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Static Green's Function for Elastic Electron-, Hydrogen
Scattering and Resonances*f
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One version of the variational bound formulation of scattering theory requires the evaluation of integrals
involving the Green s function GP (E) for the static, or one-body, approximation in which there is a hydrogen
atom in the ground state throughout the scattering process. We obtain explicit expressions for G~(E) for
the problem of the elastic scattering of electrons by atomic hydrogen, for both singlet and triplet states
and for arbitrary total orbital angular momentum, in terms of solutions of integrodiGerential equations.
The triplet L=O case requires special treatment because the hydrogenic ground-state function is a solution
of the homogeneous (static) equation; this makes the integrodi8erential operator, as it stands, singular, and
the operator must be modified. In all cases, the integrodiGerential equations are transformed into integral
equations which are solved numerically. The numerical evaluation of G~(E) also enables one to determine
the resonance energies for scattering as the eigenvalues of a (nonlinear) operator. The method developed
is applicable to a number of other problems.

I. INTRODUCTION

P (H —E)PG~= P—
and by boundary conditions that follow from the
equation

(1.2)P4 POP =G~PHQ—I

and from the known form of the boundary conditions
satisfied by ~—I'%'~. Here I' is the symmetrized
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'HE primary obstacle in the application of the
variational bound formulation of scattering

theory to the study of the parameters that characterize
a scattering process is the determination of the static
Green's function G~(E). This paper will be concerned
with the determination of G~(E) for the scattering of
electrons by hydrogen atoms for both the singlet and
the triplet cases and for arbitrary orbital angular
momentum I.. We restrict ourselves to incident kinetic
energies below 10.2 eV, the threshold for excitation. In a
previous paper, ' hereafter referred to as I, numerical
variational bounds were obtained, on the I.=O singlet
and triplet phase shifts for two energies. The question of
how to obtain GP (E) was reserved for the present paper,
which uses the notation and definitions of I. In this
paper we also stress the fact that a knowledge of G~(E)
can be applied to the calculation of resonance energies.

Gp= GP(E) is uniquely defined by the integro-partial-
diBerential equation

operator which projects out that component of the
wave function in which one or the other electron (or
possibly both in the singlet case) is in the hydrogenic
ground state Lsee Eq. (I-2.9)j, Q=1 P, H is the—full
Hamiltonian Lsee Eq. (I-2.1)g, + is the full wave func-
tion, and ~~ is the determinable scattering solution
in the static approximation in which there is a hydrogen
atom in its ground state throughout the scattering
process; ~~ satisfies

P(H E)~P=O. — (1.3)

Pk —P%"~ is regular when either electron is at the
origin. Its asymptotic behavior follows from Eqs. (1-2.5)
and (I-2.16a), and is given by, for rt or rs —+~,

~ (1+e~12)R(&1)QLQL (1112)Lcot('g 8)
—cot(rt —8)j sin(krs —

2J2r+8)/(2"'rs), (1.4)

where

and
V-. ((I.)=(4 )-&I. y,,),

R(r)=2as @~ exp( 2'/ao),

where ao is the Bohr radius. The exchange operator S~2
interchanges r& and r2, and, 8 is an arbitrary normaliza-
tion constant. The gP are the phase shifts in the static
approximation. The q are the exact phase shifts and are
the quantities ultimately to be determined, after G~ has
been determined. rt appears in (1.4) within the square
bracket, and does not otherwise aQect the asymptotic
form of ~—I'4".

In e+H scattering, the determination of GP can be
read, ily reduced. to the determination of the Green's
function for a one-body Hamiltonian with a local
interaction; this latter Green's function is easily con-
structed (numerically) from the regular and irregular
solutions of the static equation. This method, of con-
struction is not applicable to e H scattering where the
determination of G~ reduces to the determination of a
one-body Green's function associated with a nonlocal
interaction, a consequence of exchange.
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Il. THE STATIC GREEN'S FUNCTlON

In the discussion that follows we often write r;, r,
r;, and r as simply i, i', i, and i', respectively, for i=1
or 2. G~ is an integral operator, and the equation for
its kernel G~(1,2; 1',2') is obtained by applying (1.1) to
8(1—I')8(2—2'); this results in

P(H E)PG—i'(l,2; 1',2') = —P8 (1—I')b(2 —2') . (2.1)

To determine the form of G~, we consider the symmetry
conditions that G~ must satisfy. These are

interchanges the 1' and 2' coordinates, i (1+eSi2') will

be a symmetry projection operator. Introducing G,~

defined by

G, (1,2; 1',2') =-2(1+eS,2')G (1,2; 1',2'), (2.7)

with the use of the e notation to be justified below, it
follows that

Gi'(l, 2; 1',2') = Q G, (1,2; 1',2'), (2.g)

and that

G (1,2; 1',2') =G (2,1;2', 1') (2.2) G, (1,2; 1',2') =eG, (1,2; 2', 1'). (2.9)

f, (1,2) = ef.(2,1), (2.4)

where e may be either +1 or —1. Here and in the
following, e, when used as a subscript, denotes the
symmetry under the interchange of 1 and 2 indicated
by (2.4). (We will not bother to use the e index on wave
functions. ) Apart from the symmetry requirement, f,
is arbitrary. More generally, the subscript e will indicate
that for otherwise arbitrary functions f and h

f, (1',2') = ef, (2', 1')
and

h, (1,2; 1',2') = eI4(2,1; 1',2')
= eh. (1,2; 2', I')L=h, (2,1;2', 1')].

Let

F,(1,2)=— G~(1,2; 1',2')f, (1',2')dr i'dr2', (2.5)

where our notation indicates that we are demanding
that F, (2,1)= eF, (1,2). Interchanging 1 with 2 and 1'
with 2', and using (2.4) and the symmetry of F„we
Gnd that

eF, (1,2) = e G~(2,1;2', 1')f, (1',2')dri'dr2'.

Cancelling the e and comparing with (2.5), it follows,
since f, is arbitrary and can be of either symmetry,
that (2.2) must be satisfied.

In addition to (2.2) and (2.3) we have

PG~(1,2; 1'2') = G~(1,2; 1',2'), (2.6)

since, as seen from (1.1), only the projection of G~ onto
I' space is relevant. If we let $~2' be an operator which

G (12; 1',2')=G (1',2'; l,2). (2.3)

The latter equation is just the expression of Geld-source
symmetry. Equation (2.2), which represents symmetry
under the interchange of the two identical particles, is a
result of the requirement, which follows from (1.2) and
the symmetry properties of ~ P%~ an—d QV, that the
operation of G~ on a wave function of a definite sym-
metry preserve the symmetry. To see that this leads to
(2.2), let f,(1,2) be a function which has the property
that

g(e, 2,2') =g(e, 2',2) . (2.12)

Note that g(e; 2,2') is a syminetric function for both
values of e. (We are dealing here with the interchange of
2 and 2', not of the 1 and 2 or 1' and 2' that occurred in
our previous symmetry consideration involving e,' we
therefore do not write e as a subscript. ) To verify (2.11),
one begins by writing G,~ as a sum of 2'=16 terms,
where each term is a product of factors specifying, for
each of the four coordinates 1, 2, 1', and 2', whether
the function is a ground-state function or a function
orthogonal to the ground state. LSome characteristic
terms are cn(ri) e(ri') it (r2)v(r2')/(rlri r2r 2 ), w (ri) v (r 2)

Xf,(r,', r2')/(riri'r&r2'), w(ri') f2(ri, r2, r&')/(riri't2r2),
where the functions fi and f2 are orthogonal, in each of
their coordinates, to u(r), e.g., J'fi(ri', r2')v(ri')dri' ——0.]

The G, clearly represent the components of G which

are symmetric and antisymmetric under the interchange
of the primed coordinates. It is readily shown that the

G,~ satisfy the same three conditions, (2.2), (2.3), and

(2.6), that G~ satisles. In addition, it follows from (2.3)
a,nd (2.9) that

G. (1,2; 1',2') =G, (1',2', 1,2)
=eG, (I',2';2, 1)=eG, (2,1;1',2'), (2.10)

so that G.~ is also syrrunetric or antisymmetric under the
interchange of the unprimed coordinates, thereby
justifying the use of e as a subscript. From (2.10) it is
clear that only G+z ma%.es a contribution when G
operates on a function with even symmetry, correspond-

ing to the singlet case, and only G &~ in the case of a
function with odd symmetry, the triplet case. In fact,
we shall see that these two parts of the Green's function
are independent of each other.

The most general form that G,~ can assume that is
consistent with (2.2), (2.3), (2.6), and (2.9) is

G,~ (1,2; 1',2')
= 2X-,' (1+eSi~)k (1+eSi2')Lv(1) 'Jjzoz (Die)it(1')

X 'gl oI.*(Qi )g(e; 2,2')/(riri'r2r2')], (2.11)

where

e(r) —=rR(r),

and where the g(e,' 2,2') satisfy
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By successively requiring this expression to satisfy
(2.6), (2.2), (2.3), and (2.9), we arrive at (2.11).

The problem of obtaining 6, thus reduces to that
of finding the g(p', r,r'), which may be considered as
one-particle Green's functions. YVe note for future
reference that there exists some arbitrariness in

g(—1; r,r') for L=O, for if one adds to g(—1;r,r') the
function v(r)w(r')+v(r')w(r), where w(r) is arbitrary,
the value of G P(1,2; 1'2') is unchanged because of the
presence of the symmetry projection operators in (2.11).

To obtain the equation satisfied by the g(p,' r,r'), we
operate on (2.1) with —',(1+pS»'), use the fact that the
operator P(H E)P c—ommutes with o (1+pSip'), use
(2.8), and find that

P(H E)PG—~(12; 1',2')
= —-', (1+pSip')Pb(1 —1')8(2—2') . (2.13)

Operating on this equation with P~ and performing the
detailed analysis we arrive at the equation

(1+pSio')v(1 )'JJrpr, (Bio')U(p; 2,2') =0 i (2.14)

where

U(pi 2i2)—=D(2)g(pi 2i2 )

Combining (2.18), (2.20), and (2.21) we have

U(p; r,r') =/iron, , ,y(—1;r)v(r'). (2.23)

From (2.23) and (2.15) it follows that the integro-
differential equation which must be satisfied by g(p; r,r')
is given by

D(r)g(p; r,r')+ p ds W(r, s)g(p; s,r')

= —8 (r—r')+hrp5, iy (—1; r)v(r'), (2.24)

where P(—1; r) is as yet undetermined. The presence
of the additional term on the right-hand side of (2.24)
in the special case of J.=O and e= —1 has its origin in
the fact that only for 1.=0 and e= —1 does the corre-
sponding homogeneous equation have a spurious
solution which vanishes asymptotically and at the
origin. This spurious solution, which exists for all k,
is given by v(r), i.e.,

This is a trivial identity for p= —1, but letting p=+1,
it follows that P(+1;2) must vanish, and (2.20) gives

U(+1 2,2') =0, L=O. (2.22)

+ p W(2, 1)g(p', 1,2')dri+5(2 —2') . (2.15) D(r)v(r) — ds W(r, s)v(s) =0. (2.25)

W(ri, rp) =v(ri) v(r, ) —(E—2Ero)pro+, (2.1/)
2L+1 r)~+'

where r& and r& are the smaller and larger, respectively,
of r& and r2. To obtain equations involving 2 and 2'

only, we multiply (2.14) by 'JJzpz, (Q»') and integrate
over Q~~', which gives

U(p; 2,2') =0, LAO (2.18)

U(p; 2i2')/v(2') = —pU(p, 2,1')/v(1'), L=O. (2.19)

All integrals, here and elsewhere, are from 0 to . D and
8' are given by

/i' d' L(L+ 1)
D(r) = — +

2m dr 2 r2

2 1'1 1i——
~

—+—
~e

'"~'o—pp, (2.16)
a, ka, rj

and

This equation is identical with the static equation
obtained for u" (2) by substituting the form

P+ = (1+pSip)v(1)N (2) 'JJior, (&io)/(2 ~ rirp)

into (1.3), and it is clear that NP(2)=v(2) represents
the null solution for the particular case I.=O and e= —1.
To determine the function P(—1;r), we first note that
the existence of the solution v(r) of (2.25) imposes a
restriction on the form of P(—1;r). The necessary
condition for the existence of a solution to (2.24) in the
case I.=O and e= —1 is that the right, -hand side of this
equation be orthogonal to v(r), which requires that

y(—1; r)v(r)dr=1.

Aside from this condition, P(—1;r) is arbitrary. This
lack. of uniqueness is related to the lack of uniqueness of

g(—1;r,r') for L=O pointed out earlier. For computa-
tional reasons it is desirable to eliminate terms in

g(—1;r,r') which, because of cancellation, make no
contribution to G P(1,2; 1',2'). This is accomplished

by demanding that

Each side of (2.19) is clearly a function of 2 alone.
We designate the function by @(p; 2), so that g (—1;r,r') v(r')dr'= 0. (2.26)

y(o, 2) = U(p; 2,2')/v(2'),

and (2.19) becomes

y(p; 2) = —sP(p; 2), L,=O,

(2.20)

(2.21)

Lsince g(—1;r,r') is syinmetric under the interchange
of r and r', g(—1;r,r') will thus also be orthogonal to
v(r).j The function p(—1;r) must then be v(r), which
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follows by multiplying (2.24) by v(r'), integrating over
r', and using (2.26).

.Rewriting (2.24), with p( —1; r) replaced by v(r),
we have

D(r)g(»; r,r')+» ds W(r, s)g(»; s,r')

and. in fact numerical computations do not show any
singularities. For these cases we have immediately that

g= (I—»gpW) 'go (3.2)

In the special case of L=O and e= —1, the operator
A —=I+gpW is singular, since it follows from (2.30) that

(I+gpW)v=0. (3 3)
= —8(r—r')+8ro8, —iv(r) v(r') . (2.27)

The boundary conditions on g(»,'r, r') follow, through
(2.11), from the boundary conditions on G~, which in
turn are determined from (1.2). g(»; r,r') vanishes at
the origin, and, using the asymptotic form for I'+—I'0 ~

given by (1.4), one finds that g (», r,r') has an asymptotic
dependence given by sin(kr —ipLv. +8) as r -woo .

To facilitate tlie solution of (2.27) we transform this
equation into an integral equation. Introduce gp,
defined as that solution of

D(r)go(r, r') = —8(r—r') (2.2S)

which satisfies the same form of boundary conditions
that g does. gp is readily constructed, from the regular
and irregular solutions of the homogeneous equation
obtained from (2.28) by setting the right-hand side
equal to zero. It then follows that

g(»; r, )r=gp(r, r')+» dtgp(r, t) ds W(t, s)g(»; s,r')

There is nevertheless no difhculty in d.etermining g from
(3.1).Since g (—1; r,r') has been chosen to be orthogonal
to v(r'), it follows that in (3.1) the part of W propor-
tional to e~ can be dropped, or, more generally, multi-
plied by an arbitrary constant. We can therefore replace
(3.1) by

where

(I+goWc)g =go govv—

W, (r,r') =cv (r)v (r')+c'v (r)v (r')/r&,

(3.4)

(3.5)

8=gp
—gp'o'v )

and where c&—(E—2Ep) but is otherwise an arbitrary
constant. We then have 8', /TV, and there is no reason
to suspect that A defined by

A.=I+goW. ,

does not have an inverse, ' except perhaps at isolated
values of c.

Introducing 8, defined by

(3.4) becomes

4o&~.—i dt go(r, t) v(t) v(r') . (2.29)
and we have

A.g=B,

g=A, 'B. (3.6)
We note that in the case L=0 and ~= —1 the solution
of (2.29) is not unique. To see this, note that (2.25) leads
to the relationship

We verify that g, as given by (3.6), is in fact a symmetric
solution of (3.1). Using (3.3) and (3.5) we obtain the
relationship

v(r) = — dt gp(r, t) ds W(t, s)v(s). (2.30)
A, 'B=Br(A, ')r, (3.7)

It is then clear that to any solution of (2.29) the
quantity cv(r)v(r') can be added, the resultant still
satisfying (2.29) and the boundary conditions, and
remaining symmetric. However, imposing the orthogo-
nality condition (2.26) uniquely determines g(—1; r,r')

(I »gpW)g=gp 8cpb~, igp vv''(3.1)

where gp, S", and g are now matrices, I is the unit
matrix, v is a column vector, and the superscript T
denotes the transpose. If I—egpW is a nonsingular
operator, (3.1) can be solved directly for g by inversion.
In all but the one case L=O and e= —1 there is no
reason to believe that I—»goW has a zero eigenvalue,

III. METHOD OF SOLUTION

In order to determine the solution of (2.29), we write
this equation in matrix form,

which proves the symmetry of g. Using (3.7) and the
result that ~~8~=0, it follows that

Ag=AA 'B=A A 'B Pc+ (E—2Ep)7—
Xgp&I~A

which shows that the g obtained with the modified
matrix A, satisfies the original equation (3.1).

Equations (3.2) and (3.6) were solved numerically
by introducing a finite mesh for r and. r', converting
these two equations into finite matrix form, and
performing matrix inversions. We note that the ac-
curacy of the calculation is improved by solving, not
for g directly, but rather for g&, defi'ned by

g~=g —
go

2 In the results that follow, one needs to assume the existence of
the right inverse only. However, since 3, can be symmetrized by
operating on the left with 8', it follows tha& the right inverse is alamo

the left; inverse,
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hich- satis6es the equation for L=O and e= —1,

(I+gpW, )gt —(——gpW, gp+gpvs ),
and for all other cases,

(3.8)

(I—egpW)gt
——egpWgp. (3 9)

Here g~ is the difference of two functions each of whose
second derivatives has the same 8-function behavior,
and thus discontinuities in the derivatives of g~ occur
6rst in third order. The integrations involving g~
implied, by the matrix multiplications in (3.8) and (3.9)
are then more accurate than those involving g in (3.2)
and (3.4).

to solve any new equations. On the other hand, in
addition to the initial effort of Gnding G~, its use has
the disadvantage that trial functions with many dif-
ferent parameters require the evaluation of many double
integrals. To aid in judging the relative effectiveness of
the original G" approach, we note that using a mesh of
120 by 120 points, the computation of G~ for one energy
takes about 2 min on the CDC 6600 and gives an
accuracy of about one part per thousand. With G~

known, the calculation of a phase shift at one energy
with a trial function that contains 25 linear variational
parameters takes about 1 min; the time increases as
the square of the number of parameters.

Iv. APPLICATION TO PHASE SHIFTS

The methods discussed above were used to calculate
G~ numerically for 1.=0 singlet and triplet e H scatter-
ing at two energies below the excitation threshold. G~

was then used in the determination of variational lower
bounds on the phase shifts in e H scattering; the
results are given in I. The contribution of terms
involving G~ to the ph'ase shift was found. to be very
small, much smaller than in e+H scattering, ' but, since
the size of the contribution was not known in advance,
terms containing G~ had to be retained. (It would
clearly be extremely useful to be able to know in
advance, when true, that G" had little effect; it would
even be useful if one could determine in advance only
that the inclusion of G increased the phase shift, since
one could then obtain a bound without retaining GP.)

It is not necessary to know G~ itself; one is ultimately
interested in the evaluation of integrals involving G~,
and various methods have been devised which replace
the need, to evaluate G by the need to solve inhomo-
geneous

differential

equations. These approaches~'
represent variations of the original variational bound.
formulation. ' " The variations are relatively minor
from a formal point of view, but may be of great
practical importance; this remains to be seen; The
explicit use of G~ has the advantage that terms involv-

ing G are evaluated. once and for all, so that questions
of convergence do not arise. Furthermore, once G~ has
been obtained, it can be applied to trial functions with
diff'erent sets of variational parameters without having

' ' Y. Hahn and L. Spruch, Phys. Rev. 140, A18 (1965); C. J.
Kleinman, Y. Hahn, and L. Spruch, ibid. 140, A413 (1965).

M. Gailitis, Zh. Eksperim. i Teor. Fix. 47, 160 (1964) (English
transl. : Soviet Phys. —JETP 20, 107 (1965)j; also in Fonrth Inter
national Conference on the Physics of Etectronic and Atomic Cotts
sions, Quebec, 1965 (Science Bookcrafters, Inc. , Hastings-on-
Hudson, New York, 1965), p. 10.

'Y. Hahn, Phys. Rev. 139, B212 (1965).' P. G. Burke and A. J. Taylor, Proc. Phys. Soc. (London) 88,
549 (1966).' R. Sugar and R. Blankenbecler, Phys. Rev. 136, B472 (1964).
See comments in I and in Ref. 8 regarding this paper.

8 Y. Hahn and L. Spruch, Phys. Rev. i.53, 1159 {3.967).
9 Y. Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. 130,

381 {1963).' Y. Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. 134,
B911 (1964).

V. COMPOUND RESONANCE ENERGIES AS AN
EIGENVALUE PROBL'EM, AND THEIR

ACCURATE NUMERICAL
DETERMINATION

G~(E) can readily be calculated at any energy below
10.-2 eV, the threshold for excitation, and, in particular,
both at and near the narrow compound resonances in
the scattering of electrons by atomic hydrogen. Though
our numerical calculations have been restricted to lower
energy values, where there are no resonances, the
methods can readily be extended to the accurate
evaluation of the positions of these resonances. All that
is required is a trivial modification of the Feshbach
projection-operator formalism of scattering by a com-
pound, system

If one is satisfied. with only moderate accuracy and
with a post hoc justification of the omission of certain
terms, the positions of the resonance energies 8„*can
in some cases be relatively easy to obtain. In the case of
the lowest resonance, b~*, for e H scattering, even the
initial determination, " based, on a seemingly crude
close-coupling approximation, was rather accurate. (As
physical insight into the nature of the resonance
developed, it became clear that the close-coupling
approximation was not too crude for this problem since
it included. the dominant terms, the contributions
associated with the hydrogenic 2s and 2p states. ) 8t*
was determined by evaluating the phase shift rt at a
sequence of closely spaced energies.

Apart from the possibility of missing narrow res-
onances, a study of p as a function of the energy E is a
very reasonable but somewhat unsatisfying approach.
There are advantages associated with the speci6cation
of the b„* as the eigenvalues of some keozve operator.
In nuclear physics one often obtains an estimate of the
8,* by determining the eigenvalues of the "wrong"
operator (e.g. , QHQ, see below), and corrects by
introducing an energy shift. It is well known that there
is a "right" operator whose eigenvalues are the b,*
themselves. In fact, there are a number of right opera-

' H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958);19, 287 (1962).-

"P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962),
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tors, and we wish to stress that there is one form for the
right operator, a form containing G~(E), which can be
obtained numerically for some interesting if relatively
simple problems involving light atoms, including the
scattering of electrons by H atoms. Furthermore, once
an b„* has been obtained, the partial cross section for
all energies near 8„*can be obtained by the evaluation
of t7 (by a variational bound calculation, for example)
at any one energy close to 6„*.

In Feshbach's approach, compound resonances are
states in which the incident particle can form a bound
state with an excited target state, the coupling to the
target ground state having been artificially turned oG.
No particular stress was placed on forms in which the
scattering parameters could be calculated numerically
from 6rst principles, the emphasis being on the deter-
mination of the form of o(E) and on the development
of physical insights into the origin of resonances. Thus,
complex wave functions were used, and a number of
Green's functions were used. (In nuclear physics, no
Green's function is calculable. ) We will briefly rederive
some of Feshbach's results in a partial-wave form, which
is less general but more amenable to numerical calcula-
tion, and in a form in which only real functions appear
and in which only the calculable Green's function,
GP(E), appears.

It was transparent from the beginning that Fesh-
bach's formulation could serve to determine the 8,*,
but G~(E) had not been determined. For e H scattering,
one knows immediately from the origin of compound
resonances that a crude upper bound on E~* is provided
by the energy of the e= 2 state. The first application"
of the Feshbach formulation provided a crude (and
nonrigorous) lower bound on 8&* by ignoring the GP(E)
term in the "right" operator, LQX(E)e, see belowj,
thereby arriving at QHQ, and showing that the lowest
eigenvalue of QHQ was greater than or equal to 8.6 eV.
A number of subsequent calculations" have provided
very accurate estimates of the lowest eigenvalues of
QHQ, but these calculations provide no a priori justif-
ication for the neglect of the G~(E) term; the justifica-
tion is normally based upon agreement with the
experimental data. Dt is not even clear, considering the
number of signihcant figures that are often retained,
that one is truly justified in neglecting the contribution
from the G~(E) term. 7 This criticism cannot be leveled
at some later work. '—an adaptation of the variational
bound formulation which incorporates the advantages of
the close-coupling approximation without sacri6cing
accuracy —in which, however, q is again calculated at a
series of energy values.

The h„* can be determined by an analysis of the
equations"

tang(E) = tanr)~ (E)—(2m/kks)

X (E%~(E),PHQ%'(E)) (5.1)

and
QL~(E)-Eje~(E) =-QHP~ (E), (52)

where

QK(E)Q—=QLH+HPG~ (E)PHJQ. (5.3)

Introducing the Green's function g~l(E) defined by

QL~(E)-EPQO'(E) = -Q (5.4)

and by the boundary condition that go(E) vanish as
any of its radial arguments approaches ~, we can
rewrite (5.2) as

&(E)=8'(E)QH~'(E)
Equation (5.1) then becomes"

tanrl(E) = tanrl~(E) —(2m/hats)

X(QHPe~(E), go(E)QHP~~(E)). (5.5)

LFeshbach's Eq. (4.23) in the second paper of Ref. 11
is the analog for the scattering amplitude, with a
complex g&(E), of Eq. (5.5).$ Taking tang= ~ to
be the definition of a resonance, it follows that the 8,*
are the poles of g@(E), that is, the discrete energy
eigenvalues dined by

QX(E *)QC *=h *QC * (5.6)

The 8,* are thus de6ned by a nonlinear eigenvalue
problem. This should normally cause no real difhculty,
since G~(E) does not "know" of the existence of
compound resonances and will therefore be smooth at
energies near 8„.The iteration process in which one
starts by guessing at a value b,o* for 8„*,inserts h„o*
into the left-hand side of Eq. (5.6) and determines the
next estimate 8„&*, should converge very rapidly. (A
possible but by no means necessary guess for h„o*
could be the rth eigenvalue of QHQ. )

Note that resonances cannot be said to occur when
is an odd multiple of —,'x. Though tang is then

infinite, ($%~,PHQV) may also be infinite due to
the presence in the denominator of I'%'~ of the term
sin(rip ——,'s.) )see Eq. (1-2.16)$.Tang need not therefore
be infinite.

The above analysis corresponds to the particular
choice 0= —,'x in the notation of Ref. 9. Choosing a
slightly diferent normalization in the asymptotic form
of 4, corresponding to 0=0, we 6nd, with primes in-

'3 Y. Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. 128,
932 (1962).' See P. G. Burke, Advan. Phys. 14, 521 (1965); K. Smith,
Rept. Progr. Phys. 29, 373 (1966), for comprehensive reviews.
The most recent calculation of the eigenvalues of QHQ is that by
A. K. Bhatia, A. Temkin, and J. F. Perkins, Phys. Rev. 153, 177
(1967), This paper also contains references to the earlier work.

"See Ref. 5, Eqs. (2.12) and (2.7b). In (2.12) we set e=gs",
the additional factor of 4n- is the result of a slightly diferent
normalization than used here.

'6 Equation (5.5) and its analog for multichannel scattering can
also serve as very convenient starting points in the determination
of an upper bound on tang and on the elements of the inverse of
the reactance matrix, respectively. See Ref, 8.
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Q~(E)Q~-(E) = h- (E)~.(E) (5.8)

LNote that b @(8 *)= b„*, and that 4' ($~*)=C'~*.]
We can then write g@(E) in bilinear form,

8 (E)=Z ~. (E» (~'(E)/LE-~. «»,

where P represents the sum over any discrete eigen-
values that may exist and an integral over the con-
tinuum. Introducing

—',I'„(E)—= (2m/kk')(P@~(E) PHQC~o(E))' (5.9)

for all n, including e=r, and introducing

b„(E)=—tang~(E) —P' -'I'„(E)/l E—8„(E)7, (5.10)

where the prime indicates the exclusion of the n=r
term, (5.5) becomes

tang (E)=b„(E)—-'I'„(E)/LE —8„(E)g. (5.11)

With the partial cross section given by (47r/k') sin'g(E),
the total cross section is given by

4x tan'g (E)
(E)=— +~'(E)

k' 1+tan'g(E)

with tang (E) given by (5.11),and with o'(E) represent-
ing the cross-section contributions from all partial
waves other than the one for which the resonance
under consideration occurs. This will normally be a
useful form for E close to b,*, perhaps in the energy

main lE—g.*l«lE—g +r*l fo«(E) C"'(E)
I', (E), b, (E), and o'(E) will be slowly varying functions
of E which can be approximated by their values at
E= h,~, that is, by 8„~, C,*, I'„(8„*),b„(h„*), and
ir'(h„*), respectively. Having made a reasonably
accurate determination of h,*, C „*,PV~($,*),and, from
(5.9), I'„(8„),a reasonably good. estimate of b, (8,~)

can be obtained from a careful estimate, possibly a
variational bound estimate, of tang(E'), where E' 8,*
but E'4 8,*, through the use of (5.10). With

d. (E)—=&.(h.*)—L-'I'. (@.*)/(E- @.*)j,

dicating a different normalization from that used above,

cotg(E) =cotg (E)+ (2m/kk') (P%' (E) PAPE(E))
=cotg~(E)+ (2m/kk')

&&(Q&~"(E) 8"(E)Q&~"(E)) (5 7)

The advantages of the choice 8=-,'m over the choice
8=0 are now clear. In the latter case, the determina-
tion of the b„*, corresponding to coty=0, requires
a study of both terms on the right-hand side of (5.7)
simultaneously.

To study the energy variation of the partial cross
section, we introduce the eigenvalue problem, for each E,

we then have, for E close to 8,*,

4' d, '(E)
o (E)=— +o'(h;).

k' 1+d,'(E)

VI. CONCLUDING REMARKS

The 6" considered in the present paper is effectively
a one-channel Green's function since we are here con-
cerned with an energy for which elastic scattering is
the only possible process. For an energy for which there
are e open channels, the problem becomes that of
determining the elements 6;, , where 1&i&n and
1&j&e, of the "static" Green's function, or, more
appropriately, the Green's function in P' space. The
extension to this latter case should present no difFiculty.
It might be very laborious to carry out the numerical
calculations, though, even for e small. The method of
determining 6 can be trivially extended to the elastic
scattering of electrons from hydrogen-like atoms. To
the extent that the ground-state wave function can be
considered known, it should also be possible to extend
the method to a number of heavier neutral atoms and to
some positron pick-up processes.

Note added iw proof. The numerical determination of

g was tedious but not too time consuming. The form in
which g(e; r,r') was obtained, as a set of values over a
two-dimensional space, is much more disturbing, for
all integrals over g had to be done numerically over a
two-dimensional mesh, and these integrations, which
had to be repeated for each choice of a set of variational
parameters, occupied a large fraction of the machine
time used. It would be extremely useful to have a
representation of g as a product of functions or as a
sum of products. This would seem to be precluded
by the nonlocal character of W as given by (2.17).
However, Mittleman noted that 8' is of a very spe-
cial character and that (2.27) can be rewritten as
a set of two coupled. equations. Thus, setting V(r)
=e'(ao/2)'"E(r) for later convenience, and introducing

gg (r,r')= (2m/k'e')L(E —2Ero)rr'bz, o

—(e'/2L+I) (r('+'/r&') j, (6 I)

W(r, s) can be rewritten as

IV(r,s) = —V(r)g (r s) V(s)

Setting Dq(r) =D(r), Eq. (2.27) becomes

Dq(r)g(e; r,r') eV(r) g2(r, s)V(—s)g(s, r')ds

=—5(r—r')+Shoo, . AU�(r)r'V (r') . (6.2)

The boundary conditions on g are given below (2.27).
The essential point to note is that g~ is itself a Green s
function, satisfying

D2(r)g2(r, s) = b(r s), — —
Dq(r) = (k'/2m) l

—d'/dr'+L(1+1)/r'j
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Following Mittlernan, we de6ne the function

s(p;r, r')= —p g2(r, s)V(s)gl(p;s, r')ds. (6.3)

ull u12 ( 2811
w—=

i

u22 4 le21

with the four column vectors in u and w representing
four independent vector solutions of M. The two column
vectors in u will be taken to be regular at the origin,
while the two column vectors in w will be irregular. We
have combined the vector solutions into two matrix so-
lutions for convenience of notation, but no new content
is introduced thereby. We de6ne the matrices

0

We immediately 6nd

DigjVs= —h(r —r')+81p8, , lr V(r)r'V(r')
pD2—s+Vg=0.

It follows from (6.3) that s has the same boundary
conditions as g2. The coupled equations for g and z,
plus the boundary conditions on g and z, can readily be
shown to lead to (6.2).

We note that, apart from a constant factor and the
factor r1r2, the second part of g2 is the radial factor of
Pr, in an expansion of 1/r12. Thus g2 is a Green's func-
tion only because the Coulombic 1/r12 interaction is
itself a Green's function. The decoupling technique
would therefore also work for a Yukawa interaction,
a Green's function too, but it would mot work for almost
any other potential.

The set (6.4) is identical in form to the coupled equa-
tions which arise in a two-state close-coupling approxi-
mation for the incident kinetic energy equal to the
threshold energy for excitation. The physical analogy
cannot be pushed too far, but as a mathematical prob-
lem the work of Newton and Jost LR. G. Newton,
J. Math. Phys. 1, 319 (1960)] can now be used, with
the trivial but annoying modi6cations that include the
use of standing wave rather than outgoing wave bound-
ary conditions and a g2 which is de6ned for the region
0&r'&~, as required by (6.2), rather than r&r'& pp

or 0&r'&r.
To simplify the discussion, we treat here all cases

other than the case of 1.=0, e= —1, which requires
slight modifications. In order to construct g and z, we
consider the matrix equations

Mu=0, Mw=0, : (6.5)

where M—=D+V and

(D,(r)

X(r=rp) =0, X'(r=r )=1p, (6.7)

for an arbitrary rp. Then 2 can be written as 2= ua+vb,
where a and b are constant matrices to be determined
by the boundary conditions on X. Evaluating the
Wronskians at r=rp, using (6.6) and (6.7), we find

WLu, k]= —b=ur(rp), W[vP]=a=v (rp),

so that
X(r) =u(r) vr(»p) —v(r)ur(rp) .

Setting r=rp, it follows from (6.7) that

where Du "&=0, Dw"'=0, with

u22(')=e 'r~+' 2(&22("=e2(2I.+1) 'r ~—(E 2E»p)»hip,

ull"'(0) =0, and, aS r ~pp,

ull(" (r) l sin(kr ——,'Ii»+2)D),
2(&11(P) (r) -+ sin(kr —2I2»+8)/Lk sin(8 —))D)] .

Then the Wronskians are given by

(o)~ (o) ' ~11(o)'~11(o)—

022 ~22 +22 ~22 ~ ~

The Green's functions g1 and g2 are given by

gl(r r ) (22)2/~ )ull (r&)2(&11 (r&)

g2(r, r') = —(2»)2/Ii')u22( '(r&)w22") (r&)

such that Dig& ———8, and g2 agrees with (6.1).It is con-
venient to (uniquely) defi.ne u and w by

u= u")+g "&Vu, w= w")+g(')Vw.

Since M is symmetric, the Wronskian

WLllly(22] = (21 (22 (21 u2

of any two matrix solutions nl and (22 of M(2=0 is a
constant matrix. Due to the boundary conditions on u
and w as speci6ed in terms of N11('), m11('), N22('), and
m22('), we have

WLu, u] =0, W/w, w] =0 . (6.6)

The constant matrix K is defined by WLu, w]= —K.
We define v=wK ', so that Wt u, v]= —1 and Mv=0,
where K—' exists if the set u and w are linearly inde-
pendent. v has the same boundary conditions as w.
The g and z are then given by

g= —(2m/)2') Lull(r&)2&11(r&)+u12(r&)l&12(r&)]

(2m/~ ) u21(r)vll(r )+u22(r)p12(» )
2&21 (r)ul 1(»')+v22(r) ui 2 (r'),

That g and z satisfy the coupled equations for r &r' and
r)r' follows trivially from (6.5), and they have the
proper boundary conditions by construction. We will
now show that PP/2m)g has a unit discontinuity in its
6rst derivative, and that z and z' are smooth at r=r'.
)The conditions on s and s' follow from the second equa-
tion in (6.4).]Following Newton, we consider a solution
2 of MR=0 with the 8 boundary conditions

uv~ vur=0, u'vr v'u—»=1, —(6.8)
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since ro is arbitrary. Due to antisyIrunetry the 6rst
equation in (6.8) gives only one relation, which corre-
sponds to the continuity of s at r =r'. The second equa-
tion gives 4 relations, of which only 3 are independent
of the 6rst equation, which include the smoothness of 2.

"

and the proper jump condition on g' at r= r'.
The noniterative determination of g for a potential

containing two nonlocal components, one separable
and the other a Green's function, can be considered an
extension of the techniques used by Yamanouchi,
Percival, and Marriot for the noniterative determina-
tion of a wave function for such nonlocal interactions.
G could in fact have been obtained somewhat more
directly by first rewriting (1.1) in the form of coupled

equations, analogous to (6.4), and then considering the
regular and irregular wave function solutions of the
coupled homogeneous equations.

For the case of L=O, e= —1, the second term in the
right-hand side (rhs) of (6.2) can be shown to cancel
the effect of the 6rst term in the rhs of (6.1).Thus one
obtains g by simply dropping the (E—2Erp)rr' term
in gs and the (E 2Er—p)r term in tttp2&", and also
dropping the second term in the rhs of (6.2).

One of us (L.S.) would like to express his warm thanks
to Dr. Mittleman for his original suggestion that the
equation for g could be decoupled, so that it should be
possible to write g as a sum of products, and for some
helpful comments.
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Collision Spectroscopy. I. Analysis of the Scattering of He+ by
Ne and Arf
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Experimental data on the differential scattering of He+ by Ne and Ar in the energy range from 10 eV to
100 keV are plotted in a reduced coordinate system suggested by a scaling law for the forward scattering.
The resulting curves are used to determine the interaction potential. The repulsive interaction dominating
at higher energies shows pronounced shell-structure sects, leading to the deduction of the screening con-
stants for the L and M shells of Ar and for the. E and L shells of Ne. At lower energies a polarization attrac-
tion appears, allowing deduction of the polarizabilities of Ne and Ar. A simple analytic potential is con-
structed, including a polarizability term appropriately damped inside the outer shell, which 6ts the data
over the entire range. In addition to the pure elastic scattering, eGects of inelastic interactions are diagnosed.
A prominent curve crossing is located and the scattering pattern arising from it is interpreted by a semi-
classical theory. In collisions with closer encounters, a different type of inelastic. process appears which
apparently involves a more intense coupling than the curve crossing and which appears to.open up a number
of competing inelastic channels.

I. INTRODUCTIOÃ

& 1HE connection between the electronic states of a..diatomic system and its collision properties is best
studied in differential scattering where the large amount
of available information provides a stringent test of our
theoretical understanding. Such experiments are now
producing a growing mass of data of spectroscopic
quality which deserve detailed interpretation. These
data can be used to test predictions derived from prior
theoretical knowledge about the electronic states of the
system, but it is also possible to deduce a great deal of
information about these states empirically from an
analysis of the scattering spectra. It is to such an
analysis that this paper is devoted.

$ Supported in part by the National Aeronautics and Space
Mministration and by the U.S. Army Research Once.

Symmetric systems provide the most information
because of the structure in the interference patterns that
arise in them. For example, in the system He++He,
oscillations appear in the elastic scattering pattern due
both to electronic symmetry (g and tt states) and
nuclear symmetry. ' These oscillations can be used to
deduce detailed empirical information about potentials
for the states involved. Similarly, in Ne++Ne, Jones'
has observed an additional symmetry eGect due to
participation of II as well as Z states in the scattering.
Most theoretical information on the potentials is
available for symmetric systems with 4 or fewer elec-

' R. P.Marchi and F. T. Smith, Phys, Rev. 139, A1025 (1966);
%'. Aberth, D. C. Lorents, R. P. Marchi, and F.T. Smith, Phys.
Rev. Letters 14, 776 {1965).

'P. R. Jones, T. L. Batra, and H. A. Ranga, Phys. Rev.
Letters 17, 281 (1966).


