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Delta-Function Fermi Gas with Two-Spin Deviates
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The problem of one-dimensional particles interacting via a delta-function potential has been a useful
model for the many-body problem. While it can be solved for bosons, it has so far not been solved for fermions
except for the special cases of either all spins parallel or all but one spin parallel. The full difficulty of the
problem first manifests itself when two spins are down (i.e., S=,X—2), and this we solve here. We are
confident that our method can be extended to the general problem.

INTRODUCTION particles is

ANY authors have sought an exactly soluble
model of interacting fermions (with ordinary

pair potentials and in a "box" at a finite density)
which would be an asset in the study of the many-body
problem that pervades so much of physics. ' Such a
model —the delta-function model —exists for bosons, '
but so far has defied solution for fermions. While there
does exist one exactly soluble model of interacting
fermions having physically reasonable properties, ' the
Hamiltonian of that model is sufficiently unphysical
that it is dificult to have great confidence in its pre-
dictions.

In this paper we show how to solve the delta-func-
tion model for fermions with 2 spins down and X—2

spins up. We are fully confident that our method will
solve the general problem, although its solution may
be complicated. It must not be forgotten that one re-
quires more of an exactly soluble model than a mere
formal solution; one also needs an interpretation of
the results. Since it is difficult to infer very much by
comparison of the 2-spin deviate problem with the
zero-spin deviate problem, we have put aside this im-
portant task until we are able to exhibit the full solu-
tion to the general problem.

The Hamiltonian4 of the delta-function model for .V

H= —Q ci'/rlx'+2c P 8(x —x).

Relative to bosons, fermions possess a simplifying as
well as a complicating feature, the latter vastly out-
weighing the former. The simplification comes from the
fact that an antisymmetric spatial wave function auto-
matically vanishes when two particles "touch, " so that
the delta-function interaction plays no role. Thus,
fermions with all spins parallel do not interact with
each other. For other values of the total spin there will,
indeed, be an interaction between the "spin-up" par-
ticles and the "spin-down" particles. In the latter case
the problem is quite similar to the problem of a two-
component Bose gas having the property that particles
of each species interact only with particles of the other
species. For particles of only one species (i.e., either a
totally symmetric or a totally antisymmetric wave
function), it is only necessary to consider the sub-
region of configuration space

~1 &1+&2+ ' ' ' +&N (1.2)

instead of the full configuration space because knowl-
edge of the wave function in E1 is, by symmetry, suf-
ficient to define the wave function everywhere.

The complication mentioned above is that we are
forced to consider a region much more complicated
than R1. To be explicit, suppose we wish to consider
the eigenfunctions of II when j spins are down and S—j
SpinS are up Li.e., the Value Of 5, iS 3II; =Is(1V 2j) j. —
As was explained elsewhere, ' it is necessary and suf-
ficient to consider wave functions of the form %(xi, xs,
~ ~ ~, x;

~
x;+I, ~ ~ ~, xrr), where the "bar" means that 4

is antisymmetric in the first j variables and in the last
Ã —j variables, but has no particular symmetry with
respect to interchange of variables across the bar.
Such a function could belong to a total S&3f;. Indeed,
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all functions belonging to 5&M; have a representative
in the M; subspace by application of 5, the spin-
lowering operator. Thus, if we specify j (in this paper
we shall consider j=0, 1, 2) there are two ways to de-
termine the total 5 value of any particular wave func-
tion. The first, and complicated, way is to investigate
the symmetry properties across the bar (i.e., to decide
to which irreducible representation of the symmetric
group the function belongs). The second, and simpler
way, is to inquire whether the energy of%' is among the
energies belonging to the j—i subspace. If it does, then,
barring accidenta1 degeneracy, the 5 value of 4 is
greater than M;.

To find eigenfunctions of the j type we must consider
the configurational subspace

R&: xg&~& ~ ~ ~ &g

XJ+]+ ' ' +X@ (1.3)

—=2c'0

Equation (1.3) defines only a partial ordering. Plainly
the region R' contains (~~) physically distinguishable,
completely ordered subregions of the type R&. Herein
lies the diKculty.

The imposition of periodic boundary conditions
(PBC) does initigate the difficulty somewhat, and we
shall henceforth adopt these boundary conditions.
Clearly, in this case, only the relative ordering of the
"up" variables and the "down" variables is of any
consequence. Thus, we need consider only (~~

—ii)
essentially inequivalent subregions. For j= i, the case
solved by Mc Guire, "it is only necessary to consider one
instead of E regions. The full difhculty of the problem
does not manifest itself until j=2. Sy solving this
last case, we believe we shall be able to undertake the
general problem of arbitrary j.

To solve the problem, we observe that the delta
functions in (1.1) can be replaced by the (f) boundary
conditions:

ever the order of the x's, to

~ax &min +I'p (1.6)

and we shall do so henceforth. We then make the follow-

ing Amsats for O': For a suitable choice of E distinct
numbers Ik} =ki, ks, ~ ~ ~, kN, we note that + can be
written in every subregion R of the type R& as

f (x„~~, x~) =Q A.(P) exp(i Q k;(r)x;), (1.7)

where Pi stands for a sum on E!permutations. The
important point to note is that A (P) is a set of co-
efFicients which depend upon the particular region

R, but that the set {k}is fixed and does not depend
upon R . The problem is to find the allowed sets {k},
together with their accompanying coefficients {A (P) }
such that the boundary conditions (1.4) and (1.5)
are satisfied.

Clearly, the Schrodinger diAerential equation is
satisfied with an energy

Moreover, the total momentum of the state will be

(1.9)

and we know that any allowed set {k}will automati-
cally satisfy

8= (2s./L) Xinteger. (1.10)

Before investigating the j=2 case, let us see how the
program works for j=0 and j=i. For j=0, we need
consider only R, (1.2) and impose the boundary condi-
tion that /=0 on the boundary of R,. In an arbitrary
subregion, R, P, =&i!i and it is seen that the con-
tinuity conditions and delta-function conditions (1.4)
will be automatically satisfied. The PBC, (1.5), reads

+(xi ~ ~ ~ x ~ ~ ~ x~)

together with the continuity conditions

(1.4a)

(1.4b)

=%'(xi, ~ ~, x,+L, ~ ~, xi' )
—( 1) k(Xrg ' '1 XJ—r) Xj+ig '

) XV,Xj+L)

These are in addition to the periodic boundary condi-
tions (PBC):

0 (xi i p xj) ' ') xg) —0 (xi) ' xj+L ' xg)

for all j=1, ~ ~, X. The point of Eq. (1.11) is that the
PBC has been reduced to a statement about + in R~
alone, i.e., about Pi. Now, the fact that Pi vanishes on
the boundary of Ri implies that Ai(P) =ep, whence

(1.5) Pi(xt, ~ ~, x~) =Bet
~

expik, x; {. (1.12)

for j=1, 2, ~ ~, E. Here, L is the length of the "box." Equation (1.11) then fixes the k; as
It is obviously sn%cient to restrict our attention, what-

k;= (2~/L) e;, (1.13)
' J.B. McGuire, J. Math. Phys. 6, 432 (1965l.
~ J. B. McGuire, J. Math. Phys. 7, l23 (1966) . where nj, ~ ~, e~ is any set of distinct integers. The
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result then, for the j=0 case, is that the eigenfunctions
and eigenvalues are the same as for the noninteracting
case. In fact, as we could have seen in advance, (1.12)
represents 0 everywhere, not only in R1, but this is
fortuitous; it will not be true for j&0.

Forj=1, the region R', Eq. (1.3) consists of 1V regions
R1, R2, ~ ~, RN where R~ is defined by the fact that
xj,&x1&x~~. As we remarked above, the PBC imply
that these E regions are eGectively equivalent. Using
PBC we can find enough conditions in R1 alone to de-
termine IkI. Denoting the value of 4' in R; by P;, and
using PBC on the "up" particles, we have

&2(x,
~
x„x2,",xN)

=f(xl I x2+I., xl, ~ ~ ~, xN)

=(—1)"g, (xl
~
x„x4 ~ ~ xN, x,+I.).

(1.14)

It is here that the value of PBC manifests itself, for
we now have two conditions connecting R1 and R2.,
(1.4) and. (1.14). These, together with (1.10), are suf-
ficient to determine I k I.

Since pl vanishes whenever x;+1——x; ( j=2, ~ ~ ~,

N 1), w—e obviously infer

flXll f2X12 ' ' ' fNX1N

where x„=exp(ik„I.). One solution is to have x„=l
and f „=1(all I), thereby recovering the j=0 solution.
Otherwise, by comparing Eq. (1.19) to the same equa-

tion with n and m interchanged, we find

f-= (1—x.). (1.20)

Upon insertion of Eq. (1.20) into Eq. (1.19) and a
small amount of algebraic manipulation, we have

-,'c cot-', , (k,L) —k; =X (1.21)

(X a constant), with the constraint that k„/k„.This
is the famous equation first derived by McGuire' and
discussed extensively by him. ' It is useful to rewrite

Eq. (1.21) as

k, +X+12(ic)-

k, +X—-', (ic)
(1.22)

p, (x,
~

x2, ~ ",xN) =p(x,+L
~

x2, ~ ",xN)

The reader will note that for every pair of neighbor-

ing regions, R, and R;+1, there is a similar pair of
boundary conditions $i.e., Eq. (1.4) and the analog

of Eq. (1.14)], and he can easily verify that these
will be satisfied by the same choice of IkI as in (1.21).
Where the final condition, Eq. (1.10), enters is in the
PBC on the "down" particle, x1.

+21 X22
~ ~ ~

(1.15) =&N(xl+L [ x2) ~" xN), (123)

In this language, the j=0 case is retrieved by the choice

f,= 1 and A „=1(all j, m, 22) .
The delta-function condition, (1.4a), reads

i(k„—k„)(f +f„A„„A„„)=—2c(f—f„), (1.17a)—
while the continuity condition, (1.4b), reads

f f„=A„A„——
for all m&n. Finally, the PBC reads

A
„ f exp(ik„L).

(1.17b)

(1.18)

Inserting Eq. (1.18) into Eq. (1.17), we find

QN1 XN2 ' ' ' ~N

where fl, ~ ~, fN are some coeflicients and

x,;—= exp (ix,k;) .

If we denote by D „(xl,~ ~, xN) the cofactor of
f„ylXl„in the determiriant of Eq. (1.15), and use the
fact that $2 vanishes whenever xi+1=x, ( j=3, ~ ~ ~,

E—1), then

4'2 Q AmaXlmX2nDmn(X3p ' ' 'y XN) ~ (1.16)

an equation connecting R1 to RN. This will be satisfied
for the choice (1.21) if and only if (1.10) is obeyed.
It is clear from Eq. (1.22) that Eq. (1.10) may be re-

written as

(1.24)

Finally, it must be remembered that the solutions

to Eq. (1.22) and Eq. (1.24) give only the S««&& 2X—1

states for the Hamiltonian (1.1).The Sl.«1=-'2$ states
correspond to X= ~.

The final result is startling. It is that each k; satisfies
an "independent particle" equation, (1.21), which is

only slightly more complicated than that for the non-

interacting gas, (1.13). True, these equations are not
really independent because the separation constant )
in Eq. (1.21) must be chosen to satisfy the momentum
condition (1.10). Nevertheless, the situation is much

simpler than for the Bose gas' where each k is a function
of aH the other k's.

%hen j=2, the algebraic problem will be vastly
more complicated than the foregoing because we must
consider (N —1) inequivalent subregions rather than
one subregion. Nevertheless, the final equations for

Ik) bear a striking similarity to Eqs. (1.22) and (1.24).
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It is the main purpose of this paper to prove that

k;+5+-,'(ic)) (k;+ +-', (~c))x;—= exp ik, l. =
k,+b ,'—(i—c) k, +e—-,'(ic)

( j=4, ~ ~ ~, Ã), we have

N

A (st)f„(xi,x,) D„(x.. . xi( ),
s, t=l, a&t

(2.3)

where
(1 25) where

fet(xlx2) =Xlsxzt XltX2s (2.4)

III 'tk, +8+2(ic) -e 8—i—c
;=i &k;+b ,'(—ic)—eb+—ic '

and D„is as previously defined LEq. (1.15) et seg j.
(1 26a) Obviously, A(st) =A(ts). Likewise, define

D,t„...——cofactor of Xg,y2ty3„~~ (2.5)

n k;+e+ ', (i c) -b e —ic-
k;+e ——,

' (zc) 8 —e+zc

Here, 8 and ~ are two constants. Once again, solutions
to (1.25) and (1.26) give us only the St,(,,i) —',A —2

states.

in the determinant of Eq. (1.12). The wave function
in Ri, i can be written (for j=3, ~ ~, Ã) as

N

A&'(ni "~ a)
al ~ aj=l

(all distinct)

II. THE TWO-SPIN DEVIATE PROBLEM—
DETERMINATION OF {kI

The region 1(.'z, Eq. (1.3), contains (~') primitive
subregions which we shall denote by R;&, the index j
signifying the position of x& among the S variables and
the index k signifying the position of x2 measured
from x~. Thus

X g x„,.„D.. ., (*;„,",x ). (2.6)
m=1

The fact that Pi, , i vanishes when x~ i ——x (for m=4,
5, ~ ~ ~,j—2) requires that A~'(ni, ~ ~, n, ) be symmetric
in the last j—2 variables. Beyond that there is no other
symmetry requirement on A j.

Just as we derived Eq. (1.17),' we can use (1.4) to
express A~' in terms of A J ', viz. ,

Rgg.' xg(x2(x3& x4& ~ ~ ~ &x~,

Egg. xg& x3(x2(x4« . x~,

R2g. x3&xg(x2&x4« ~ ~ ~ x~, etc. (2.1)

A~'(ai, ~ ~ ~, n;)

=A~'(ni, ~ ~ ~, n; i) I 1—ic(k.,—k., )
—'j

+As '(ni, n;, nz, ~ ~, a; i) (ic) (k,—k,.) ', (2.7)

The regions Eii, (k=1 ~ ~ ~ 1V—1) are the funda-
mental inequivalent regions, for our intuition tells us,
although we must carefully verify it explicitly, that all
regions with a common value of the second index are
equivalent to each other. Each region R,I, is connected
to neighboring regions through Eq. (1.4). For k)1
and j&1 there are four: R; &,~&, R;+&,I, &, R;,~&, and
R;,». For k=1 and j&1 there are two: R, &,&+& and
R~,a+i.

Our first step will be to take a "down" particle
through the "up" particles. That is, if we assume we
know fi, i then Eq. (1.4) will determine Pi z and then
f&,&, etc Finally, . P, , , is related to Pi,& i by PBC:

i/i, i(xixz I xzp ' ' '
y x+) 1l'(xi+Kg xz

I
xz) ' '

y x+)

= —P(xz, xi+I
I x:, ~, xi()

41,X—1(X2)l Xi+I X3)l ' '
P XN) ~

(2 2)

%e shall then be able to determine a great deal, but
not everything, about {kI. The remaining conditions
will come later from the second step—taking an "up"
particle through the "down" particles.

Since Pi, i vanishes when x, =x, or when x; i ——x;

where A'(ni, nz) —=A (ai, nz) . Defining

t(r, s) = —ic(k„—k,) ' and m(r, s) =1+t(r, s),

we deduce that
(2.8)

A~'(ni, ~ ~, n, ) =A (ni, nz) ll m(az, ne)
k=3

+ g A(ni, ae)t(ae, n, ) lI m(c@) ni). (2.9)
k=3 l=3, leak

The last product in Eq. (2.9) is to be omitted for j=3.
The derivation of Eq. (2.9) from Eq. (2.7) is a simple
exercise in induction if one observes that

t(k, l) t(m, k)+t(l, k) t(m, l)+t(m, k) t(l, m) =0.

(2.10)

Note that Aj ' satisfies the symmetry requirements
mentioned above.

To determine A(s, t) we turn to the PBC relation,
(2.2), which states that

A (s, t) =X,A~ '(t, s, az, ~ ~ ~, ng) (2.11)

For details such as this, see Michael Flicker, Ph. D. thesis,
Yeshiva University, 1966 (unpublished) .
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P (E„—E„)B;,=0 (2.12)

for t, s not in the set n4, ~ ~, n~, and with x, =exp(ik, L)
as before. We insert (2.9) into (2.11) and using (2.8)
and a bit of algebraic manipulation we obtain the key
equation

If PWO, then multiply (2.15) by P„*and sum on r.
Defining the vector G =BP*,we have

EG =p'I, (2.19)

where I is the vector I,=1 and p'=g,
~

P„~'&0.
This means that the matrix E must have a "unit
vector" g:

for all s, r =1, ~ ~ ., S.Here, Eg=I. (2.20)

E„=ti„X4' icy, —(k, k, +—4'c) ', (2.13a)

k=1,kg j
B„=A(s,j) (k,—k;).

(2.13b)

(2.13c)

A necessary and sufhcient condition for A(s, j) to be
symmetric is that B„beantisymmetric. Even though
A(s, s) is not defined, we have dehned B„=Oin ob-
taining (2.12) . Furthermore, if k;=k,+ic for some pair
s and j, then E„is not well defined by (2.13a). In
such a case, however, qj=0 and it is correct to use
L'Hospital's rule whence

icy,—(k, k;+—ic) ' is replaced by g m;i, .
&~1,k&j,k&s

Equation (2.12) can be regarded as an eigenvalue
equation for the antisymmetric matrix B. Only for
special choices of E, and hence of IkI, will there be a
solution. To solve (2.12) for B we first regard the
E-dimensional vector P, defined by

Z, =g E„B;„, (2.14)

as a known vector, and then determine 8 from the
matrix equation

g E„B,„=Z,. (2.15)

If P =0, then (2.15) is homogeneous. Let V', V', ~ ~

Vi' be an orthonormal basis for the null space, V, of E,
which is defined as the set of vectors satisfying

XV=0.

Then, for a fixed r, we can write

(2.16)

B,„=gV,-S„-, (2.17)

where the S„area set of p coefficients which depend
upon r. But, since 8 is antisymmetric, it is easy to
prove that (for P=0)

This unit vector can be defined to be orthogonal to
the space V and hence is unique. By the same argument
as that leading to (2.18), it is easy to show that

B,,=P g V;-V,sC.,+g;Z, —1'ig'
a P

If this form is inserted into (2.15), it follows at once
that P must itself be a null vector which may be taken
to be pV'. Hence, the general solution to (2.15) is

Bi,=g g V; V,sc,s+p(g V„'—V'g,). (2.22)

If now we recall the definition of P LEq. (2.14)j, we
see that for arbitrary p and arbitrary antisymmetric
C (2.22) is indeed a solution to (2.12) .

In conclusion, we may state that the necessary and
sufhcient conditions for a nonzero antisymmetric solu-
tion, B, to (2.12) to exist is that the matrix E have
either (a) a "unit vector" and one or more null vectors
or (b) no unit vector but two or more null vectors.
In both cases, the general solution is (2.22) .

At this point we could inquire into the properties of
tkI necessary to insure that the above requirement
on E is fulfilled. Since it turns out that the set IkI is
sot thereby completely determined, we shall instead
turn to additional properties of B which will completely
determine IkI. These are provided by the PBC on the
"up" particles.

Consider first the fuLl statement of PBC for the
"down" particles which is that

P»(x» x,
~

x4, ~ ., xg) =P(xi+L, x2
~

x4, , xg)

$(xg, xi+L
~

x8—) ' ', x~)

=—|L,,~;(xm, xi+L
~

x4, ~ ~, x~)

(2.23)

for j=1, ~ ~ ~, 1V—1. Equation (2.23) leads to Eq.
(2.12) for j=1, as we have already discussed, but for
j&1 it is 6rst necessary to define f;,z;. This can be
done from the statement of PBC on the "up" particles
which reads

(2 18) 4'v(x» xg
~

x4& i xN)

—$(x» x2
~
x8+L x4 ~ ~ x~)

B,,=g g V,-VPC,
+~1 P~l

=(—1) +; i,;(xi, xm
i

x4 ~" x~ x4+L)

(2.24)

where C is uey antisymmetric p,-square matrix. Of
course, y=d(v) =dimension of V is unknown. Unless
t4&2, there is no solution to (2.15) for P =0.



M. FLICKER AND E. H. LIEB 161

for i=2, ~ --, S—1. If we iterate (2.24) i —1 times,
we obtain

in the denominator of (2.28) and make use of the con-
dition (2.12), we obtain the alternative condition

P;;(x» x3
~

x3, ~ ",x~)

= (—1) " ' "p»(xi, x3
~

x;+3 ~ ~ ~ x~, x3

+L, ~ ~, x;+i+L) . (2.25) where
(2.29)

B,„{k,k„n;+k,P,+k,y, +8;}=ic(k, k—,) {B„+x„B„},

Equation (2.25) gives f;; in terms of f» (for i) 1)
and, in fact, may be taken as the definition of f;;.With
this definition of f;; it is trivial to verify that (a) PBC
for the "up" particles, (2.24), is automatically satisfied
and (b) the delta-function and continuity conditions,
(1.4), relating the P;; to each other are automatically
fulfilled if the sequence PU satisfies these conditions.
This latter requirement has already been met through
(2.12) .

Thus, the only outstanding condition to be satisfied
is (2.23) which, using (2.25), reads

AU(x» X3
~

X3i ' ' '
i XN)

= —( —1) ~ ~~~ ~i(i + '(x3 xi+L
~

x +3 ' ' ' xill X3

+L, ~ ~, x,+i+L) . (2.26)

In terms of the functions 2& defined in (2.6), Eq. (2.26)
becomes

P, =I;(k;—ic) —k, ,

y =k~x, —(k~+ic),

&, =k,'(1—I,) +ick, (1+x;). (2.30)

It is a simple matter to show that (2.29) is true for
all values of r, s, and j not only distinct values. Our
problem is then completely solved if we can choose
{k}so that (2.22) and (2.29) are both satisfied.

Consider the four vectors, n, g, y, and 5 which are
defined in (2.30). Note that y=g icl3—We. wish to
show that these vectors are in the space V=Vg
which is the set of all vectors u such that Eu =constant.
To do this we consider the space Q orthogonal to U and
show that lr q= g q= y q=5 q=0 for all q in Q. It
is easy to show that Q is nonempty but it is not neces-
sary to do so. If q is in Q, multiply (2.29) by g,

* and
sum on j.From (2.22) Bq=0, whence

A &(ai ~ ~ ~ a;qi)
i+&

=2+ '(n, n, n;, ', a )x Qx; (227) where
B,„$,„=0 (all s, r), (2.31)

P„=k,k„(n.q)+k, (g q)+k, (y q)+6 q=0. (2.32)

Now, B„cannot be zero for all s and r (otherwise the
wave function vanishes), and we can therefore state
that B,&O for some a. and p. Since 8 is antisymmetric
it follows that 8,./0 as well. Ke can also state that
B„WOfor some rNo otherwise, from (2.15) K„B„=P,
so that E,. is independent of s—an impossible con-
clusion by inspection of (2.13a) and use of the fact that
the k's are distinct. Hence, (2.31) says that 0=/„=$„=$„=$„for o, p, and r distinct. Again, using the
fact that the k's are distinct, we conclude that the
factors in parentheses in (2.32) are zero and we es-
tablish that n, g, y, and fl are in U. Note that if P =0,
then n, g, y, and 6 are in U.

The above exploited only the properties of (2.29)
and did not take into account the fact that the matrix
E contains x and is therefore not totally unrelated to
the vectors n, g, y, and S. We now make use of this
latter fact and find the stronger result that 0. and y
(and hence g also) must be contained in the null space
V whether or not P=O. To prove this we rewrite
(2.13a) as K,;=8,,g„—'+D„with

N B„(k,—k,)g,

i (k„—k,+ic) (k,—k,+ic) (k; k,+ic)—=ZC

(2.28)

Equation (2.27) must be satisfied for j=1, ~ ~ ~, N 1. —
It seems intuitively reasonable, however, that satis-
fying it for j=1 (as we have done) and for j=2 should
be sufhcient, because in some sense we will have thereby
satisfied PHC for an "up" and a "down" particle. Un-
fortunately, we have not found a general proof with
which to make our intuition rigorous. Instead, we give
a tedious, but rigorous, inductive proof in Appendix
A, using the defining Eq. (2.9), that (2.27) is auto-
matically satisfied for all j if it is satisfied for j=1
and j=2.

To evaluate (2.27) for j=2, we insert the definitions
(2.8), (2.9), and (2.13) and obtain

for every triplet of distinct integers r, s, j. If we now
make a partial fraction expansion of the triple product D„= icy, (k: k;+ic—) '. — (2.33)
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The matrix D has two interesting properties: lemmata, we have

(a)

(b) if

gD„=—1; (2.34)

Deja =ms) (2.35a)

g D„u;k;=ic(gv,u;)+(k, +ic)3c,. (2.35b)

DS= —k(k+ic) g
—'+k(k —ic) —Pk

+ic$icgg;x; g—q,g; 2i—c b3—7I. (2.40)

Upon comparison with the right side of (2.38c), we see
that b3 must also vanish, Q.E.D.

We note also that bi=b3 ——0 implies, from (2.38b)
and (2.39), that

To prove (a) consider
N

g g,n, =o. (2.41)

F(x)—=Q $1—ic(x—k,) 'j

N
=1—3c gv (x—k) (2.36)

the latter form having been obtained by partial fraction
expansion. The iirst expression yields F(k,+ic) =0,
while the second yields F(k,+ic) =1++,D„,Q.E.D.
The proof of (b) follows immediately from (2.33) and
the observation that

Eg=b'I,

X&=b2r,

XS=bsl, (2.3/)

where b', b', and b' are certain constants. To prove that
e and y are in V we must show that O=b'=O'. Using
the explicit forms (2.30) we have

u;k; = —u;(k. —k, +ic) +u;(k, +ic) .

Note that the first term on the right side of (2.35b)
is a constant, independent of s, and is therefore propor-
tional to the vector I introduced in (2.19) .

To proceed, we introduce an abbreviated, self-

explanatory, notation whereby a quantity such as ke
stands for the vector with components k;n;, while g '
stands for the vector with components (y, )

—'. Now,
since e, y, and 6 are in Vg we have

B,~)=$8„a,—B„,n,J. (2.42)

If we now substitute the explicit form of B (2.22) into
the right-hand side and also observe that when (2.42) is
multiplied by E&, and summed on s one obtains

p V„'a;=p V,'0.„, (2.43)

it then follows that

B,~,=Q C@'(V.'n, V;u, )+pV—; (n„g, a,g„),—(2.44)

where C@'——P&C,&Vr3. Clearly there are now two pos-
sibilities for the o,;, either o.;=0 for all j or n;&0 for
some j. If 0.;=0 for all j, then S&———,'S; we will not say
any more about this possibility. If n;&0 for some j,
then from (2.44) we have

The condition that En=E)=0 is thus equivalent to

Eu=0 and (2.41).
The next fact to be proved is that, for Sq=-', X—2,

B,„=E&(n,P„—a,P,) where Ei depends on the normali-
zation of the wave function. At the very end of the proof
we make the important observation that 6 is a linear
combination of n and Il and also that P=O. It will
become clear during the course of the proof exactly
how the possibilities Sz =-,'E) Sg ——-',E—I, and Sz ——

-',S—2 come out of the formalism.
When we combine (2.29) and the equation obtained

from it by interchange of r and s we obtain

Dn=(b'+1)I —g ',

Dy=b3I —k+(k+ic) g ', (2.38b)
(2.45)

(2.38a)
Brr =Ei(c3rPr c3sPr) +E3(c3r&r &e&r) +E3(cl'rgb cxggr) r

DS=O3I+k(k —ic) —k(k+ic) g '. (2.38c)
where v is a null vector orthogonal to e and g, and E,,

But note that y= —ko.—icI and, inserting this expres- E3, and E3 are constants. Upon substitution of (2.45)
sion into (2.38b) and using lemmata (a) and (b) into (2.29) it follows, after some algebra, that
above, we have B„(v6) =icE3

I
" {3{~k*+p,+X,(icu, p, ) —k„g„n,}.—

Dy= —ic(b'+g g n ) I—k+(k+ic) g ' —haik (2.39)

Since the right sides of (2.38b) and (2.39) must be
equal for all the E diferent values of k, we must con-
clude that b'=0. Likewise, 5= ky+ic—k ickn —In-.
serting this into (2.38c) and again using the two

(2.46)

Recalling that KB=P, En=0, and Eg =0, we obtain
from (2.46)

F„(vS)=icE, { ~ { {,g K„k,+P„gE„}.
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P QXi =O f»ail

=27rv+mL(1V —1) mod27, (3.3a)

Since a consequence of (2.43) is that P=po. n(o.NO), and (1.26) to
either 0. and g are linearly dependent or

2tan ' 2 tan —' — k;
a c

If the former is the case, then Sp ———',X—1 (this is the
solution of McGuire' ). The remaining possibility cor-
responds to Sp=~S —2. It is a simple exercise to show
that, for some l, Q,Ei,/0. Also P„/0 for some r;
if P, =O for all r, then e and g are linearly dependent
and we have the McGuire problem. Hence E,

~

v ~'=O.
In a similar way we conclude that 83=0. Consequently
B,„=Ei(a,P,—n,P„).Direct substitution of this rela-

tion into (2.29) verifms that 8 is a linear combination
of e and g; from (2.22) it is obvious that P=0.

To summarize the results for 5~——2'E —2:
(i) a and II are null vectors;

(ii) 8 is a linear combination of n and g;
(iii) B„=E,(n,P,—n,P„).
What remains to be done is to put (i) and (ii) into

a form more amenable to the calculation of the set {k}.
From (ii) and (2.30) we obtain an equation that when
solved for x yields (1.25), i.e.,

8—e 2
2 tan-' +2 g ta,n-'- (k,+.)

c c

=2~p+vrL(cV —1) mod27. (3.3b)

In particular, we are interested in determining the
energy levels in the limit of a large system. This means
Ã, L—+ttt& such that p=iV/L=fixed constant. Under
these conditions the set I k, } can be determined by itera-
tion. To determine the energy and momentum of a
state correct to 0(1) it is sufficient that k be known
to 0 (1/L) . It is clear from (3.2) that it is only necessary
to know e and 8 to 0(1) to get the desired accuracy for
k. However, from (3.3) it follows that it is only neces-
sary to know the k's to 0(1) in order to get e and 8 to
0(1).This is because ltd, i will be 0(iV) and the sum-
mation on the left hand side of (3.3) will be 0(1V).
But to 0(1), k, =2~n, /L, therefore e and 8 are the
solutions to

L»+~+2(~~)7 I:k +~+1(~~)7
$k,+ti ,'(ic)7 {

—k-+e ', (ic)—7
-' -2 2"'

Q tan ' — +8)=
c L

(3.4a)

where 8 and e are constants to be determined. The as-
sumption b&e can be partially justified' by observing
that the set {k,(c) } is one to one with the known set
{».(o) }.

Having obtained the expression (2.48) for g; (and
thus n and g) in terms of k, , our problem will be
completely solved if we can satisfy condition (i),
namely that e and LI be null vectors. This requirement
leads to the conditions (1.26) on the constants 8 and e.

The details are given in Appendix B.

III. THE ENERGY LEVELS

In this section we will derive the explicit form, in
the thermodynamic limit, of the sets {k,}.Once the

{k;}are known, the determination of the energy levels
is straightforward. As an illustration of this we will

calculate the ground-state energy.
In order to calculate the sets {k;} it is helpful to

write Zqs. (1.25) and (1.26) in a slightly different
form. With the observation that

, 2 g7rn,+tan' —
l +)= a;

and, to the desired accuracy,

(3.4b)

27rm, 2 2 2m'; ) 2 2 (2mn;t;= —tan ' — +t
l

——tan ' —
l +a).L L c L j L c(I-

(3 5)

Eote: Since, for c&0, the k's are distinct, the e's are
also distinct.

The numbers {e,}, p, and i, which clearly are the
quantum numbers of the system and specify all the
states, must be known in order to calculate the energy
of any state. Therefore, the first step in calculating the
ground-state energy must be to determine its quantum
numbers. Since the k s are given essentially by 2n.e,/L,
the problem is similar to that of the one-dimensional
noninteracting, spinless Fermi gas. Thus, we would
expect e,+i n;=1, n—i —L2iiV7 and e~ L:',1V7. The
proof that this is actually the case is quite simple.
Consider two states, u and 5, such that

p, yb+-,'(k)7 = —exp { 2i tan —'(—2/c) (»+8)}, (3.1)P;+8—-,'(ic)7

we see that (1.25) is equivalent to

I; =n

+ia .5

) )J)
i=j+1, ",X-1;

(3.6)
2 2 2 -1 2 2~S

k, +—tan —' —(k;+|i)+—tan ' — (»+e) =
L c

(3 2) From (3.4) it is clear that, to the order of interest,
8n=B' and e =c'. Hence, from (3.5) it is obvious that
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~
kp ~(~ k~'~. Since E' E—'=(k~')' —(k, )' we con-

clude E &E'. By induction it follows that in the ground
state n;+) —n;=1. fhus,

equations, one that "steps down" the A&'s and another
that "steps up" the 2&'s, that is,

(ui ' ' ' at+1) A (ni ' ' ' n'—1)m(n2 n )
e;= —~(1V—2j+1)+X,

where X =0 for lV odd and A =&2 for E even.
Define

(3.7)

(3 g)

—A
'

(ui, n, , n3, ~ ~ ~, n; i) t(n2, n;), (A2a)

At '(ni, ~ ~, n; i) =A~'(ni, ~ ~ ~, n, ) m(n;, n2)

—A —
(ni) n;, n» ~ ~ ., n; i, n2) t(u;, nm) . (A2b)

then from (3.5)

k,.—q,
. (2/I. ) [tan—i(2/c) (q,.+8)+tan —i(2/c) (q, +e.)j

(3.9)

Therefore, the energy, (1.8), of the state is given to
O(1) by

-2
qP

——q; tan —' —(q;+0) +tan —' —(q;+e)I C C

(3.10)

The term gqp is just the ground state for S=1V/2.
Thus, changing the remaining sum to an integral, (3.10)
can be written as

K
E=E,(S=,N) —— -q$tan '(2/c) (q+8)

If we "step up" A~ '(ni, ~ ~ ~, n~;~i) and change the
indices as follows

0!y~O!2

&2~0!y

CL~ ~+y~Ag

tX~ ~+2~0!~+y,

'(n» n» ui+2g ' ' '
~ u&)

=A" '(n2, n„-'n;+,, ~ ~ ., nii) m(n;~, , a,)

(n» at+4 ut+» ' ' '~ u» ni) t(ui+4 ni) (A )+tan '(2/c) (q+e) ldq, (3.11)
Since (A1) is true for m=j —1, (A3) yields

where E=mp. When E is minimized with respect to &

and 8, we obtain the ground state energy for 5=~E—2.

Eg(S= ',N —2) =Eg(S=-',1V-) +2cp

2x'p c 2' p—4s.p' tan ' —tan ' (3.12)
C 7l C

i+&

x., II x..A"- (, , ;„,~ ~ ~,

=x.,+,m(n;+i, ui) A~'(ui, ~ ",a, )

—x-it(at+i ni) A~'(a~+i, n2 " n ) (A4)

But, when we step down A'(ui, ~ ~ ~, a;+i) we find
The result is just what one would expect. The deviation
from E,(S=N/2) is just twice the deviation of the A'(ni, ~ ~ ~, n;qi) =A~'(ni, ~ ~ ~, u, )m(a2, u;+i)
5=—',S—1 problem. '

—A~'(ui, u;pi, n8 ~ ~ ~ n ) t(n» n i). (A5)

Theorem: If

A (ul) ' ' '
p am+i)

APPENDIX A
Thus, if (A1) is to be true for m=j we must prove that

r.h.s. (A4) —r.h.s. (AS) —=A; i=0.
If in (A6) we change variables to

m+1=A"--(.. ., ., ~ ~ ~, ) -, II -, (A1)
exp =rp

for m=1, 2 then it is true for m&2.
I'roof: The proof is by induction. We will assume

(A1) is true for m=j—2, j—1 and prove it is true for
m =2.

The natural starting place is Eqs. (2.7) that relate
various A"s. To proceed: From (2.7) we obtain two

0.2 =$,

Ot'g+y = 'Vp

I(n3 " at+i)}=n,
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and "step down" all A~"s to A J "s we obtain

7t,m(v, r) {Ay '(rsn) m(s, u) —Ar z(run) t(s, u) }

If we de6ne

a=— —ic g zt;[k;+o—(-,'ic) ) '

-x,t(v, r) {A~'(vsa) m(s, u) —A «( vun) t(s, u) }

—m(s, v) {Ay '(rsa) m(s, u) Ay—-'(run) t(s, u) }

+t(s, v) {A~'(rvn) m(v, u) A~—'(run) t(v, u) }

=A, t. (A7)

Since (A1) is assumed true for m=j —2, j—1, it is ob-
vious that A; 2=0. As a consequence we have

b= —i—c Q rt;[k;+e —(-', ic)] ',

and again use (2.34), then from (B3)

[k+b+(szc) 3 [k'+e+(lzc))
[k;+~+(l') j[k.++(l )7

azc(zc+e —b) bzc(zc+5 e)—

(.—6)[k,pbbs(-', zc)) (5—e)[k,+e+(-,'zc)j '

x„rn(v, r) Ay z(rsn) —x,t(v, r) Ar' z(vsn)

and

If we substitute (36) on the left-hand side of (32),
—m(s, v)At '(rsn) = —At '(r v)at(s, v) (ASa) put the explicit k dependence of 7t, (2.48), in on the

right-hand side and simplify we obtain

7t„m(v, r) Ay '(run) x,t(v,—r) At '( vu)n

=m(u v)A~'(run) —t(u v)A~'(rvn). (ASb)

Direct substitution of (AS) into (A7) coupled with
(2.10) require A; ~

——0 Q.E.D.

APPENDIX B

The condition that at is a null vector is

k;[a(ic+e—b) —b(ic+b —e) j
+a(ic+e 8) [—e+ (-', ic))—b (zc+5—e) [b+ (-,'ic) $

—2zc(.—b) =0. (37)

Since this must be true for all values of k;, both the
coefficient of the k; and the constant term must be
zero. Manipulation of these two terms yields

g Z, , (1—x,) =0. (31)
a(e 8+ic—) =2ic,

b(b —e+zc) =2zc.

(38a)

(38b)
In terms of the matrix D;; dehned in (2.33) plus the

property (2.34) (31) can be written as If in (2.36) we let x =—b+-,' (ic), we 6nd

But from (2.48)

N

Z D;,x;=x;-'—2. (32) n [»+b+(zzc) j
k;+8—(-', ic)

Thus, from (BSa) and (B9) we obtain

~ [k;+8+(-',zc) j e—b —zc

; g [k,+b—(-,'ic) 5 e b+zc—

(39)

(310a)

[k+b+(szc) 3 [k~+e+(sic) j
[k,+b—(-', ic) g [k,+e—(-,'ic) j '

Assuming e/8, we can make a partial fraction expan-
sion of the triple product in (B3):

1 [k,+5+ (-,'ic) j [k;+e+ (-,'ic) g

(k, k;+zc) [k,+5—(—zzc) 3 [ki+e (zoic)3—
[k,+5+zs(ic) $[k,+e+-,' (ic)j 1

[k,+8+ (—,'ic) g[k~+e+ (-', ic)j (k; k;+ic)—
zc(zc+e-5)

(.-@[k,+5+(- )3 [k,+b-(- )j
Zc (Zc+8 e)—1

(&—e) Lk'+e+(-:zc) 3 [kz+e —(zzc) j

From (38) it follows that (310) must also be true if
& and 8 are interchanged. Thus,

n
" [k;+e+(-',ic) g 8—e—ic

;=r [k,+e (-', ic)j—b —e+zc
(310b)

s M. Gaudin, Phys. Letters 24K, 55 (1967).

The condition that g be a null vector can be shown
not to contain any new information.

1Vote added in proof After this work .was completed,
a letter by M. Gaudin' appeared in Physics Letters in
which he presented the results of his independent in-
vestigation of this problem. His work gives the generali-
zation of the essential results of this paper, Eqs. (1.25)
and (1.26), to the case for an arbitrary number of spin
deviates. None of the details of the solution were given.


