss) (Dispersion)
3.0 3.8 4.1
7.0 4.1 4.1
9.0 4.4 4.4
11.0 4.5 3.9

where E, is the emerging beam energy. Therefore,

U dE
ZAx v/;a'c (_ dE/dx) totnl' (28)

In other words, on the basis of equipartition one can
estimate the emerging energy of the channeling particles
E¢ by using normal energy loss but by taking one-half
of the crystal thickness.

Table VII shows the measured energy loss (AE) ;=
E;— E¢ and the values of E;— E¢ estimated on the basis
of equipartition.

It can be seen that agreement with silicon is reason-
able, but with germanium (Fig. 20) the energy loss of
channeled particles is as small as one-third of the nor-
mal. We therefore believe the agreement for silicon
to be accidental.

It is useful to look at the energy loss of well-channeled
particles on a different basis.®® As far as core electrons
in silicon are concerned, these are in the atomic K and
L shells. One can estimate the maximum distance from
nuclei at which excitation of such shells are still possible
by establishing an adiabaticity criterion

pmex=N0/AE, (29)

where v is the velocity of the particle and AE is the
binding energy of the electron in its shell.

For a K-shell electron in silicon, A E=1845 ey and
pmax for 2 3-MeV proton becomes as small as 0.05 A. For
well-channeled particles in the {111} planar channels
experimental p’s are of the order of 1 A. Therefore,
K-shell excitation can be neglected.

For L-shell electrons AE is between 100 and 150 eV.
Taking the value of 100 eV one finds that pmax is now
about 1.5 A. Therefore, L-shell excitation cannot be
altogether neglected. However, energy loss scales in the

ratio
a 2mv?
In fmex / In =
Pexpt AE

where pexpi=21.0 A for the {111} planes. It follows that
the energy loss due to L-shell electrons is reduced by

(30)

% C. Erginsoy, B. R. Appleton, and W. M. Gibson, Bull. Am.
Phys. Soc. 11, 176 (1966?.

APPLETON, ERGINSOY, AND GIBSON

161

more than 909, by channeling. We shall neglect this
loss in what follows.

Energy loss to valence electrons alone can be written
in the form

(—dE/dx) va1= 4w 22N L/mi?, (31)

where

L=Za1 In(v/v5) +Z1o[ In 2mvvp/fwp) ].  (32)
The first term on the right-hand side of (32) corresponds
to the contribution of collective (plasma) excitations
which use the total density of valence electrons (Zya=
4 in silicon). The second term gives the contribution of
the local density of valence electrons in the channels
to single-particle excitation. This division of L into two
contributions is possible in terms of the random-phase
approximation of Bohm and Pines.®® In the above
equation v is the velocity of the particle, v the Fermi
velocity of the free-electron gas describing the valence
electrons, fiw, the plasmon energy (16.6 eV in silicon),
and Zie=1m10/N, where n. is the local density of
valence electrons in the channels.

Knowing the crystal thickness Ax from the measure-
ment of normal energy loss, we can write

Er dE
e
Ec (—dE/dx) val

and obtain Zj in the different planar channels by
integrating Eq. (33) with the use of Eqgs. (31) and
(32). For the {111} planar channels of silicon and for
a proton beam of 3.0 MeV, we obtain Zi ju1;=3.8 by
this method.

The straggling of the channeling peak, too, can give
information regarding Z.. Since collective excitations
do not cause any appreciable straggling in energy loss %
the straggling of the well-channeled particles is due to
close collisions with the local electrons, and we can write

(33)

W A—=AP Ziotar
Q?  AP—A? Ziw

(34)

where Qy? and Q¢? are the true variances of the energy
loss and channeled loss (Table V).

Ziota1= 14 in silicon
An=29.71 keV;
Ar=14.50 keV;
Ac=20.2 keV;

for Er=3.00 MeV, as measured (cf. Table V).

This gives Zie (u1y=4.1, which compares well with
the Zie qy=3.8 estimated by the essentially inde-
pendent measurement of the energy peaks.

% See, for example, D. Pines, Elementary Excitation in Solids
(W. A. Benjamin, Inc., New York, 1963), p. 148.
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At higher energies, losses to L-shell excitation cannot
be neglected for channeled particles. However, the
results shown below in Table VIII along with the
3.0-MeV result, show reasonable agreement.

It would be valuable to have similar experiments at
even lower energies than 3 MeV.

5. CONCLUSIONS

We have made a systematic study of channeling
effects in the energy loss of 3-11-MeV protons in silicon
and germanium single crystals. The main conclusions
of the study may be summarized as follows:

(1) The energy loss is strongly dependent on the
direction along which a well-collimated beam of par-
ticles enters the crystal. When this direction is parallel
to some major crystal axis or plane, a certain fraction
of the particles in the beam suffers an energy loss lower
than normal. This fraction is largest for the most ‘“open”
crystallographic directions. In silicon this is the (110)
direction; among planes the {111} planes provide the
best channeling.

(2) In addition to the channeled particles that suffer
an energy loss that is low compared to the normal loss,
there are particles experiencing a larger energy loss than
normal. The fraction of such particles in the beam is
maximized at an incidence angle where no appreciable
channeling occurs. The angular distribution of these
high-loss particles is also different from that of chan-
neled particles in emergence from the crystal.

(3) The minimum energy loss associated with the
(110) axial channeling is equal, for the same energy
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and same crystal thickness, to that associated with the
{111} planar channeling. The same holds for the (111)
axial channeling and {110} planar channeling. This
indicates that, over the energy range covered, the
well-channeled particles do not stay within an indi-
vidual axial channel but wander across from channel to
channel, sampling an electron density that is essentially
equal to that existing between the most widely spaced
of the planes that intersect the axis.

(4) The angular widths of channeling agree well with
the values calculated on the basis of an average poten-
tial, and a distance of closest approach equal to the
Thomas-Fermi radius of the atoms.

(5) High-loss trajectories may be looked upon as
essentially “blocked” trajectories that are deflected
away from atomic planes or rows.

(6) The minimum energy loss suffered by the best
channeled particles is well accounted for by the inter-
action of the particles solely with the valence electrons
in silicon, if the energy is sufficiently low that inner-
shell electrons do not contribute to excitations at large
impact parameters.
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