
ELASTIC ELECTRON —H SCATTERING

since ro is arbitrary. Due to antisyIrunetry the 6rst
equation in (6.8) gives only one relation, which corre-
sponds to the continuity of s at r =r'. The second equa-
tion gives 4 relations, of which only 3 are independent
of the 6rst equation, which include the smoothness of 2.

"

and the proper jump condition on g' at r= r'.
The noniterative determination of g for a potential

containing two nonlocal components, one separable
and the other a Green's function, can be considered an
extension of the techniques used by Yamanouchi,
Percival, and Marriot for the noniterative determina-
tion of a wave function for such nonlocal interactions.
G could in fact have been obtained somewhat more
directly by first rewriting (1.1) in the form of coupled

equations, analogous to (6.4), and then considering the
regular and irregular wave function solutions of the
coupled homogeneous equations.

For the case of L=O, e= —1, the second term in the
right-hand side (rhs) of (6.2) can be shown to cancel
the effect of the 6rst term in the rhs of (6.1).Thus one
obtains g by simply dropping the (E—2Erp)rr' term
in gs and the (E 2Er—p)r term in tttp2&", and also
dropping the second term in the rhs of (6.2).

One of us (L.S.) would like to express his warm thanks
to Dr. Mittleman for his original suggestion that the
equation for g could be decoupled, so that it should be
possible to write g as a sum of products, and for some
helpful comments.
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Experimental data on the differential scattering of He+ by Ne and Ar in the energy range from 10 eV to
100 keV are plotted in a reduced coordinate system suggested by a scaling law for the forward scattering.
The resulting curves are used to determine the interaction potential. The repulsive interaction dominating
at higher energies shows pronounced shell-structure sects, leading to the deduction of the screening con-
stants for the L and M shells of Ar and for the. E and L shells of Ne. At lower energies a polarization attrac-
tion appears, allowing deduction of the polarizabilities of Ne and Ar. A simple analytic potential is con-
structed, including a polarizability term appropriately damped inside the outer shell, which 6ts the data
over the entire range. In addition to the pure elastic scattering, eGects of inelastic interactions are diagnosed.
A prominent curve crossing is located and the scattering pattern arising from it is interpreted by a semi-
classical theory. In collisions with closer encounters, a different type of inelastic. process appears which
apparently involves a more intense coupling than the curve crossing and which appears to.open up a number
of competing inelastic channels.

I. INTRODUCTIOÃ

& 1HE connection between the electronic states of a..diatomic system and its collision properties is best
studied in differential scattering where the large amount
of available information provides a stringent test of our
theoretical understanding. Such experiments are now
producing a growing mass of data of spectroscopic
quality which deserve detailed interpretation. These
data can be used to test predictions derived from prior
theoretical knowledge about the electronic states of the
system, but it is also possible to deduce a great deal of
information about these states empirically from an
analysis of the scattering spectra. It is to such an
analysis that this paper is devoted.

$ Supported in part by the National Aeronautics and Space
Mministration and by the U.S. Army Research Once.

Symmetric systems provide the most information
because of the structure in the interference patterns that
arise in them. For example, in the system He++He,
oscillations appear in the elastic scattering pattern due
both to electronic symmetry (g and tt states) and
nuclear symmetry. ' These oscillations can be used to
deduce detailed empirical information about potentials
for the states involved. Similarly, in Ne++Ne, Jones'
has observed an additional symmetry eGect due to
participation of II as well as Z states in the scattering.
Most theoretical information on the potentials is
available for symmetric systems with 4 or fewer elec-

' R. P.Marchi and F. T. Smith, Phys, Rev. 139, A1025 (1966);
%'. Aberth, D. C. Lorents, R. P. Marchi, and F.T. Smith, Phys.
Rev. Letters 14, 776 {1965).

'P. R. Jones, T. L. Batra, and H. A. Ranga, Phys. Rev.
Letters 17, 281 (1966).
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trons. For experimental reasons, He++He has been
studied in greater detail. than the others, and even this
3-electron system has not been fully explored.

In asymmetric systems, on the other hand, inelastic
processes are emphasized, since such processes as
charge transfer, for instance, can no longer occur
elastically. Because of the lower symmetry of these
systems, the potential energy curves take a different
form and certain interactions between them are allowed
which are forbidden in symmetric systems. Except for
H++He and its companion He++H, which have been
studied experimentally by Everhart and co-workers, '
the potential-energy curves have not been studied in
much detail for the asymmetric systems most readily
accessible to experimental study. Thus, the study of
asymmetric systems provides a valuable testing ground
for our abilities to deduce information about the elec-
tronic states purely from the scattering data. It is from
this point of view that we have attempted a thorough
analysis of the data on scattering of He+ by Ne and
Ar, 4 since these data provide us with a good deal of
information about some of the low-lying potential
curves for these systems.

The principal tool that we have used in the analysis
of the diGerential scattering experiments is a recently
developed approximate scaling law for forward scat-
tering. ' The experimental data in differential scattering
are naturally a function of at least two variables, the
angle of scattering and the energy. Because of experi-
mental limitations, cross sections are available at any
given energy only over a limited range of ang1es. The
scaling law is important because it allows us to compile
into one picture data taken at widely varying energies,
in our case from 10 to 100000 eV. These data were
obtained at two laboratories using difterent techniques
and thus provide an interesting test of the value of the
scaling procedure.

The results of the analysis we report here greatly
exceed our initial expectations. We are convinced that
differential scattering is a potent tool for probing
atomic interactions both in the outer, chemically active,
shells and in the inner core. The resulting spectra show
much detailed structure, comparable to the details
seen in optical spectroscopy or in mass spectra, and
even more closely analogous to those seen in nuclear
scattering. These features can be interpreted quantita-
tively to provide much information about the poten-
tials and interactions of the electronic states of the
colliding diatomic system. We hope to see a rapid
development of the resulting collision spectroscopy.

' Herbert F. Helbig and Edgar Everhart, Phys. Rev. 136,
A674 (1964).

4%'. Aberth and D. C. Lorents, Phys, Rev. 144, 109 (1966);
P. R. Jones, F. P. Ziemba, H. A. Moses, and E. Everhart, ibid.
113, 182 (1959); E. N. Fuls, P. R. Jones, F. P. Ziemba, and E.
Everhart, ibid; 107', 704 (1957).

5 Felix T. Smith, R. P. Marchi, and Kent G. Dedrick, Phys.
Rev. 150, 79 (1966).

II. THEORETICAL CONSIDERATIONS

The Scaling Principle

The experimenta1 data in differential scattering are
usually presented in terms of the differential cross
section o.(|t, E) as functions of the experimental vari-
ables angle and energy (we shall always assume that
the conversion to center-of-mass variables has been
made). In computing this functional relationship from
the interaction potential, the impact parameter b plays
a prominent part, although it is not actuaIly observable
in scattering experiments. It has been recognized for
some time that the quantity r=E0 in small-angle
forward scattering is primarily a function of the impact
parameter, and Lehmann and Leibfried' have shown
that this is a consequence of the fact that r can be
expressed as a power series in the reciprocal energy in
which the coefficient of each term is a function of b

alone:

The 6rst term in this series is

d V'I dr
rp(b) = b—

(rP b2) 1fe

By inverting the function (1),we obtain b as a function
of r and E, and this in turn can be written as an expan-
sion of the same sort:

b (r, E) = bp(r) +Z 'bg(r) ~ ~ ~ .
From the usual expressions for the differential cross
section, it is then easy to see that an appropriate
reduced cross section which is expandable in like
manner can be constructed as follows:

p(r, R) =0 sin00 (8, Z)

=-,'
~

Bb'/8 lnr )
=pp(r)+E 'pg(r) ~ ~ ~ . (4)

The scaling principle p(r, E)~pp(r) for small angle
scattering follows immediately if one omits all but the
leading term in the series of Eq. (4) .The advantages of
using this scaling principle are obvious. Differential
cross sections obtained at various energies and angles,
when plotted in a reduced form (i.e., p versus r), yield
a single curve. ~ This produces an immediate indication
of the precision of the experiments and it also greatly
simplifies the inversion procedure. Furthermore, fea-
tures that occur at the same value of r for different
energies indicate that they originate at a common
region of the interaction potential, since constant r

P C. Lehmann and G. Leihfried, Z. Phypik 172, 465 (1962).
7 It appears that the function p& (r) vanishes fairly rapidly at

small values of r, the consequence is that the scaling principle
is useful at small enough angles even at quite low values of the
energy, but naturally as the angle is increased the reduced
cross section p (r, E) ultimately deviates f'rom the limiting function
po(~}.As a result, what seems to be a high-energy expansion turns
out really to be a small-angle expansion.



161 COLLISION SPECTROSCOPY. I 33

implies nearly constant impact parameter and distance
of closest approach. An additional advantage of the
scaling principle is that it removes the singular behavior
of 0. as g approaches zero, thus permitting easier identi-
fication of abnormal behavior at small angles.

Since we shall ultimately be interested in attempting
to construct the potential function from the scattering
data, we shall give here the equations that can be
employed. By integrating the first term of Eq. (4),
we obtain an estimate of the impact parameter as a
function of r.

bss(r) = 2 Ps(r') d lnr'.

III. TREATMENT OF THE EXPERIMENTAL DATA

I. General

The most detailed information on the elastic scat-
tering of He+ by Ne and Ar is that of Aberth and
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Fro. 1. Reduced cross sections from the absolute (calibration)
measurements on the scattering of He+ by Ne. The lower curves
show the original data. The upper curves show the data with a
correction for angular resolution. Three theoretical curves are
shown. T—F is the one corresponding to the Thomas-Fermi
model. Qi is a one-term screened Coulomb potential. Qr is a two-
term screened Coulomb with polarization attraction. (The base
of the logarithm is 10.)

' G, H, Leone aqd E, Eyerhart, Phys. Rev. 120, 2064 (1960) .

From this it is easy to obtain an empirical reduced
deflection function rp(b), and the potential can then be
obtained by an integration:

2 " rp(b) db
l'(r) =-

(b2 r2) 1/2

This method of obtaining a potential is related to the
procedure introduced by Firsov and used by Everhart
and his colleagues, but it has the advantage of making
use in one expression of data from a number of diferent
energies. Of course, it is often possible to avoid full use
of these inversion equations by fitting parameters in an
assumed analytical form for the potential V(r) or the
reduced deflection function rs(b) .
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FXG. 2. Reduced cross sections from the absolute (calibration)
measurements on the scattering of He+ by Ar. The lower curves
show the original data. The upper curves show the data with a
correction for angular resolution. Three theoretical curves are
shown. Qi represents a one-term screened Coulomb interaction.
Q& represents a two-term screened Coulomb interaction. Qs repre-
sents the three-term screened Coulomb with a polarization at-
traction. (The base of the logarithm is 10.)

Lorents. 4 Their original data have been replotted and
are presented as logarithmic plots of p against r in
Figs. 1 through 6. In order to compile all the data
together for Figs. 3 and 4, we averaged the information
from all the runs at each energy. Since diferent inter-
vals were used in tabulating the data from diBerent
runs, it was often necessary to interpolate before
averaging, and a 4-point Lagrange interpolation was
used. The averaging was then done with the data from
each run weighted by the number of points measured
in that run.

The data of Aberth and Lorents were taken at
laboratory energies from 10 to 600 eV. In addition,
Everhart and his colleagues' have published measure-
ments on the same systems at much higher energies,
namely, from 25 to 100 keV. They did not measure the
elastic scattering, but they provide information on the
total scattering independent of charge and energy loss
at each angle and they also measured the fractions of
this total associated with charges 0, +1, and +2. We
have replotted their data in the reduced coordinates
using only the total values, i.e., the scattering independ-
ent of charge. At the high energies covered by these
experiments, this cross section is a good representation
of the quasielastic scattering that is the simplest to
understand. At these energies, scattering at only a few
degrees involves very penetrating encounters with
small impact parameters, and the deQection experienced
by the heavy nuclei is governed by the interaction
mainly in the innermost region largely inside the
electron clouds, where the potential approximates a
simple screened-Coulomb form. On the other hand, the
charge distribution when the particles finally separate
depends on interactions between the outer electrons
which remain important at internuclear distances com-
parable to the Bohr length ao and so is fairly independent
of the forct;s which control the ngcleap scattering.



SMITH, MAR CHI, AB ERTH, LORENTS) AND HEINZ

6.5 6

lO

GP 30 5o 7o
IOO

5 4 5 2 I .4

E —18

O

—l9 He+-

I.O 2.0 3.0 4.0
log 7 —eVdeg

5.0 6.0

FIG. 3. Reduced plot of the pure elastic-scattering data in He++Ne at energies from 10 to 600 eV, together with the
quasielastic scattering data of Everhart et a/. from 25 to 100 keV. The elastic-scattering data are relative measurements
calibrated against the data of Fig. 1. The theoretical curves marked pi and ps are the same as those of Fig. 1. In addition, we show
the limiting straight lines for pure coulomb scattering with several values of the eGective nuclear-charge parameter g=Z~Z2. The
reduced impact parameter P is shown at the top of the figure. (Thehase of the logarithms is 10.)

Everhart and his co-workers indeed observed signifi-
cant, though gradual, variation of the charge ratios as a
function of angle, but these ratios clearly depend on
8 as well as v, and we suspect that more details of their
energy dependence are needed before it will be possible
to analyze their behavior in detail. Since we are inter-
ested mainly in the interaction potentials responsible
for the scattering, we have ignored these charge ratios
here.

In Figs. 3 and 4 we present the combined data of
Aberth and Lorents on the low-energy elastic scattering
and the data of Everhart and his colleagues on high-
energy quasielastic scattering.

In addition to the elastic and quasielastic scattering
data, a certain amount of information on inelastic
scattering has been obtained in two ways. Aberth and
Lorents measured energy-loss spectra at a few angles
in the course of their experiments. Despite relatively
poor energy resolution, these spectra show some
interesting structure. Novickl and his co-workers have
recently observed the optical spectra excited by charge-
transfer collisions at fairly low energies in the same
systems. These observations provide additional in-

M. Lipeles, R. Novick, and N. Tolk, Phys. Rev. I.etters
15, 815 (1965)t

formation which should ultimately be incorporated in a
consistent picture of the scattering processes.

2. Small-Angle Behavior

The experimental data of Lorents and Aberth, when
originally plotted in the reduced coordinates p versus v,
showed a decided falloff at small angles at each energy.
This feature is clearly due to deteriorating angular
resolution of their rectangular slit system as 8—&0. In
the lower part of Figs. 1 and 2 we show examples of
this behavior in the data from the calibration runs for
He++Ne and He++Ar, in which the cross sections were
measured absolutely. In their falloG at low angles the
successive curves are strikingly parallel to each other,
and the same feature appears in the rest of the data for
both target gases. This appears to be a happy by-prod-
uct of the fact that the reduced cross section p(r, E)
becomes almost constant at small v except near a
"rainbow" feature.

In view of the finite angular resolution, the experi-
mental cross section really represents an average over a
range of angles near tY. We may express the averaging
symbolically through the distribution function f(8, rM),
recognizing that lN may really stand for several degrees
of freedom in the geometry of the laboratory measure-
ments. Ilecause of the small-angle connection between
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FIG. 4. Reduced plot of the
pure-elastic-scattering data in
He++Ar at energies from 10 to
600 eV, together with the quasi-
elastic scattering data of Everhart
et al. from 25 to 100 keV. The
elastic-scattering data are relative
measurements calibrated against
the data of Fig. 1. The theoretical
curves marked Qi and Qs are the
same as those of Fig. 2. The
solid triangles represent curve
Qs from Fig. 2. The location of
the rainbow is shown at r, . In.
addition, we show the limiting
straight lines for pure Coulomb
scattering with several values of
the effective —nuclear-charge pa-
rameter f=Z1Z2. The reduced im-
pact parameter P is shown at the
top of the figure. (The base of the
logarithms is 10.)
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0' and p,

p(E8, E)=8'o(8, E),
it is easy to see that

p, ,g(E8, E)

=8' o (8+LB, E)f(8, 68) dh8

PLE(8+(M), Ej(1+68/8) 'f(8, 68) dLN. (8)

where
P s&(E8 E)=ps(E8) J(8) (9)

As long as p is a slowly varying function of r (and E),
we can take it outside the integral (to be more sophisti-
cated, we could expand p in Taylor's series about E8),
with the result

where it is changing rapidly as it does in a rainbow
region. In such a case the use of the correction function
J(8) is not really justified. The same thing is true in
symmetric scattering (e.g. , He++He), where p(r, E)
oscillates rapidly. In the asymmetric cases under
examination here, the experimental results show that
p(r) varies slowly over most of its course, and we have
therefore been able to apply a single instrumental
correction to the data for both target gases, Ne and Ar.

The best simple empirical form we could find for
J(8) was

logzo J(8) = 8/8. — (11)

Qualitatively, this expresses the behavior to be expected
when the rectangular slits intercept the conical dis-
tribution of scattered ions, the resulting error getting
worse as the angle of the cone decreases. Since the
geometry differed between the absolute (calibration)
runs and the relative ones, we obtained two values
of 8

J(8) = (1+68/8) 'f(8 rM) dt's. (10) 8„);b——0.64', 8„)——0.53'. (12)

The function J(8) can be evaluated approximately by
comparing the experimental curves with each other.
The resulting function can be used as an empirical
correction to the experimental curves.

The transition from Eqs. (g) to (9) is of course
legitimate only where ps(r) is slowly varying, and not

We have applied this correction to all of the data, in-
cluding the regions of rapid movement in p(r), but the
original data can be recovered if desired by reversing
the correction.

In the upper part of Figs. 1 and 2 we show the result
of this correction when applied to the absolute calibra-
tion data. The resulting curves diGer in magnitude only
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F10. 5. He++Ne. Details of the reduced cross section as a function of reduced angle for individual
runs at several energies to show the curve-crossing perturbation.

by variations of the size expected from the experimental
uncertainties (due largely to the limitations of the
pressure measurement), and provide an experimental
verification of the validity of the scaling procedure.

The original calibration of the relative data at
energies below 100 eV was done by an indirect pro-
cedure because absolute measurements were not feasible
at lower energies. Instead, the curves were normalized
to the 100 eV curves at a constant angle of 3', assuming

that

I(3', E) I(0', 100 eV) o.(3', E)
I(0', E I(3', 100 eV) 0 (3', 100 eU)

'

where the I's are measured currents. We now believe
that it would be better to normalize the curves to each
other by requiring the reduced cross sections p to be
equal at equal values of 7. Since the scatter among the
relative curves as originally normalized is not much
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greater than the scatter among the calibration curves,
such a recalibration did not seem worth while. For this
reason, a methodical trend can be seen in the location
of the curves of lowest energies in Figs. 3 and 4 which
is probably spurious.

IV. INTERPRETATION OF DATA

1. Principal Features

In Figs. 3 and 4 we have plotted both the low-energy
elastic spectra and the quasielastic spectra at high
energy due to Everhart and his associates. The data
show a gratifying tendency to fall into a single simple
pattern in accordance with the expectations aroused by

the existence of a scaling law. Several salient features
can be observed which we shall discuss in detail in turn.

(a) We observe that the high-energy data appear to
fall into a single smooth pattern which approaches a
slope of —2 at the right-hand end. The curve can be
extrapolated reasonably well to the left to pass through
a fairly smooth region approaching the horizontal in the
low-energy elastic-scattering data. From this curve we
can obtain information on the repulsive potential.

(b) In He++Ar a steep vertical portion is observed
at the extreme left-hand end of the low-energy curves
which we attribute to rainbow scattering due to an
attractive interaction.

(c) A characteristic structure of peaks and valleys
which occurs at constant values of r at all energies is to
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pure Coulomb form in a way that reRects the increasing
shielding of the nuclear charges by the electron clouds.

The simplest functional form that can be applied to
data of this:sort is the exponentially shielded Coulomb
potential originally used by Bohr:

(14)

the constant f according to the simple theory should be
equal to the product of the nuclear charges

f=ZiZ2, (15)
-16.8
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loo

and according to Bohr the screening length is given by
—g LZ 2/3+Z 2/sj —i/2 (16)

- I/2u= E (v -r~)

FIG. '?. He++Ne. Details of the curve-crossing perturbation
plotted in the variable I instead of v to show the proper scaling
of the interference oscillations; individual runs are shown
separately. The scale on the left applies to the lowest curve and
each of the other curves is displaced from its neighbor by 0.1 unit
on the scale.

be seen in the elastic-scattering data beginning at
logipT —3.2 fol' He++Ne aild at logioT —2.8 for He++Ar.
This perturbation of the elastic-scattering pattern we
attribute to a prominent curve crossing. It is shown
more clearly in Figs. 5 through 8, where data from some
individual runs are reproduced.

(d) Toward the right-hand end the elastic-scattering
spectra in both cases exhibit a very pronounced and
extreme drop, which we attribute to the onset of
inelastic processes (including charge transfer). The
effect on the elastic scattering is an extensive loss to
inelastic channels.

2. The Repulsive Potential

A. The EmPiricat Fit

In principle it would have been possible to estimate
the potential purely numerically by drawing the best
smooth curve through the Everhart data and through
the elastic data to the left of the region of inelastic
losses and using the inversion procedure of Eqs. (5)
and (6) .The scatter in the data makes such a procedure
more ambiguous than would be desired, and we have
found it more profitable to attempt to fit the curves
using simple, physically plausible, potential functions.

The high-energy data shown in Figs. 3 and 4 were
previously used by Lane and Everhart' to obtain an
estimate of the potentials by the use of Firsov's Inethod.
They obtained separate potentials from the data at each
energy. However, as the reduced plots of Figs. 3 and 4
show, these data are entirely consistent from energy to
energy, the scatter between them never exceeding
about 30% and usually being far less. At the right-hand
end these curves approach a slope of —2, which is to
be expected for pure Coulomb scattering between the
nuclei. Toward the left they gradually depart from the
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FIG. 8. He++Ar. Details
of the curve-crossing pertur-
bation plotted in the variable
u instead of 7. to show the proper
scaling of the interference os-
cillations; individual runs are
shown separately. The scales
on the left apply to the lowest
curve at each energy; the
upper curves for 30 and 100
eV are displaced by 0.1 unit,
and those for 50 eV are dis-
placed by by 0.2 unit.

However, the potential of Eq. (14) can be treated as a
two-parameter function with the constants l and c to
be evaluated by making the best fit to the experimental
results. It is easy to do this using the reduced functions
p versus v. appropriate to the exponentially screened
Coulomb potential tabulated in Ref. 5. When this is
done, we find the following values of t and c:
He++ Ne:

cN, =0.68&0.04 atomic unit (a.u.) =0.36+0.02 A

fN. 17.5+——1.

He++ Ar:

c~,——0.80&0.06 a.u. =0.425+0.03 A.|g, =30&2.

The values of f are obtained mainly through fitting the
high-energy data. The values of c are obtained by
requiring the curve to go through the low-energy data
of Lorents and Aberth; for this purpose the fit was made
directly to the corrected calibration data of Figs. 1
and 2. The resulting curves are those marked 1 in Figs.
1 through 4.

Many authors have attempted to improve upon the
simple exponentially shielded Coulomb potential by
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cp —0.8853gpt Zt&/s+Z r/~ps/s (18)

When Lane and Everhart computed empirical poten-
tials from the scattering data, they observed better
agreement with the Thomas-Fermi-Firsov formula

(18) than with the Bohr formula; we suspect this to be
due mainly to the change in screening lengths rather
than to the form of the screening function. More
recently Firsov" has introduced two further alterna-
tives:

cp ——0.8853ap X7ZtZs/3[ (Zr+Zs) /' —Ztr/' —Z2 /'g

(18')

making use of the modified shielding function derived
from the Thomas-Fermi statistical model for the
electron clouds. This potential,

VTs ——(t e'/c) (c/r) fTs (r/c) (17)

(where fop is a tabulated function'"), can also be treated
as a two-parameter function and the reduced cross
section computed for it. If that is done, it turns out to
deviate very little from the reduced cross section for the
case of simple exponential shielding except at small
values of v, where the Thomas-Fermi function behaves
as shown in the curve marked T—F in Fig. 1. This
behavior is related to the known deficiencies of the
statistical model in the outer part of the atom. The
Thomas-Fermi function therefore gives no significant
improvenient in 6tting the experimental results, as far
as the shape of the function is concerned.

With regard to the shielding constant c, however,
several choices have been suggested in addition to a
purely empirical fit. Firsov" has introduced a formula
different from Bohr's to be used in connection with the
Thomas-Fermi function:

2g2

V& — Pge r/c3r+8e —r/cs+2e —r/cr?f-
r

(19)

Since we are unable to evaluate c~ from the data, we
have in fact assumed it to be zero and neglected the last
term. The best adjustment of the constants is then
c~=0.90 a.u. cI,=0.14 a.u. Curve 2 in Figs. 2 and 4
shows the fit of this function to the experimental data.

The argon data thus lead unambiguously to a simple
shell structure given by Eq. (19).For neon the corre-
sponding potential is

From the data tabulated above it is evident that the
effective value of the product of nuclear charges i is
significantly smaller, even in the experiments at 100
keV, than the true product of the nuclear charges, which
would be 20 for neon and 36 for argon. It is immediately
obvious, however, that agreement would be greatly
improved if we assume that E-shell shielding is sub-
stantially complete in both these cases. In that case, we
expectiN, 16——, t~, 32——

By comparing Figs. 3 and 4, it is clear that two-
parameter potential functions fit the neon data con-
siderably better than the argon data. In the latter case,
over a considerable range in v, Everhart's results fall
below the curve 1 by a factor of 2, which is much greater
than the apparent internal error in his experimental
results. This suggests a different exponential shielding
length applicable to the high-energy data from that
applying to the low-energy elastic data. A plausible
source for this is the existence of separate screening
lengths for the L-shell and the M-shell electrons.
Assuming this to be the case, we estimated the L-shell
screening length from the Everhart data alone and
obtained c~=0.14 a.u. The Anal result for the repulsive
potential in argon is then

and
CF- =0.8853CB. (18") VN, = (2e'/r) $8e "/'z+2e "/'rr5 (2o)

Using (16), (18), (18a), and (18b), the various pre-
dicted values of c are (in a.u. )

CB CF CFr CFrr

Ar:
Ne:

0.344
0.398

0.279
0.321

0.324
0.380

0.305
0.353

-1o J. Lindhard, M. ScharB, and H. E. Schist, Kgl. Danske
Viderskab. Selskab, Mat. Fys. Medd. 33, No. 14 (1963)."O. B.Firsov, Zh. Eksperim. i Teor. Fiz.33, 696 (1957) LEnglish
transl. : Soviet Phys. —JETP 6, 534 (1958)$.

~O. B. Firsov, Zh. Kkspeirm. i Teor. Fiz. 34, 447 (1958)
fEnglish transl. :Soviet Phys. —JETP 7, 308 (1958)j.

none of which have any pronounced resemblance to
the experimental values we have measured here. The
great difference between our conclusions and Lane and
Everhart's in this regard arises because the evaluation
of c is especially sensitive to the low-energy data, which
were not available to them. c,= (e'/2I, ) '/s; rrp~~trp/Z;. (21)

This enables us to make the comparisons shown in
Table I.We can also compare our screening lengths with
those obtained in Hartree (or Hartree-Fock) calcula-
tions. Syatt has given a useful tabulation of effective

The data probably do not really sufBce to evaluate cz
reliably in this case, but we obtain a reasonable fit to
the Everhart results by assuming cz—0.07&0.02 a.u.
A revised fit including this term and a polarization term
(see the next section) gives a probable value of cr, ——0.70
a.u.

Since a shell-structure potential is so insistently
demanded by the empirical data, it is natural to com-
pare the screening lengths with the predictions of
atomic theory. The effective radius to be associated
with each shell is well known to be connected with the
ionization potential of that shell (at least approxi-
mately) by the simple hydrogenic formulas
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Ter.E I. Shell-structure shielding lengths.

Element

Ar

Ne

She11
I

(eV)

15.755{I&)
422. 6(Ig)
4115(I&g)

21.559(Ig)
1195.4(Ig)

(eg/2I) 1/2

(e.u. )

0.93
0.18
0.057
0.79
0.107

O. iii
0.059
1

0.111

0.90
0.14

&gsxpt

(a.u.)

~ ~ ~

0.70
0.07 (+0.02?)

Hartree-type
calcuIations

(eu)

0.588,"b 0.596"0
0.122,~ b 0.104~ '

William J. Hyatt, Phys. Rev. 104, 1298 (19S6).
A. E. Ruark, Phys. Rev. 57, 62 (1940).

~ J. Holtzmark, Z. Physik 55, 437 (1929); 66, 49 (1930).

screening constants from Hartree-type calculations,
which we have used in the table.

B.Dzsclsszos

where
V(r) =ZgZg(r) e'/r,

z, (r) =z,—kr f ~'p. i(rj dr.
0

(22)

(22')

Obviously such an approximation can only work if
Z&/Z& is small; otherwise p, &(r) would be too greatly
modified in going from the atom Z2 to the united atom
with Z&'=Z&+Z&. It should quite generally be possible
to approximate (22) further by a sum of exponentially
shielded terms.

3. Rainbow Scattering and the Attractive Potential

For He++Ar the reduced cross section shows a clear
indication of the sharp rise at small reduced angles that
is typical of the rainbow behavior due to an attractive
well in the potential. This feature occurs at a rainbow
angle of about v.,=32 eV deg. Associated with this
structure at somewhat larger reduced angles, the
reduced cross section shows clear signs of falling below
the curve calculated from the screened Coulomb repul-
sive potential, Indeed, over a considerable range the

The 2-term screened-Coulomb functions we have been
led to are clearly on)y an approximation to the true
interactions responsible for the observed scattering.
They are, however, extremely valuable because of the
ease with which they can be generalized to apply to
other cases of scattering of light ions (or atoms) by
heavy ones. One condition that clearly must be fulfilled
is that the light projectile must either be fully ionized
or be approaching with sufhcient energy to strip oG
its remaining electrons before it is signi6cantly de-
Qected from its initial course. In that case the projectile
nuc]eus may act essentially as a CouJomb probe
mapping the field in the inner core of the target atom.
If the projecti1e's nuclear charge is Z&, the target's is
Z&, and the electron-density distribution in the unper-
turbed target is p,~(r), the potential governing the
nuclear motion can then be approximated by

reduced cross section is essentially horizontal. A similar
horizontal region is seen in the data for He++Ne, but
no rainbow structure in the region accessible to meas-
urement. However, the fact that the experimental curve
falls below the screened Coulomb one is a clear indica-
tion of the occurrence of an attractive term in the
potential.

The most obvious source for attractive forces is the
polarization of the target atom by the approaching ion.
Formally, a simple polarization term with its r 4

dependence has an embarrassing singularity at the
origin. Physically, however, the dominating contribu-
tion to the polarization is due to the outermost shell of
electrons in the atom and must fade away as the
approaching ion passes through this shell. It seems
appropriate therefore to represent the complete
polarization term by a function which has the proper
r-4 behavior at large distances and which is exponen-
tially damped to at most a constant limit as r—&0.

The appropriate screening length for this exponential
damping would c1early be identical with the screening
constant for the outermost electron shell. It is therefore
possible to introduce such a screened polarization term
with only a single new constant, namely, the polariza-
bility. The simplest form that avoids the singularity of
the origin is

V~,&= —(ne'/c') x 4/1 —e *(1+x+s'x'+~~xg) ), (23)

where x= r/c. This screened polarization term is similar
in form to one previously used by Temkin in the
problem of e—H scattering. "

In order to compute the reduced scattering functions
appropriate to this term in the potential, some addi-
tional analysis must be performed. This is done in the
Appendix, where we show that all functions of this type
can be handled by using tabulated Bessel functions and
their integrals. It is therefore a simple matter to fit the
experimental curve by using the polarizability as an
adjustable parameter. This Qt can be carried out in 2
ways, by adjusting either to the reduced rainbow angle
or to the horizontal part of the reduced cross section
(see Appendix). In the case of He++Ar the polariza-

"A. Temkin, Phys. Rev. 116, 358 (1959); A, Temkm
C. Lamkin, ibid. 121, 788 (1961).
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TABLE II. PolarizabiTity.

Ar
Ne

(Lo)

1.85

dev
(A.o)

1.65~0.10
0.41~0.04

(Lo)

1.64
0.395

(eV deg)

32
(4.6)

b„/uo

6.6
6.1

&min/+o

5.7
5.4

~min

(eV)

—0.146
-0.047

~ Predicted.

bility required for these two adjustments agrees within
10%. This gives us considerable confidence that the
postulated potential is really of the correct shape. (We
have in fact tried a different shape, namely, a pure
exponential attraction added on to the screened
Coulomb repulsion, and we find that it is impossible to
6t both features of the experimental curves even by
allowing the exponential constant to vary as well as the
pre-exponential magnitude. ) In the case of He++Ne
only one method of Qtting the polarizability is available
to us, namely, adjustment to Qt the horizontal portion
of the curve. In Table II we report the resulting values
we obtained for the polarizabilities of Ne and Ar and
we compare them with Dalgarno's" calculated values.
The agreement is most gratifying. The table shows the
depth and location of the minimum calculated from the
postulated potential.

We have included in Table II an estimate of the
magnitude of the error in the polarizability. It should
be pointed out that this constant occurs in the dimen-
sionless combination

8=u/16c' (24)

in making the Gt to the experimental results. The
polarizability therefore depends very strongly on
possible errors in the screening constant for the outer
shell, and the agreement with Dalgarno's values for 0.
implies a strong confirmation of the accuracy of the
screening constants.

It is a matter of considerable surprise to us to And

that the elastic-scattering data can be reproduced so
well by so simple a potential as we have introduced,
namely, a combination of a screened-Coulomb repulsion
with a screened polarization attraction, and that the
adjustable constants, the screening constants and the
polarizability, agree so well with expectation. We can
only conclude that additional contributions to the
potentials will be comparatively small.

4. Curve Crossings

Obviously, not all of the bumps seen on the cross-
section curves are meaningful, and many of them
merely represent residual noise. However, those features
which occur at approximately the same value of v. can be
expected to be real. Scattering eGects are particularly
sensitive to features of the interaction potential near

'4 A. Dalgarno and A. E. Kingston, Proc. Roy, Soc. (London)
A259, 424 (1960).

the classical distance of closest approach, since the
radial motion of the nuclei is slowest at this point and
thus the time available for the perturbing forces to act
is longest. Because constant v implies constant b and
rp, it is possible to identify a feature in the data at some
7 with a feature of the potential at some value of the
internuclear separation. Such a feature is evident
in the data in Figs. 3 and 5 at log~p7 —3.2 and in Figs.
4 and 6 at logy' —2.8, where a series of pronounced
oscillations are seen to begin and die off to the right.
We have already suggested that these oscillations are a
perturbation of the elastic-scattering pattern due to the
crossing of two potential-energy curves. "

The elastic scattering of course is dominated by the
molecular-state dissociating to the ground states of the
ion He+ and the target atom (Ne or Ar) .The perturbing
state in the crossing probably dissociates to ground-state
He+ and the first excited state of Ne or Ar, although
other low-lying excited states are possible candidates.
From our knowledge of the potentials for the elastic
scattering we are able to relate the value of v- at the
crossing to the impact parameter and the distance of
closest approach and thus to estimate the location of
the erst observed curve crossing. From the position of
the major peak we locate this crossing near 2.0~ in
He++Ne and near 3.1ao in He++Ar.

The perturbations in question show several distinc-
tive features. As r increases past some threshold value,
we see erst a pronounced dip in the reduced cross section
and then a rise to a peak which considerably exceeds
the extrapolated smooth cross-section curve. Following
this rise the curve falls more or less to its previous height
and shows a continuing series of more or less regular os-
cillations which gradually fade out or merge into further
structure due to other interactions. These oscillations we
believe to be due to an interference eGect representing
the fact that there are two possible trajectories for the
elastic-scattering collisions when the impact parameter
is smaller than the crossing distance r . A pure elastic
trajectory Tz corresponds to the basic diabatic potential
curve dissociating smoothly to the initial atom and ion
states. A second elastic trajectory Tzz is possible if a
transition occurs to the excited-state curve when the
system passes inward at r and a second transition back
to the ground-state curve occurs on the subsequent
outward passage. In the latter case the turning point

'~ F. T. Smith, D. C. Lorents, W. Aberth, and R. P. Marchi,
Phys. Rev. Letters IS, 742 (1965).
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TABLE III. Parameters of the curve crossing. and define the variables

(eVdeg) . .(a.u. ) (a.u.)
t=E '~'7=u+E 'I'r„

u= E "'(r—rg) =t E-—'I'r, .
Ne
Ar

1950
870

9
2.9

1.6
1.9

"H. H. Michela (private communication)."J.C. Browne, J. Chem. Phys 45, 2707 (1966).

for the collision is determined by the excited-state curve
which lies below the ground-state curve inside r .
Because of the existence of these two possible trajec-
tories, the scattering amplitude at a given angle 0 will
contain two components which will interfere to give the
oscillating pattern. A similar feature is seen in the
inelastic-scattering pattern attributed to a curve
crossing of a nature very similar to this one.

The major peak. in the perturbation is much larger
than any of the others and appears to represent more
than just the first peak in a smoothly varying inter-
ference pattern. In fact, that interference pattern is
under ordinary circumstances expected to fall below
the extrapolated smooth elastic cross section and n.ot to
rise much above it. However, if the excited potential
curve in the crossing is strongly attractive and has a
potential minimum near or inside r„ the second tra-
jectory may involve a cross section which displays the
effect of this attractive well in a manner similar to
the rainbow maximum seen in the ordina&y scattering
due to a simple attractive potential. Ke are'inclined to
believe that such a rainbow feature is the explanation
'for the very large rise seen here. In the analogous case
of He++He the adiabatic potential curves calculated
by Michels' and by Browne' show a pseudocrossing
involving an interaction between a very strongly
attractive state with a minimuIn inside the crossing and
a pure repulsive state dissociating to the ground-state
ion-atom pair. On chemical grounds we believe a similar
strongly attractive curve will be formed when He+
approaches singly excited Ne or Ar.

On the basis of a simple semiclassical theory it is
possible to give a somewhat more detailed analysis of
the curve-crossing perturbation. The oscillatory inter-
ference pattern due to the two competing trajectories
labeled I and II gives rise to a term in the cross section
proportional to cos2v-N(r, E). The index N is related
to the difference in classical action integrals 2 over the
two trajectories and to the reduced classical action a by
the equation

vhN(r, E) =vied(r, E) =vfAr(7, E) —&rr(v, E)7
=ma(v, E) =mao(v)+E-'na, (r)+

(25)

An approximate method of analyzing the scattering is
obtained if we divide this equation by the velocity v

These variables are the natural ones to use if the
functions on the right-hand side of Eq. (25) are ex-
panded about some point r, . It is natural to take this
point as the true crossing threshold where the two
trajectories merge so that

Aae(r, ) =0. (27)

As the energy is varied, the oscillations remain in phase
when N is constant; this is roughly equivalent to the
condition that I be constant.

In Figs. 7 and 8 we show the reduced cross sections
for a number of runs. plotted against the variable t or N.
We include several separate runs at various energies
in order to show the reproducibility of the patterns.
This is sufFiciently good to make possib1e the detection
of errors in the angula, r measurement which may be due
either to inaccurate alignment or to stray electrostatic
fields. In the case of the data, at 50 eV for He++Ar,
a discrepancy of close to 1' in the angular measurement
was observed; the curves as shown in the figure have
been shifted to coincide and the average angle was used
to compute u. In the case of He++Ne at 150 eV, it
appears from Fig. 7 that a small angular correction
would be appropriate.

It is clear from Figs. 7 and 8 that the individual peaks
in the scattering pattern can be unambiguously identi-
fied with each other as 'the energy is changed, even.
though the absolute numbering system for N is uncer-
tain. It is thus possible to plot the motion of a single
peak in the va, riable t as a function of the variable
E '~'. By Kq. (26) the slope of this curve measures
r, the true crossing threshold. LA more detailed analysis
ba'sed on an expansion of Eq. (25) confirms this con-
clusion. 7 By means of such an analysis we have located
the threshold value v and the corresponding crossing
point r from the experimental data; the resu1ts are
given in Table III; These values of r have been used to
establish the variable I used in Figs. 7 and 8.

It is signi'ficant that the oscillations extend on both
sides of the apparent threshold r, this behavior as well
as the enhanced, rainbowlike, maximum to the left of

is to be expected because of the shape of the de-
Qection functions and phase~ associated with the two
interfering trajectories I and II (which we hope to
discuss more thoroughly elsewhere). The spacing of
these oscillations is a significant parameter, con-
veniently expressed in terms of a length by means of a
relation derived from (25) and (26):

L= dhao(dT = (2(p) "'hdN/du (28).
The spacing is seen to increase (and L to decrease)
gradually as I increases; we give an average value in
Table III. This quantity depends largely on the
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difference potential AV (r) near r, . The amplitude of the
oscillations, on the other hand, depends both on the
difference potential and on the coupling energy H»(r, );
more detailed measurements may make it possible to
deduce V~2 and then to predict the inelastic cross
sections associated with the perturbation. It is already
obvious that the amplitude of the perturbation is much
greater in Ar than in Ne, though we cannot yet be sure
whether this arises primarily from differences in V~2

or in AV(r).
There remains some additional movement of the

peaks in Figs. 7 and 8 as a function of energy. This is
not surprising in view of additional energy-dependent
terms in Eq. (25), but these shifts are rather small and
we shall not attempt to analyze them here. They may,
however, eventually provide additional information on
the interactions.

Before leaving this section, it is worth remarking that
the regular oscillations associated with this single curve
crossing appear to be responsible for almost all of the
structure that can be clearly observed up to the point
where the steep elastic loss (to be discussed in the next
section) sets in. This must indicate that the curve
crossings are widely separated, or else that the inter-
actions H;; coupling the two states involved in other
crossings are in most cases too small to yield easily
observable perturbations.

(eV deg)
Arg

(eV deg)
bd

(a.u. )
Abg

(a.u. )

is a very simple function of r. At small r, P,& is unity;
after the first curve-crossing perturbations it may fall
somewhat, but not very much, below unity. At a certain
point, however, P,i begins to drop essentially linearly
with b', and does so until it Battens out at a rather
constant value that is a small fraction of its initial
magnitude. Within the accuracy of our measurements,
both the location of the midpoint and the width (or
slope) of this drop are independent of the energy, and
the mean value of the ultimate P,i attained after the
drop is very small except at the lower energies. It is very
important that the width hrq or Aber of this drop is
energy-independent, since this implies that it is not
limited by the angular resolution of the measurements.
(If they were resolution-limited, LN would be constant
and hr would vary as I/E; the observations show no
such trend. ) Both the location and the width thus
measure features of the interaction. We give the results
both in terms of the measured quantity r and the
derived one b, the latter representing essentially the
classical turning point ro and therefore the location of
the interaction on a potential diagram; the widths are
full widths, not half-widths.

S. The Elastic Loss in Close Encounters
Ne
Ar

6000&500 7000&1000 1.23
2000 2000 2.16

0.32
0.55

One of the most striking features of the elastic-
scattering data at fairly large values of r is the great
drop in the reduced cross section that occurs in both
He++Ne and He++Ar. This precipitous fall comes at
the same location and with the same shape and abrupt-
ness at all energies, except for some details of structure
appearing in the Anal region of very low cross section.
Clearly, the severe drop reQects a mechanism providing
extensive losses into one or more inelastic channels.

Knowing the potentials for pure elastic scattering, it
is a simple matter to compute the fraction remaining
in the elastic channel, and thus the fraction lost, as a
function of the reduced angle r or the impact parameter
b. Since we are dealing with losses in large-angle scat-
tering we have, where needed, used two terms of the
impact expansion to make the evaluation:

where po and p~ were computed from the approximate
potentials. We have also computed the impact param-
eter,

0 (r, E) = bo(r) +E fbi (r), (30)

so as to plot 1—P,&(r, E) versus b'. Since we only used
the one-term screened Coulomb potential to compute
p& and b&, the results of this section are only semi-
quantitative.

An examination of these plots shows that P,~(r, E)
depends very little on E, and except for minor details it

In at least two ways this loss phenomenon differs from
the usual curve-crossing perturbation. First, its width
appears to be greater, and second there is no recovery
from it once the critical region of impact parameter is
passed. Both of these features imply an interaction of
different magnitude and perhaps of different type from
the simple curve crossing.

The usua) curve crossing is characterized by the
existence in some simple approximation of two mole-
cular states whose interaction

~
H» ~

is everywhere
smaller than their separation

~
Vn —V22

~
except acciden-

tally in a restricted region where they approach close]y
or cross; consequently, the two states are well defined
by the same molecular orbital description on both sides
of the interaction region. A different and contrasting
situation prevails where two states 1 and 2 are well
defined and well separated (f Vu —V» f ) t H» )) in
one region (say, r) R), but H» becomes greater than
their separation for all of another large region (say,
r& R) . In the latter case it may be possible to change
the description of the states, and define new combina-
tions (by new approximate symmetries, perhaps)
which give a better description in the second region
([ V&.&.—V2.2 ) & ) H&2 j for r&R'). This may be
called an extended-coupling situation in contrast to the
restricted coupling of the curve crossing. As an example,
consider the collision of two atoms each initially in a
doublet state, but with a possible quartet excited state.
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hUg AbdV'(rd) . ——(31)

The result is AUd(Ne) =47 eV; EU~(Ar) =25 eV. We
may hope that these quantities afford some crude
measure of the magnitude of the coupling that mixes
the various states in the extended-coupling set.

An additional feature of the strong-coupling situation
can be seen in Fig. 4, where it appears that the extent
of the drop in cross section increases with the energy of

From these can be constructed molecular singlet and
triplet states. When r is large, the description in atomic
states is appropriate, and when it is small the molecular
description must be preferred.

In the case at hand, we believe that a situation of
extended coupling at small r may connect the incoming
state He++Ar with one or more states of the disso-
ciated form He+Ar+; at small r the description in
terms of ion-atom pairs is inappropriate, and recourse
must be had to a molecular or even a united-atom
description with contributions of approximate g and
u symmetry. In view of the great difference between
these two descriptions, it would not be surprising to find
the incoming state He++Ar decomposing into a set of
several g and several I united-atom states —and each
of these in turn dissociating to a mixture of several
states of He++Ar and several states of Ar++He, and
perhaps some multiply ionized states in addition. Once
the region of united-atom coupling has been entered,
the phase of each of the contributing states will change
in its own way as a function of v. and E, and when the
particles separate again the new mixture of. phases will

usually not interfere constructively so as to recon-
stitute the initial incoming state but rather lead to a
complicated mixture of the various dissociating states
participating in the united-atom set. On the average,
then, I', q will approach 1/1V, where S is the number of
dissociating states, or channels, participating. I',~(r, E)
will still deviate from its average value from place to
place, but less often and less far as N increases. As
far as we can tell, this description applies very well to
the behavior of P,~ as we observe it after the falloff is
passed; the occasional deviations of P,j from its average
trend may be responsible for the rather irregular struc-
ture seen in Figs. 3 and 4 to the right of the principal
drop. The resulting average value of I',

~ (r, E) can then
be used to estimate the number S of channels partici-
pating in the extended-coupling set, and we can also

try to see whether N varies significantly with E.
Clearly the mean impact parameter bd, of the falloff

pattern approximately measures the location rd where
two or more states of the separated-atom description
become severely mixed with each other. The width
d b& of the pattern is as yet not so easy to interpret, but
it is obviously an important observable and closely
connected with the behavior of the states in question.
Since we know the elastic potential V(r) and its
derivative V'(r), we can tentatively translate Aber to
an energy by the formula

the collision, varying from a factor of about 5 to a factor
of perhaps 30. If this ratio is indeed a measure of the
number E of channels participating in the inelastic
process, it would appear that the coupling itself is
strongly energy-dependent. This would not be sur-
prising, since the mixing is expected to extend over a
wider band of states when the collision duration is
shorter, mainly as a result of the uncertainty principle.
Clearly there is in this phenomenon much material for
further investigation.

As far as the elastic channel is concerned, the loss
process occurring here could be treated by a simple
absorption model. Clearly, diffraction effects should be
connected with the scattering at the edge of the loss
region, and a simple calculation suggests that they could
be observed by careful measurements with presently
attainable resolution. Sy analogy with the simple case
of an absorbing disk, one expects the spacing of the
diffraction peaks to be given by the approximate
formula

(32)

where R is the radius of the absorber. Thus, if LS is in
degrees, we And

68~~1.1(R/oo) (100 eVI E) 'I', (33)

which indicates that these oscillations wi]l have a
period of the order of 1' or slightly less. It is interesting
to note that in the case of He++Ar there appears to be
a rise in the reduced cross section just to the left of the
strong absorption; this is seen in several curves in
Figs. 6 and 8. Such a rise is a common occurrence in
nuclear scattering at the onset of a strong absorption. '~

V. CONCLUSION

We began the work presented in this paper with the
modest aim of testing the scaling principle derived from
the semiclassical theory of small-angle scattering. The
phenomena so revealed tempted us inductively into the
more thorough analysis that we have presented here.
The results have convinced us of the feasibility of
interpreting diGerential scattering data in a spectro-
scopic manner to deduce potentials and interactions
between electronic states from the details of the experi-
mental scattering patterns. Among other things, this
work has demonstrated the advantages of using data
over a very wide span in energy. It has also convinced
us of the feasibility of interpreting inelastic processes,
such as those associated with curve crossings, in
addition to the simple elastic potential scattering.

APPENDIX

l. Screened Power-Law Potentials

When the potential is a power law, a simple exponen-
tial, or an exponentially screened Coulomb law, the

'8 See, for example, John S. Blair, in Lectures irl, TheoreticaL
Physics (University of Colorado Press, Boulder, Colorado, 1966),
Vol. VIIl-C, pp. 343—444.
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integrals appearing in the forward impact expansion
can be evaluated with the use of functions no more
complicated than the modified Bessel functions Ep and
Ey. Similar forms result if the potential is a product of
an exponential and a polynomial. One further form of
integral must be available if long-range attractive forces
are to be treated realistically by allowing them to be
exponentially damped as r—&0. The damped polarization
potential is an example:

t„(n) =- QO —(x"e «*) (x' —1)—'t'dh
ds

=ng„(a) —mg r (a)

and its derivative

(A9)

In dealing with the leading term of the impact
expansion for the reduced scattering angle r(b) and
the reduced cross section p(r), we encounter the
integrals

f~
V,.t= ——1—.-"'" 1+ + + . ; (A1)

g4 2c' 6c'

at the origin this approaches the value V ot(0)=
—ne'/24c4, instead of diverging. In handling this type
of potential we encounter integrals of the form

dt /da= t„+z—(n).

tm(n) —t~2(n) = —g~r(n).

(A10)

(A11)

g-(n) = x e a&(x'—1) 't'dh,
From these it is easy to evaluate the specific cases

(A2)
tz(n) =nEr(n) —Ep(n),

where m is an integer and may be negative. The func-
tions g (n) satisfy the recursion relations

(m+1)g =n(g~r —g~z)+(m+2)g~p (A3)
t r(n) =nEz(n),

t p(n) =nEp(a)+Ezra(n),

dgm. = —g~r(n),
da g (a)=

t~(n) =2nEr(a) —nEir(n),
gm&(tz) dtz. (A4)

t 4(n) =-', (n'+3)Eiz(n)+pnEp(a) ——',n'E~(n). (A12)

t „(0)= F(-;)F (-,'(&+1))/F(-,'~),

For non-negative nz's these functions can all be ex-
At the origin we have

pressed as simple combinations of the Bessel functions
Ep a11d E]'. tz) 0. (A13)

gp(n) =Eo(n)

gr(n) =Et(a),
It is also useful to define

s„(n) =n t„(n), (A14)

—ns„'(n) = s„pr (n) —ms„(a) .

g'(n) =n E'(n)+E'(n)
&

' ( 3) whose derivative is given by
For negative m's we must use one additional function,

(A15)

g r(a) =Eir(n) = Ep(tz) dtz. (A6) These functions can be used to evaluate the reduced
scattering angle

This integral is tabulated, ' and various approximations
are also available. With its help and using (A3), we
then have

g p(n) =nEr(n) —aEir(n),

g p (n) = —',(a'+1)Eir (n) +-,'aEp(n) —-', n'Er (n),

oo dP
rp(b) = b(r' —b—') 't'dr

k
and the reduced cross section

pp(b) =
I brp(b)/rp (b)

(A16)

(A17)

g 4(n) = —-';a(nz —3)Eir(n) ——p'n'Ep(n)
for a broad class of potentials V(r). If we write the
potential as

When m is negative, g goes to a finite limit at 0:

g (0) = F ($)F (-', tz)/F (-', (tz+1) ), rt) 0. (A8)

» Handbook of iVathentatical Fttnctions, edited by M. Abramo-
witz and I. Stegun, (U.S. Department of Commerce, National
Bureau of Standards, Washington, D.C., 1954) Appl. Math.
Ser. No. 55, pp. 492 G.

(A =0 for m&0), (A18)

we can include both power-law and exponential terms.
With this potential, it follows that

rp(b) =ALA b"t (0)+gtz;s (b/c;)$ (A19)
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rp'(b) =QLmA b™it (0)

where

u ~(x) =x '[e *+1'er*j, (A26)

+g(ma„,—a~i, ;)b 's„(b/c;) ]. (A20)

In the particular case of the polarization potential
(A1), we have

(c4/e'n) ro(b; V»i) =s»i(P)

+(3+v/3)s'~ (e)l, (A21)

where p= b/c. The first derivative is

u»i(x) = * 't1 e (1+x+2x'+'sxs) j (A27)

x= r/c, B=n/16c', (A28)

(A30)

and F, y, and c are chosen to 6t the 2 cases, Ar and Ne:
eye= c~(Ar), cNe= cL(Ne) y vAr = cM/CLy QNe= cj/cxq
Fg, ——1, FN, ——~. The corresponding reduced scattering
angle is

cr(b)/16e'=s(P) =s„~(P)+Bs»i(P), (A29)

—(c'/e' ) '(b) = —s,.i'(P) =0 't4s»i(P)+lP&o(P) j 8„, the rainbow value of 8, and the associated value of
the reduced impact parameter P„can be deduced from

(A22) the reduced rainbow angle by the conditions

u„(x) =xme *, (A23)

the reduced classical action has as its leading term a
new function g (P) defined by

As long as the potential has the general form (A16),
all the higher terms of the forward impact expansion
for both the scattering angle and the classical action
can be obtained in a similar way with the use of the
same tabulated integrals (A5) and (A6) . For example,
if the potential is

s'(P„) =0, s(P„)=s„=cr„/16e'. (A31)

B~, is the value of 8 estimated from the observed
deviation of the curve p(r) from the pure repulsive
curve derived from (A30) . As a result of this deviation,
p is essentially horizontal over a considerable range in
v. If this constant value is p~, and the horizontal portion
intersects the pure repulsive curve at r* where b=b*,
we can integrate Eq. (A1'I) from r* to r:

ri „(b)=r* exp/(b*' —b')/2p*), r(r, (A32).

The deviation function is then

2. Fitting the Attractive Potential rd, „(b)=r...(b) —rh.,(b); (A33)

The potential is Gtted in the form

u(x) = cV(x) =u„p(x) +Bu»i(x),

over a considerable region in b this proved to be an
almost constant multiple of t»i(P); the ratio of the

(A25) two allows us to estimate Bq, .


