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Properties of dilute mixtures of He? in liquid He? are calculated on the assumption that, for the most part,
they behave as low-density fermion systems with an effective He? Hamiltonian. Expressions for He? scattering
amplitudes in terms of phase shifts are obtained, and the measured spin diffusion coefficient D for tempera-
ture T below 1°K is used to determine the effective interaction between He? atoms. It is found to have a
strong repulsive region with a longer-range attraction which is deeper but of shorter range than the cor-
responding part of the Van der Waals force. At low momenta, the phase shifts are small, and at low tempera-
tures, the effects are weak. At higher temperatures, larger momenta are probed, and the scattering is more
significant. The phase-separation curve and the low-temperature viscosity, thermal conductivity, spin
susceptibility, compressibility, and specific heat are calculated and agree with existing experimental evidence.
It is found that the mixtures should undergo a fermion superfluid phase transition, but the maximum transi-
tion temperature is 1078 °K. Evidence for the transition should be found in a 4%, decrease of DT? between

1072 ° and 2X1073 °K.

I. INTRODUCTION

ILUTE mixtures of He?® in liquid He? are of special
interest because they provide a new class of
strongly interacting, low-density fermion systems. This
situation arises when the temperature is below about
1°K and the He* has few real excitations,! so that it is
mainly a medium which keeps the He® atoms apart
and modifies their Hamiltonian.?

It has been found® that solutions with He? concentra-
tion less than 69, do not undergo phase separation.
They have a maximum degeneracy temperature of
about 0.35°K, and so experiments can be carried out
from the semiclassical to the Fermi-degenerate regions.
The He® number density is low enough for good micro-
scopic calculations to be feasible, and it may be varied
over a wide range by changing the concentration.

On the other hand, the interaction between the He?
atoms, as modified by the He?, is not known. Average
properties have been discussed,*® but it has not yet
proved possible to determine the shape of the inter-
action in detail from the coupling between the He? and
the He?, since a microscopic calculation is difficult and
there is not enough information to put into a tractable,
partly phenomenological theory.?

The purpose of this paper is to discuss the existing
experiments, to use some of them to determine the ef-
fective He® Hamiltonian, and to consider some of the
consequences. The general conclusion will be that the
experiments are consistent with the assumption of a
He3-He® interaction v with a strong repulsive region and

* Work performed under the auspices of U.S. Atomic Energy
Commission.
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a longer-range attraction. The scattering length is
about —1 A, and although the potential is strong,
its phase shifts are small at low momenta, so that its
effects are weak at low temperatures. As the temper-
ature is raised, high momenta are given increasing
weight and the strength of the potential is revealed.
In particular, it will be seen that this picture gives a
natural explanation of the temperature dependence of
the spin-diffusion coefficient in the semiclassical regime.

In comparison with the Van der Waals potential 7,
for two isolated He® atoms, the attractive part of v is
deeper and of shorter range, although the repulsive
regions are the same. The net result is that v is less
attractive than v,, which agrees with a previous esti-
mate.?

Since the scattering length is negative, the potential
is effectively attractive at low momenta. It follows that
spin waves should propagate instead of zero sound, and
there should be a fermion superfluid phase transition,
although the small phase shifts lead to transition
temperatures of the order of 10~% °K. However, it will
be shown that evidence for the transition may be found
in transport coefficients at temperatures which are
accessible at present. As the transition temperature 7'
is approached from above, the scattering rate for pairs
of particles with total momentum near to zero becomes
very large and, in the limit, the transport mean-free
times tend to zero. In He? or superconductors, this
effect would be seen only very close to 7%, since it has
to compete with strong scattering for total momentum
not equal to zero, or with impurity scattering. In dilute
mixtures, the total scattering rate is small and a large
fraction of it comes from the neighborhood of total
momentum zero, so that the decrease in transport
coefficients becomes apparent at a relatively high
temperature. For example, it will be shown that in the
case of the spin diffusion coefficient D in a 1.249%,
mixture, for which 7, is a maximum, there is a 49,
drop in DT? as the temperature 7T is decreased from
0.01 to 0.002°K.
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In Sec. II, expressions for the spin diffusion coef-
ficient in the semiclassical region and for transport
coefficients, susceptibility, effective mass, and com-
pressibility, in the degenerate region will be given and
the calculation of the chemical potential will be dis-
cussed. The framework of Landau’s theory of a Fermi
liquid® will be used, although in this case it is a con-
venience rather than a necessity, since it is possible to
carry out good microscopic calculations of the scatter-
ing amplitudes, and in Sec. ITT it will be shown that, to a
good approximation, they may be expressed directly in
terms of free-space phase shifts. From this point of
view, the weak potential of Bardeen, Baym, and
Pines® and of Ebner? is a local approximation to the
scattering amplitude.

In Sec. IV, for simplicity, it will be assumed that the
repulsive part of v(r) is a hard core. The attractive
region will be represented, first, by an effective range
and scattering length to obtain shape-independent in-
formation for low momenta; and second, by a square
well, as a particular assumption which may be used at
higher momenta also. Since the core radius is larger
than the scattering length, this form of effective-range
theory is significantly better than an unmodified ap-
plication to the entire interaction.

The experiments which will be discussed are measure-
ments of the phase-separation curve of Edwards,
Brewer, Seligman, Skertic, and Yaqub,? the thermal and
magnetic properties at 1.3%, and 5%, concentration of
Anderson, Edwards, Roach, Sarwinski, and Wheatley,?
and the sound attenuation at 59, concentration of
Abraham, Eckstein, Ketterson, and Vignos.® The
potential parameters will be determined from the spin
diffusion coefficient, and then it will be shown that the
predicted values of the other properties agree well with
experiment. In Sec. V, the fermion superfluid phase
transition and the related behavior of the transport
coefficients will be considered.

II. THE TWO-PARTICLE-COLLISION
APPROXIMATION

The effective interaction may be written
(2.1)

where 7y is the potential between two He® atoms in
free space, and v; is the change induced by the He* as a
consequence of the fact that the interaction of each He?
atom with the He? is modified by the presence of the
other He?® atom.

One form of vy(7) is

0(7) = Vo[ (r0/7)2—2(r0/7)%], (2.2)

6 A. A. Abrikosov and I. M. Khalatnikov, Rept. Progr. Phys.
22, 329 (1959).

7 C. Ebner, Phys. Rev. 156, 222 (1967).

8A. C. Anderson, D. O. Edwards, W. R. Roach, R. E. Sar-
winski, and J. C. Wheatley, Phys. Rev. Letters 17, 367 (1966).

9 B. M. Abraham, Y. Eckstein, J. B. Ketterson, and J. H. Vig-
nos, Phys. Rev. Letters 17, 1254 (1966).
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with?® 7,=10.2°K and 7r,=2.87 A. For r<r, this
potential is strongly repulsive and is not significantly
changed by v;. For larger 7, v; is important, and its role?
is to make v less attractive than v. There is a quali-
tatively similar effective force between any pair of
particles in pure He?, pure He?, and mixtures. In the
case of dilute mixtures, it has been shown? that v; is
essentially independent of velocity, spin, and concen-
tration, and is not retarded.

For momenta of interest, the energy of a single He?
atom in the He? is, to a good approximation,? a kinetic
energy with effective mass mo*. In Sec. IV its value will
be determined from experiment, and it will turn out to
be 2.33 times the mass m; of a bare He® atom.

Thus, it will be assumed that the effective He?
Hamiltonian is

H= Z sz +1 E E v(rz—r1>

=1 =1 j=

(2.3)

If n; is the number density of the He?, and R is the
range of the force, then #;/® R is less than about % for
He® concentrations less than 69, and the properties
of the system may be calculated in the two-body-col-
lision approximation. The situation is very similar to
nuclear matter, for which it is known that the im-
portance of three-body collisions is not large.* The
approximation is even better for a mixture, since the
third He® atom has to displace a He! atom whose
effect is included in v;. The error, then, is the difference
in v; caused by substituting a He® atom for a He* atom
in an already rare three-body collision, and this should
be quite small.

A. The Semiclassical Region

When the temperature 7' is greater than the de-
generacy temperature 7T, transport coefficients may
be calculated with Boltzmann distribution functions
and quantum-mechanical scattering cross sections.
The spin diffusion coefficient D is given by!?

= (3/8nsmo*) (kpT/Qe),

where Q1,®V is a special case of

1/2
Qm("")‘( ) / dy Q™ (v),  (2.5)
1rmo

(2.4)

and
QW (y) = (4nhi?/my*ksT) Z (I4+1) sin?(6141—81).
7
(2.6)

The notation is standard in the kinetic theory of gases,
and 4, is the phase shift for scattering at the appropriate
relative kinetic energy y2ksT and angular momentum /.
(kg is Boltzmann’s constant and 7 is Planck’s constant

10 J. de Boer, Physica Suppl. 24, 90 (1958).
u H. A. Bethe Phys. Rev. 138, B804 (1965).
2V, J. Emery, Phys. Rev. 133, A661 (1964).
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divided by 27.) The leading correction for Fermi
statistics is of order (7T#/T)3, and it becomes important
when T <27T%.

The corresponding equations for the viscosity 7 and
thermal conductivity « will not be written here, since
the degeneracy correction is of order® (7'/Tr)%2.
(This order vanishes identically for the spin diffusion.)
At present, « has not been measured and the only ex-
periment from which 7 may be determined concerns a
5% mixture for which Tr is 0.33°K, so that the non-
degenerate limit applies only above 1°K, where scatter-
ing from real phonons must be taken into account. This
introduces an additional uncertainty, which we do not
wish to consider at present.

B. The Degenerate Region

When T'<Tp, it is convenient to use the framework
of Landau’s theory of a Fermi liquid, since much of the
formal manipulation has been carried out already.

The transport coefficients are given by®

D= (xo/x) (3v¢*rD), (2.7)
n="3nsm* (Jvs’ry), (2.8)
k=C,(3vr’7y), (2.9)

where x and xo are, respectively, the spin suscepti-
bilities of the mixture and the corresponding ideal gas,
m* is the effective mass at concentration x (as modi-
fied by interactions), C, is the specific heat, and vz is
the Fermi velocity. The 7’s are mean free times given

by

fi/rp=(kpT?/ Tr) WD, (2.10)
h/1y=(ksT?/ Tr) §W 22, (2.11)
i/te=(kgT?/ Tr)3W,0P, (2.12)
where
m k}a n
W = (41%2) f d$ (1 cos')

ke dh (k/kp)2tH

T (At | AE(k 8+ Aok 9) I
0

(2.13)

and W,®? is given by the same expression with
| Az+A4o |? replaced by (‘Ax |43 | 4o |?). Here hkp is
the Fermi momentum and Az(k, ¢) and Ao(k, ¢) are
even- and odd-state scattering amplitudes for two par-
ticles on the Fermi surface with relative momentum 7k
and scattering angle ¢.

Using the relation® between Agz(k, ¢), Ado(k, ¢)
and Landau’s forward scattering amplitude f, x and

1 J, O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liquids (John Wlley & Sons, Inc., New York,
1954).

14 D, Hone, Phys. Rev. 121, 669 (1961).
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m* may be written®

;]—1+( ) [ dk k[ Ag(k, 0) — Ao(k, 0)], (2.14)

mo* m* 2k
o =1= (ker) '/o dk k(l— _l;)
X[Ag(k, 0)+340(k, 0)].

The specific heat may be obtained® from m*. The iso-
thermal compressibility k7, calculated as if H were the
entire Hamiltonian, is given by

(2.15)

_ 3m*
T ke
m*\ [t
x{1—<—) dk k[ Ag(k, 0)+340(k, 0)]}, (2.16)
kpm?/ J

and is used in the discussion of zero sound.®

These expressions are the leading terms of an ex-
pansion in powers of 7'/ Tr. In Sec. III, the scattering
amplitudes Ag(k, ¢) and Ao(k, ¢) will be determined
from the effective He? Hamiltonian.

C. Phase Separation Curve and the Effective He3
Chemical Potential

In a two-phase mixture, the chemical potentials of
the He® atoms in each phase must be equal. At very low
temperatures, the Hed-rich phase is essentially pure
He?, and its chemical potential is known from experi-
ment; thus the phase separation curve can be de-
termined from a calculation of the chemical potential
of the Het-rich phase.

For this purpose, it is necessary to take account of the
energy of interaction of the He?® atoms with the He?,
which is not included in H in Eq. (2.3), and to re-
member that the measurements of the phase separa-
tion curves® have been carried out at essentially
constant pressure so that the total number density »
will vary with concentration.

Now the assumption upon which the use of the
Fermi-liquid analysis is based is that the temperature
dependence of the free energy comes mainly from the
contribution of the effective Hamiltonian H. Then
ps(n, T, %) =pa(n, 0, x) +ps(ns, T) —fis(ns, 0), (2.17)
where f3(ns, T) is the chemical potential calculated
from H, and #n; is nx. In a low-density system, fis(#s, 0)
may be written in terms of a single-particle energy®

ex=(k*/2me*) +V, (2.18)

15 K. A. Brueckner, in The Many-Body Problem, edited by C.
D??\Sxtt and P. Nozieres (John Wiley & Sons, Inc New York,
1959
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as
ﬁa(ﬂg, 0) = €kp

= Ep+V,,

which defines the Fermi energy Ep.

~ For low concentrations, it is sufficient to calculate
ps(n, 0, x) to lowest order in x. Since Ep is proportional
to «?3 it will be necessary to expand us(#, 0, x) — Ep.
Let the total free energy per particle be f(%, T, x). The
pressure P is given by

P=n2(3f/dn) r 2,

(2.19)

(2.20)
and

us(n, T, x) =[(8/0N3) Nf Ir.n,
=f+(1—x) (8f/9%) r n+P/n, (2.21)

where N3 and N, are, respectively, the total number of
He? and He? atoms and N =N;+N,. From Eqgs. (2.20)
and (2.21) and the chain rule

(aP/ax),,,T= - (6P/6n) T,,(an/ax)p,r, (222)
it follows that
lim[ (9us(n, 0, x) /3x) p— (8 Er/d2) p]
=[(8%/0%) .o —n(d Er/ns) — (1/n?)
X (80P/0n) p,.(0n/3%x) p,1*Jr=0,c=0. (2.23)

Now in the limit 7—0, ¥—0, (8%/3%%) »,r—n(0 Er/0ns)
is the same as (92Ep/0x%),, where Ep is the total
ground-state energy calculated as if the He? atoms were
bosons. If Eg is estimated from the variation principle
using the ground state of N He? atoms as a trial func-
tion,* then (9%Ep/dx?), is zero, so that it is likely to be
small in a more accurate calculation, and it will be
neglected. The phase separation curve calculated on
this assumption agrees with experiment.

Using Eq. (2.23) and expressing (dP/dn)r. in
terms of the mass my and sound velocity ¢ of Het,
Eq. (2.17) may be written

/"’3("; T, x) Nﬂb‘(”ﬂ; 0, O)
— (wmac?/ne?) (3n/0%) p1*| 70,20
+ Ep+fis(ns, T) —is(n3, 0).

It turns out that with less than about 39, error, Vj
is quadratic in & for k<kr and Er is ks?/2m*. Also,
in the range of temperatures of interest (T <Tr/2),
the temperature dependence of m* is insignificant;
therefore, to a good approximation, the last three terms
on the right-hand side of Eq. (2.24) are the chemical
potential of an ideal gas with mass m* calculated for
the appropriate concentration. For small #, this could
be expanded in powers of x, but it is simpler not to do
so. All other terms in Eq. (2.24) are known from
experiment,* except for us(#, 0, 0), which will be chosen
as a single parameter to fit the phase separation curve.

(2.24)
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The existence of the second term on the right-hand
side of Eq. (2.24) in the variation of us with x at
constant P was first pointed out by Baym,* although
it has been used in a rather different manner here.

III. CALCULATION OF SCATTERING
AMPLITUDES

In the two-body-collision approximation,®

Ap(k, ¢) = (4r/F) UZ (20+1) P(cose)
Xk v |Yk D)), (3.)

and Ao(k, ¢) is given by a similar expression with the
sum carried over odd values of /. For k<kr and kr<
0.35 A, the d-state impact parameter lies outside the
range of the force, and so s and p states dominate. In
these circumstances, it has been shown!® that the
equations determining |¢(%, 7)) decouple, and they
may be rearranged to give

(B, 1] o] Yok, 2))
14+AE D)k, L] v | (R, D) )

&, 1o |k, 1) )=

Here,

(3.2)

(r| &, 1y="krji(kr), (3.3)

with 7;(kr) the spherical Bessel function of order },
and | yo(k, 1) ) is the solution of

| Yo(k, 1) Y=k, 1)+Go(k, Do | Yok, 1) ), (3.4)
with
241 ,Ax(F)[P(E'-6) T
X(|&, D)L=k 1)k, L) (3.5)
and
Ax(k) _ l tanh%ﬁel/2K+k+tanh%ﬁel/m_k. (36)
2 e/r+teqr—x
Finally,
_ 214+1 rdk!
R0 =200 [T A (BB B)

Here 3Ktk are the momenta of the scattering particles
which lie on the Fermi surface, so that

K/A=hp—J2 (3.8)

and e is e —exp.

The reason for writing | ¢ (%, ) ) in terms of | (%, 1) )
is that Go(%, ) is a slowly varying function of T and
the most significant temperature dependence of
(k1| v | (R, 1) )is in Ax(K’) in the denominator of the
right-hand side of Eq. (3.2). L -]

It is straightforward to solve Egs. (3.2, to (3.7)
numerically, but for the present problem it is possible
to obtain a good approximation for (&, I|v|y¢ (%, I))

18 V. J. Emery, Ann, Phys. (N.Y.) 28, 1 (1964).
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in terms of the free-space phase shifts §;(%), which is

useful both as a method of calculation and as a means

of obtaining an intuitive feeling for the problem.
For this purpose, define the free-space function

with
Goty =~ 22D

X/mdk/lk,;l><klr”—|k7l><k)ll (310)

(B"/mo*) — (B*/mq™)

Subtracting Eq. (3.9) from Eq. (3.4) gives
| ok, 1) )= ¥r(k, 7))

+[1—Gr(k, oI [Go(k, 1) —Gr(k, 1) Jo [ $o(k, 1) ).

(3.11)

Then multiplying on the left by (%, Z| v and using the
conjugate of Eq. (3.9),

<k:l| Y)Illlo(k, l) >=<k;liv|¢F’(k) l)>
+ Wk, D) | o[Go(k, 1) —Gr(k, 1) Jo [ Yo(k, 1) ). (3.12)

In the next section it will be seen that, except for %
near kp, the second term on the right-hand side of this
equation is about 109, of the first. In evaluating
Go(k, 1), it will be assumed that €, is a constant plus
k%/2mo*. In practice, ¢, differs from this form only
in the Fermi sea and just outside, and even there the
difference is only a few percent. At very low temper-
atures, the integrands in Go(%, I) and Gr(%, I) are the
same for ¥’ >kr+K/2, and so cancel in Eq. (3.12).
For the other values of %/, | &', I) will be replaced by
(K'/E) ¥| k, I). This approximation is good for small
kr. In the worst case of a 69 mixture and s states,
assuming the range of force to be found in the next
section, the error in this approximation is, on average,
less than 209, in Go(k, I) —Gr(k, 1), and it leads to a
rather small error in (&, 7| v|¢o(%, 1) ).

With this assumption, Egs. (3.5), (3.10), and (3.12)
give

Lo LB D)= e D 110 [0 (6 )

where, using Eq. (3.8),

_ @A) [ me /R
kD == k,Z[AK(k) w-;a] (3.13)
X[Pi(ﬁ-ﬁ’)]2[<%>2(Hl)—1]. (3.14)
Since?
(B, 1| v | Y (k, 1) y= —R2k/me* tand (), (3.15)

17 V., J. Emery, Nucl. Phys. 19, 154 (1960).
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Egs. (3.2), (3.6), and (3.13) give
ko] (k, D)
— (B2k/mo*) tand (k)
T 1—[A(k, ) AN (k, )1 Fk/mq*) tandy(k)’
It will be seen that the denominator on the right-hand
side of this equation differs most significantly from

unity for /=0. When (kr—k) /kr>>T/Tr, it is possible
to set 77=0 and find

(3.16)

_ T hpbk\ 2%
A(k, 0)+\(E, 0) = W”h:k [m(%)- —k—F] (3.17)

whereas for (kp—Fk)/kp<KT/Tr, the leading term is'®

_ 2m* 4.56T%
A(kp, 0) +N(kp, 0) = —— (In ——
(kr, 0) 42 (ke 0) mkp(n T
These approximations will be used in Sec. V in the dis-
cussion of a fermion superfluid phase transition.

—2>. (3.18)

IV. DETERMINATION OF THE EFFECTIVE
INTERACTION

It will be seen that the existing experiments are not
sufficient to determine the shape of »(7) completely,
so to simplify the calculation of the phase shifts, the
short-range repulsive region will be replaced by a hard
core of radius 7.. Later in this section, a square well
will be assumed for the attractive part of v(r), but first,
in order to get a feeling for what is going on, the ef-
fective-range theory of Blatt and Jackson!® will be
used.

A. Effective-Range Theory
The s-state phase shift will be written in the form
8 (k) = —kr.tarctan (—kd'/(1—3r/d'k?) ), (4.1)

where a’ is the scattering length and 7y’ the effective
range of the aftractive part of the interaction. This
equation may be obtained by changing origin to 7. in
the s-state projection of the Schrédinger equation and
then using the effective-range approximation.!®

For k sufficiently small, s states dominate, and the
expansion of Eq. (4.1)

So(k) = —ak—b%k3, (4.2)
with
a=a +r.,
B=1ir/a?—1a", (4.3)

may be used. Then §(k) depends upon only two
numbers ¢ and b which do not give enough information
to determine 7, 7y, and &/, although it will be seen that
the possible values of 7, are restricted.

In the degenerate region, momenta 7k for k<kp
contribute. The lowest concentration for which detailed

18V, J. Emery and A. M. Sessler, Phys. Rev. 119, 43 (1960).
13 J. M. Blatt and J. D. Jackson, Phys. Rev. 26, 18 (1949).
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measurements have been made® is 1.39, for which
kr=0.204 A-1 and they will be used to determine
a and b. It will be seen that Eq. (4.2) is a good ap-
proximation in this case, but there is some inaccuracy
because p states, though small, are not entirely negli-
gible.

If Eq. (4.2) is used in Egs. (2.7), (2.10), (2.13),
and (2.14), it is found that the measurements® of D
and x give @ between —0.8 and —1.0 A, and b be-
tween 1.8 and 2.4 A. The reason for the uncertainty is
that the force contributes about 109, to x and so the
3% experimental error is very significant. The specific
heat (and hence m*) has been measured, but me*
has to be known before Eq. (2.15) can be used. Later,
it will be shown that me*=2.33m3. This additional
information then requires a=—1A and 5=2.4 A.
A better determination could be made if there were
more complete measurements at lower concentration.

Now, in its usual form, effective-range theory" is
applied to the entire interaction to obtain Eq. (4.1)
with 7,=0. Then /=27 A, and it was inconsistent to
omit higher-angular-momentum states, and corrections
to Eq. (4.1) become important.

If 7. is now included, then, as it increases, a’ increases
in magnitude and 7,’ decreases. The maximum value of
7., for 7¢'>0, is 2.47 A. Later in this section, it will be
seen that the best fit to all of the existing experiments is
given by 7,=1.8&, and if this value is used here,
a’=—2.8 A and r/=1.7 A. Thus, since 7.>|a|, the
modification of the effective-range theory makes a
significant difference in the interpretation of the
parameters. The situation is quite different with the
nuclear force! for which r,<| a |.

If the same analysis is applied to the free-space
phase shifts calculated?® from v, Eq. (4.1) gives a poor
fit with 7.=0, but if »,=1.8, it fits for 2 up to about
1 A1 with o’=—7.1 A and »/=2.7 A. Thus, since the
free-space phase shifts were calculated with mass ms,
the attractive part of v is weaker but of shorter range
than the corresponding part of .

Given 7., the values of ¢’ and 7" are independent of
the shape of the attractive part of v, and this analysis
complements the remainder of this section where a
square well will be used and higher-angular-momentum
states will be included. With this modification, it will
be seen that @’ is —2.9 A and 7y’ is 0.9 A, so that it is
desirable to work at lower concentrations if p states
are to be neglected.

B. Hard Core Plus Square Well

It will now be assumed that

o(r) = — i (sn?) (72/mo*b?) ,
=0,

7. <r<b+7,

btr.<r. (4.4)

20 J. de Boer, J. Van Kranendonk, and D. Compaan, Physica
16, 545 (1950).
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Here b is the range of the force and s is the well-
depth parameter which is defined so that when s=1,
v(7) has a bound s state of zero energy, and is a very
convenient measure of the strength of the interaction.
The square well is chosen because its phase shifts can
be calculated analytically, which reduces the calculation
even though the integrals have to be performed nu-
merically. The fit to the data is reasonably good and, at
present, it is not reasonable to attempt to improve it
by changing the shape of the well or the repulsive region,
since the existing data are not sufficient to give a unique
result.

The potential parameters are given most accurately
by D since the experimental error is also the error in the
mean-square scattering amplitude. Given 7., the low-
temperature limits of D7 for 1.3 and 59, concentra-
tions,® which have an experimental error of 109,
determine b to about 5%, and, given 7, and b, they de-
termine s with less than 19 error. The reason is that
the phase shifts are small as a result of a close can-
cellation of the core and attractive contributions, so a
small change in s has a large effect.

If the low-temperature measurements are used to
find b and s as functions of 7., and then the semiclassical
results are used to determine 7., it is found that the
best fit is given by

r,=18 A,
5=0.8 A,

s=0.81. (4.5)

Figure 1 shows Dx/T?%2 as a function of T. From Eq.
(2.4), it can be seen that Dns (and hence Dx) is in-
dependent of concentration in lowest order, provided
real phonon scattering is unimportant, so Dx can be
obtained from the measurements at 1.3 or 59, concen-
tration. However, in order that 77>2Tp, which is the
condition for Eq. (2.4) to be valid, the experimental
points in Fig. 1 come from 1.3%, concentration between
0.3 and 0.6°K and from 59} concentration at 0.8°K.

The low value of D at 0.3°K is (at least partly) a
consequence of the omission of the degeneracy cor-
rection which is of the order of 109, at this temper-
ature. The curve is larger than the experimental value
at 0.8°K and this is likely to be a result of the in-
adequacy of a hard-core repulsion. Improvement of the
fit requires a change in the shape of the potential rather
than an adjustment of parameters, but this has not been
attempted, since it seems that the existing data would
not determine () uniquely.

From Egs. (2.4), (2.5), and (2.6), the temperature
dependence of D/T%72 comes from the fact that the
phase shifts are evaluated at relative kinetic energy
v*kpT. At low temperatures, the relevant kinetic
energies are low and, as shown in Fig. 2, phase shifts
are small because the over-all scattering length a is
small. As T increases, higher relative kinetic energies
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are sampled, and the mean of the phase shifts increases
as D/ T%2 decreases.

If the hard-core and square-well potential is fitted to
the free-space values of 7, and a’, with 7,=1.8 A, the
potential parameters are

To= 1.8 A,
b=24 A,
s=0.79, (4.6)

which give v provided m,* is replaced by m; in Eq.
(4.4).

It can be seen that, in comparison with v, v is
deeper and has a shorter range, so that the potential
9; induced by the He? is repulsive for 7 greater than
about 2.6 A and attractive between 1.8 and 2.6 A.
It would be surprising if the induced potential exactly
cancelled v,(7) at large distances, and it is possible that
a more accurate determination of »(r) would reveal a
repulsive tail or even an undulating tail. The values of
7e’ and @’ and possibly s are reasonably shape-inde-
pendent, but the intrinsic range and hence the depth
could change somewhat, and we do not consider them
to be well determined at present.

Table I shows the properties calculated from »(7).
The values of DT? fit the experimental results which are
the same as those quoted. It can be seen that
(m*/me*) —1 and (xo/x) —1 also fit the experiments
but this is not a particularly stringent test of the
potential since the experimental errors are an ap-
preciable fraction of its contribution. The sound-at-
tenuation measurements of Abraham et al.® give a
relaxation time which can be shown to be 7, by means
of an analysis similar to that carried out® for pure
He®. Their measured values of 7, extrapolate reasonably
well with the limiting value shown in the table. No
measurements of the thermal conductivity have been
reported at present.

The measured phase-separation curve? is well fitted if
us(no, 0, 0) is chosen to be —2.78°K. With this value,
the maximum stable concentration at 7'=0, obtained
by solving Eq. (2.24) at T=0, is 6%,.

The results generally are quite similar to those ob-
tained by Bardeen, Baym, and Pines,® and by Ebner.”
They assume that the scattering amplitudes Az and 4o
can be calculated from a velocity-independent po-
tential in first-order perturbation theory. The scattering
amplitudes which were calculated in Sec. III have a
different behavior from this in general, although the
separation method,” in the form used by Moszkowski
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F16. 2. Phase shifts for angular momentum /=0 and !=1 for
the relative momentum hk.

2 V. J. Emery and R. J. Eden, Proc. Roy. Soc. (London)
A248, 266 (1958).
( 22 S, Moszkowski and B. L. Scott, Ann. Phys. (N.Y.) 11, 65
1960).
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and Scott,?? suggests that it may be a good approxima-
tion in the degenerate limit, but is less likely to be so in
the semiclassical region. At present, there is not enough
experimental information to distinguish between the
various possibilities.

The restoring force which produces the analog of
zero sound® in the mixture is Ag(k, 0)+340(k, 0),
and from Egs. (3.1), (3.16), and Fig. 2, it can be seen
that it is negative for all k<kp. (Figure 2 does not
show phase shifts for {>1, but they are positive for
k<kr and small.) Therefore zero sound will not
propagate. The restoring force for spin waves® is
Ao(k, 0) —Ag(k, 0), and this is positive for all k<kr
in a 1.39, mixture and negative only for % near to kr
in a 5%, mixture; and spin waves will propagate. In the
approximation that Ao(k, 0) —Ag(k, 0) is constant,
the velocity # of the spin waves is determined® by
(xo/x) —1, which is so small that % is very close to vp.
For this reason, the generation and detection of spin
waves will be rather difficult.

V. FERMION SUPERFLUID PHASE TRANSITION

Since the effective interaction is attractive at small
k (ie., 8(k) and 6&,(k) are positive) the mixtures
should undergo a fermion superfluid phase transition.
At the transition temperature 7.(J) for angular mo-
mentum I, {(krl|v|y¥(kr, 1)) has a singularity!6.17.2¢
and the scattering amplitude for particles on the
Fermi surface with total momentum zero diverges.
Thus, from Eq. (3.16), T. is given by

A(kp, 1) +X\(kp, 1) = (m*/h%kp) cotdi(kr). (5.1)

Figure 2 shows that §,>6, for £<0.33, so that /=0
gives the larger transition temperatures. The maximum
occurs at £=0.2 A1, where 8=0.134. For [=0,
Eqgs. (3.17), (3.18), and (5.1) give

T,=4.56T exp[— (7/2) cotdo(kr) —=2].  (5.2)

The factor €2 is an improvement of the low-density
phase-shift approximation,” and an equation of this
type has been found before? in the special case of a
separable potential.

The maximum value of T. occurs at kr=0.2 A1,
or x=1.249,, and is 0.79X10~%K. This is too small
for the transition to be observed at present, but now it
will be shown that evidence should be found in the
transport coefficients above a millidegree as a result of

% L. D. Landau, Zh. Eksperim. i Teor. Fiz. 32, 59 (1957)
[English transl.: Soviet Phys.—JETP 5, 101 (1957)].

24D, Thouless, Ann. Phys. (N.Y.) 10, 533 (1960).

% P. C. Sood and S. A. Moszkowski, Nucl. Phys. 21, 582
(1960).

DILUTE MIXTURES OF He3

201

Tasre I. Calculated properties of solutions at 1.3 and 5%, He?
concentration. The potential was chosen to fit the measured
value of DT? which is the same as quoted here. The experimental
values® of m*/mo* and xo/x are given. «7° is the ideal gas com-
pressibility.

1.3% 5%
DT? (1078 cm? K%/sec) 17.2 90
7,7? (1071 sec K) 1.7 2.2
KT (erg/cm sec) 19.1 64
k7%/ kT 0.86 0.74
(m* /mo*) —1 0.017 0.061
Experiment (assuming 0.02140.017 0.056=£0.017
mo* = 2 . 331}13)
(xo/x)—1 0.09 0.05
Experiment 0.094-0.03 0.084-0.03

2 Reference 8.

the way in which the divergence of {kr, 0| v | ¢ (kr, 0))
affects the scattering rates. In order to estimate the
magnitude of this effect, A(k, 0)+\(k, 0) will be ap-
proximated by Eq. (3.17) for k<ko and Eq. (3.18) for
k> ko, where ky is chosen so that the right-hand sides of
Egs. (3.17) and (3.18) are equal at k=k,. The error
caused by this approximation is very small. Then,
from Egs. (2.13), (3.1), (3.16), and (5.1), the change in
WD when the temperature is changed from T to T
may be reduced to

me T, [TVTe dx
AWOD = ‘EB };‘ /;'2”'0 Zl?éx—)::’ (1—'% tanBl(kp)Iogx).

(5.3)

Here the leading order in kr—k has been taken.

The transport coefficients are close to their limiting
values at 0.01°K, so we take T3=0.01°K, T>=0.002°K,
and choose kr=0.2 A-! which gives the largest T..
Then AW®D /W is 0.04, and DT? should decrease by
49, over this temperature range. This should be ob-
servable but is within the quoted experimental error
at present.? The decrease is about 39, for KT and
nT?, since their scattering rates are larger than for D.

The reason that the effect is observable so far above
T. is that it does not have to compete with a large
scattering rate for k far from kr as in pure He?, or
impurity scattering as in superconductors.!* The
value of W for kr=0.2 A~ is about 27X 102,

The prediction of the decrease of DT? depends upon
very much the same assumptions as the prediction of
the transition; therefore its observation would strongly
suggest that a transition would be seen at low enough
temperatures.



