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Meson Spectrum and. Superconvergence Sum Rules for the
J&c=2++ Mesons*
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We classify the mesons with masses m ~& 2000 MeV by means of a simple quark model and calculate the
contributions that individual resonances make to meson superconvergence sum rules. To a good approxi-
mation we 6nd that only the two lowest supermultiplets are needed. For the case of elastic scattering of
pseudoscalar mesons with J"~=2~ mesons, we f1nd that in some sum rules one of these supermultiplets is
suppressed for kinematic reasons. Predictions are made and compared with both higher-symmetry pre-
dictions and experiment.

1. INTRODUCTION

W N the basis of plausible assumptions about the
asymptotic behavior of scattering amplitudes,

many authors' ' have recently derived superconvergence
sum rules for strong interactions. Approximating the
relevant dispersion integrals by a sum of single-particle
intermediate states (in a narrow-width approximation)
enables predictions to be made that are in reasonable
agreement with experiment. (However, the predictive
power of many of the sum rules in Refs. 1 and 2 has
been considerably weakened by the omission of Regge
branch-point behavior which invalidates some of them. ')

There are two major difhculties associated with
the single-particle intermediate-state approximation.
Firstly, the sum rules are fixed-t dispersion relations,
valid for all values of the momentum transfer, and it is
difEcult to construct an approximation scheme that is
valid for more than a very limited range of t. Secondly,
the more intermediate states we include, the less pre-
dictive the sum rules become. These difhculties are
clearly related, since the dependence of the sum rules
on the momentum transfer is determined by the spins
and parities of the single-particle states includ. ed.

It may be that the first difhculty has a parallel in the
diQiculties of consistently saturating moment sum rules
in current algebra with a finite number of single-particle
intermediate states. In this paper, we shall be more
concerned with the question of which states we ought
to include in the sum rules.

The general philosophy has been to evaluate the sum
rules at t=0 and to take as intermediate states the
relevant members of the lowest U(6) X U(6) representa-
tion appropriate. 4 This procedure has in part been
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justified for the case of trX elastic scattering' (although
Regge cuts are now seen to invalidate the supercon-
vergence relation) by the realization that for values of
the momentum transfer ~t~&&mtv', the sum rules essen-
tially uncouple for each value of the orbital angular
momentum. ' This behavior does not hold in general, and
Taylor and Frampton' have shown that for p~ scatter-
ing the contributions from one-particle states not
belonging to the lowest multiplet can be large.

Now one of the interesting features of the sum rules
is that the predictions are often in agreement or near-
agreement with the predictions of U(6,6) or U(6)s
provided the intermediate states belong to the lowest
U(6)XU(6) multiplet. It may be that under some
higher symmetry group classification individual multi-
plets approximately satisfy the sum rules, but until this
can be shown to be the case, there is little justification
for neglecting those states lying outside the lowest
multiplet whose individual contributions to the sum
rules can be shown to be large.

We shall be examining the contributions of known
and speculative meson resonances to meson super-
convergence sum rules. This means that we need a
scheme for classifying meson resonances at least up to
masses of 2000 MeV. In the following section we shall
consider a 'classi6cation scheme based on the group
U(6)X U(6)XO(3).' Although we find it a very con-
venient scheme for classi6cation, the conclusions that
we draw about the magnitude of the resonance con-
tributions to the pIr sum rules (in Sec. 3) do not depend
crucially upon the classi6cation, but rather upon the
resonance masses and widths.

In Sec. 4 we consider sum rules for the scattering of
pseudoscalar mesons with the J~~=2++ meson nonet.
Using the conclusions of the previous section and
further kinematic arguments, we are able to make pre-
dictions. which are compared both with group-theoretical
predi. ctjons and wi.th experiment.

~That the range is not larger can be seen, for example, by
writing Rz+(t) Pin the notation of B.Sakita and K. Wali, Ref. 2g as

4s (12M'(p' ——',t) —((M+rtt)' —p'g'}
'+ ) 9s [(M+ttt)' —y'g

P. H. Frampton and J. C. Taylor, Clarendon Laboratory
report (unpublished).' M. Gell-Mann, Phys. Rev. Letters 14, /2 (1965). Also see
Ref. 7.
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2. CLASSIFICATION OF MESONS

The classidcation of most of the known mesons by
U(6) XOr, (3) or U(6) X U(6) XOr, (3) has been discussed

by several authors in considerable detail. ' We shall

classify the mesons with mass @&&2000MeV according
to the (6,6, 2L+1) representations of U(6) XU(6)
XOr, (3), corresponding to the quark-antiquark pair
with orbital angular momentum I..

We shall adopt the nonrelativistic model of Sinanoglu'
with some minor alterations, taking the (qg) potential
Lin the absence of SU(3) breaking7 to be

V(r)=vc(r)+Vs(r)S, Ss

+V»(r) I, S+ V, (r)S», (2.1)

where Vt. , Vq, V~8, Vz are the central, spin, spin-orbit
and tensor potentials, respectively, satisfying V&)&V&,

~J.S, ~r.
This leads to a linear mass-formula

m=mp+dmn(e', L)+u(rs', L)L S
+b(w', L)G,&'&+c(n', L) Sr. Ss, (2.2)

where n'=0, 1, 2, - and L=O, 1, 2 . are the radial
and angular dynamical quantum numbers. The term
hmn determines the spacing between the (n', I-) super-
multiplets and u, b, c determine the splitting between
the SU(3) nonets within the supermultiplets. In com-

mon with the authors of Ref. 7 we take the lowest
supermultiplets as the (0,0) fn, '=L=O, consisting of the
J~c=O +, 1 nonets7 and the (0,1) LN'=0, L=1,
consisting of the I = 2++, 1++, 1+,0++ nonets7.
Their contents are listed in Table I.' "

For the (0,0) supermultiplet, the tensor and spin-
orbit forces give no splitting, the splitting coming
entirely from c(0,0). As in Ref. 8, we suppose that
Vs(r) is strongly dependent on r and large only for
small values of r so that

(I'LI Vs(r) le'L)=0 for rs', L&0. (2.3)

Thus for the (0,1) supermultiplet we take c(0,1)=0.
If in addition we take b(0,1)=0, we obtain two rela-

tions between the nonet central masses. These are

I=~ 1 separately, we have

m+g+mgr 2ms (2.5a)

mes+2m~v 3%+ ~

Experimentally, Eqs. (2.5a) and (2.5b) give

(2.5b)

2385&16 MeV—2416+24 MeV (2.5a')

m(0, 0)=605&50 MeV,

and the (0,1) supermultiplet center at

(2.6)

m(0, 1)= 1220m 100 MeV. (2.7)

Let us consider Amn. The assumption that V, (r) is a
deep-well "hard-core" potential gives'

Amn(e', L)=mt'e'+msL(L+1). (2.8)

With the above central masses, Eq. (1.8) gives the

(0,2) supermultiplet center as

m(0, 2)—2450&150 MeV. (2.9)

The n' excitations might be expected to lie as high.
Although an exchange potential could lower these
masses to some extent, such a spectrum would still not
include the great variety of conjectured resonances with

masses m=1650 MeV that we have not accommodated
so far.

Therefore, unlil. e Sinanoglu, we reject a "cored"
potential in favor of a "coreless" potential, giving a
typical spectrum

3312&8(?) MeV—3237+24 MeV, (2.5b')

respectively (no quoted error on m„), in reasonable

agreement. For the isospin doublets, Eq. (2.4) predicts
E'(1230+25), J'~= 1+ and E"(1108+50),J~=O+. Be-
cause of the possibility of different single-octet mixing

in the nonets, it is difhcult to say anything about the
isospin singlets.

Using the known and predicted masses, we take the

(0,0) supermultiplet center at

m, (2++)+m(1++)=2m(1+-) amn(e', L)=2m, rs'yes, L. (2.10)

and

m(2++)+2m(0++) =3m(1+~) . (2.4)

Assuming that Eqs. (2.4) are approximately valid for

s K. Borchi and R. Gatto, Phys. Letters 14, 352 (1965); R.
Gatto, L. Maiani, and G. Preparata, Phys. Rev. 140, 81579
(1965); R. H. Dalitz, in Proceedings of the Oxford International
Conference on Elementary Particles, 1965 (Rutherford High Energy
Laboratory, Harwell, England, 1966); 0. Sinanoglu, Phys. Rev.
145, 1205 (1966};E. G. Goldhaber, in Proceedings of the Thirteenth
Internfjtional Conference on High-Energy Physics, Berkeley, Culi-
form'a, f966 (University of California Press, Berkeley, California, ,
1967); R. H. Dalitz, ibid.

~ G,&&& =L(2sg. ss+s3)Ls g~(L S)—3(—L S)s]/(2I +3) (2I —1).
'9 Unless stated otherwise, all data will be taken from A. H.

Rosenfeld st af., Rev. Mod. Phys. 39, 1 (1967).

m (1,0)—1830&150 MeV (2.12)

and small spin-splitting because of assumption (2.3).
We would therefore expect a very rich mass spectrum

in this range (possibly lowered by exchange potentials).
There is some evidence that. such a spectrum does

This would give the (0,2) supermultiplet center at

m(0, 2)=1830&150MeV. (2.11)

Under spin-orbit and tensor forces this wouM split into
J =3, 2, 1, and 2 + nonets. Superimposed
upon this spectrum would be the (1,0) supermultiplet
(consisting of J"c=0 + and 1 nonets) with center
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Tmx, z I. The (0,0) aud (0,1) supermultiplets. '
JPC

0—+
1
1+
0++
1++
2++

w (140)
p(760)
8 (1208~12)
m y (1003)?b

A1(1079+8)
A2 (1306as)

E(495)
E*(890)
Eg (1320+12)E"(1138+50)g'
E'(1230+25)$

E,(1411+5)

I=O

q'(958)
~(783)
II(1000)?
S(720)?
D(1285+4}
f(1254+12}

I=O

q(550)
qb(1020)
L&'3
S(1050)?
P-(1424+7)?e
f'(1514&16)

a Bracketed states denote no experimental evidence. The masses of such states are predicted from the mass formula of Sec. 2.
b An alternative candidate is the b(965).
e The K' and K" are possibly the EC&(1215) and the Z*(1080), respectively.
d The E may be pseudoscalar. See Refs. 10 and 11.

exist." Although definite experimental evidence is
scanty, there is evidence for zr ~ (1640'), E~ (1800),
g(1650), and Ri(1632&10),R2(1699&10),R2(1748&10).
A plausible assignment of the R1, R~, R3 is that" the
Rz belongs to the 1 nonet of the (0,2) supermultiplet
and (a) R2, R2 belong to the 2, 2 + nonets of the
(0,2) supermultiplet, respectively, or (b) the R2 con-
tains an unresolved mixture of the 2 and 2 + iso-
triplets and R2 belongs to the 3 nonet. The zr~(1640)
and Ez(1800) would conveniently fit into the 0 +

nonet of the (1,0) supermultiplet and the g(1650) into
its 1— nonet.

Mesons of higher mass like the 5, T, U would belong
to supermultiplets with higher I. values. The simple
formula (2.10) would suggest that they belong to the
(0,3) supermultiplet with mass

m(0,3)=2450&150 Mev. (2.13)

but they could well have higher I. values. "
For our purposes the classification of individual reso-

nances is not crucial, the broad outlines of the mass
spectrum being more important than spin-parity as-
signments, especially for the higher mass resonance.

We now consider the contributions of the known and
conjectured resonances to meson superconvergence sum
rules.

Because of its relative simplicity we will first con-
sider pm elastic scattering.

3. ELASTIC y~ SCATTERING

For this and the following section we adopt the fol-
lowing notation. The pseudoscalar mesons are taken to
have mass tz and incoming (outgoing) momentum q (q'),
whereas the mesons with nonhero spin and mass ns have
incoming (outgoing) momentum p (p'). The Mandel-
stam variables are s= (p+q)', t= (p' —p)', I= (p' —q)'
and the M functions are defined in terms of the com-
binations P = ,' (p+p'), Q =-,' (q+—q').

For p71- scattering we have

M"=Aqq(s, t)Q.Q.+A "(s,t)LQ,P,+Q.P.]
+App(s, t)P P„+Ap(s, t)g„„. (3.1)

"E.H. Goldhaber, Ref. 7.
'2 R. H. Dalitz, in Proceedings of the Thirteenth International

Coeferezzce oI Hzgtz L~ zzergy Physics, B-er'keley, Califorzzza, 1966
(University of California Press, Berkeley, California, , 1967}.

In terms of the subamplitudes A(~&, where T is the
isospin in the cross channel, Regge pole and branch-
point behavior implies' '

s2A qq&'& (s,t) —+ 0 as s -+~,
giving the superconvergence relation

(3.2)

ImAqq&" (v, t)dv=0, (3.3)

p 21—2 2 J(J!)2 p 2+2

Aqq' =(g )' +
(2J)! 2222 Mg

zzz2
—

zzz2 t J—1)-+,1+,I I, (3.8)
Mg2- 2pg2( J )

"For the special case Z~ we take g C ~ g(&0) as g ~ 0."R. C. King, thesis, University of London (unpublished);
P. L. Csonka, M. J. Moravcsik, and M. D. Scadron, Ann. Phys.
(N. Y.) 40, 100 (1966); M. D. Scadron (to be published).

where 2v=s —( ts+2zz2)2+-', t.
We shall approximate the integral (33) by a sum of

s and I channel resonances at 3=0. In the narrow-width
approximation we have

ImAqq(v, 0)=Q Aqq~+-2, [5(v—vga)+5(v+vzg)], (3 4)
J+

where A r+ [A ~ ] is the contribution of a resonance of
spin J, parity (—1)~ [(—1)I+'], and mass M g~ [Mq ]
The positions of the poles are given by v J~
=-'[M~+' —( '+t ')]

For a spin-J field coupling to p and x fields let us
take the eRective interaction Lagrangians (omitting
isospin for convenience)

&'+= [g+/zzz']X~, "~,( p+q) ~e„,.
Xp.+(p)p„q,px, p),, (3.5)

and

&' = [g /zze' ']x~,".x,(p+q) p.+(p)p)„p~,
&&[g.;+(C/ ')p q-] (36)

for the normal and abnormal parity cases, respectively. "
It is not very diKcult" to obtain Aq@ + as

p 2J—2 2J(J!)2(J+1)
A qq'+= (g')' —— (3.7)

zzz 2J(2J)!
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where (3.13) give

r
&52

I p~%7l

(3.17)
(2J+1)~p, q r„,.

(p~,l r. ..
Aqq"(&)

A qq(0r)
(3.10)

We have no reason to assume that the A~, H, B'
contributions are significantly smaller than the m. con-
tribution, and indirect methods suggest that the contri-
butions are of the same order of magnitude. ""

I.et us now attempt to calculate the contributions
from the (0,2) and (1,0) supermultiplets. Of the isospin
triplets, only the irz (1640) and the ir'(J~~= 2 +) couple
to the pir. Taking r „,&40 MeV, Eq. (3.10) gives

for the normal parity case, and

-(x) (J,c) (2J+1) p, ' r. ..
(3.11)

A Qq(~) P(J,C) m pJ—rp~~ 0'

for the abnormal parity case, where a and P are defined
as follows.

For J&0, A qq~(n. (1640)) r~„p
=0.057 &0.015. (3.18)

Jm4~(J C) —J+g 2pg 2C2+2JP+ J
+Lm'J+m'pg '(J—1)j, (3.12a)

Jmp( JC)=m'(J+1)+J(Em'+M& pz 'C)'

A qq(0r)

Taking the 0r' mass as 1700 MeV gives Drom (3.11)
and (3.13)j

4~v+'ps+'= p4y' —(m+u)'jl ~z+' (m——P)'j (3 9) Aqq' (8') (15.5+35.6CJr+7.3Ca' rib-,
and E~+'=m'+pJ~ . We can re-express Eqs. (3.8) and A (~) (110y4 4C +014C ~ r
(3.9) in terms of the ir(140) contribution Aqq(ir), and
the appropriate elastic widths as

and for J=O"

cx(0)/p(0) =m'/p0 '. (3.12b)
r. ..

&:0.25
Aqq(~) r. .. (3.19)

We note (for J&0) that

o& l-(J,c)/~(J, c)l & 'ip. ',
Even with the very crude assumption that I' ~,

(3 13) &rii,.~'=30 MeV (i =1, 2, or 3), Eq. (3.19) gives

if (2J+1)m4&(J—1)pJ 4, and

m'/p J—&
l (J C)/p(J C) l

& (pg '(J—1)—m'J)/p~ 'm'(J+1), (3.14)

Aqq' (0r')
&0.07.

A«( )
(3.20)

if pJ 4(J—1))(2J+1)m4.
In the absence of isospin quintuplets, ImA@g('& is

the direct sum of all the ImA QQ(x j'+)."
Let us consider the (0,1) supermultiplet. The mem-

bers of it that can couple to px are A~, A2, B', and B'.
Using the masses given in Table I, I', ~

——150~10
MeV, I"~, , = 75~8 MeV, and I'~, , = 130~40 MeV,
we obtain

and

A qq'+(A g)/A qq (0r) =0.25&0.03 (3.15)

'~.Taking couplings itj'IQ'p~7f~ and yp'7f' for x triplet and
singlet, (respectively.

Aqq' (A,) . 3.00+10.0Cz+0.700'')= (0.31&0.05)
Aqq(~) 11.2+1.05C~+0.070Cg'

&3.1&0.05 (3.16)

from (3.13).. Without knowledge of decay correlations
we cannot estimate the value of Cg directly. %'e have
even less idea of the contribution from JI since we have
no knowledge of partial widths, and Eqs. (3.11) and

All the other resonances )from the (1.0 and (0.2)
supermultipletsf contributing to the pir sum rule will
be isospin singlets. Taking the singlet masses as roughly
degenerate with the triplet Inasses in the classification
(b) of Sec. 2 gives

A„+(&(&')(1750)) r„,„.&,.——0.15 (3.21)()

Aqq'+(Q(Q')(163o)) r.i')-.——0.09
A qq(0r)

(3.22)

Omitting the H H' contributions, Frampton and Taylor
(Ref. 6) have shown that if the matrix elements of the current
commutators that are equivalent to Eq. (3.2) are saturated with
m, co, A1, A2 then Cg—10. If we include the H H' contributions
we get the weaker result CA. , C~, C~, are not simultaneously ap-
proximately zero."The collinear group of U(6) &( U{6))&OL, (3) is U(6) g XO (2) g .
The U{6)g XO(2)g predictions (G. Costa et a/. , Ref. 18) are
C~=C~ = 00 (see Ref. 13) and Cg=m'/2p'=1, where p is the
center-of-mass momentum for 1+ —+ 1 +0 decay. Although the
comparative predictions between the di8erent SU(3) multiplets
are often in strong disagreement with experiment it only needs a
small s-wave symmetry-breaking term to eliminate the worst
discrepancies.
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4. SUPERCONVERGENCE RELATIONS FOR
2++0 —+ 2++0 ELASTIC SCATTERING

The case of elastic pm scattering is the simplest for
which superconvergence sum rules exist. For elastic
scattering of mesons with spins greater than unity the
greater number of ind. ependent coupling constants
makes it very much more difficult to assess the con-
tribution to a sum rule of a resonance of arbitrary spin
and parity. However, the last section suggests that only
a few supermultiplets will contribute and the p~ ampli-
tudes give some information on the form of the other
meson scattering amplitudes.

Let us consider the elastic scattering of the J~~
=2++ nonet with the pseudoscalar nonet, using the
notation of the previous section. We write the scattering
amplitude as:

T(v t) = ~'"(p')~. ""~».(p), (4.1)

"G.Costa, M. Tonin, and G. Sartori, Nuovo Cimento 39p 352
(1965}.This gives

Aqq(Ag):Aqq(Ai):Aqq(H)+Aqq(H')
= —4p'm". p'(M +4EM+4p'}:8p m'

for the (0,2) supermultiplet [the 2 isosinglet give a
contribution like (3.19)].The Jvq= 1— isosinglets of
the (1,0) supermultiplet give a contribution like the
JP~=1— isosinglets of the (0,2) supermultiplet [Eq.
(3.22)]. Equations (3.18) to (3.22) show that the con-
tributions from, the (1,0) and (0,2) supermultiplets are
depressed by at least an order of magnitude relative to
the &r (140) contribution.

The contributions from higher mass resonances be-
longing to supermultiplets with e'&1 or L&2 are even
more strongly d.epressed. For example, for normal parity
resonancesofmassMq+ (inunits of BeV) with Mq~'))m'

A„+(x) (m+1) r„,.
(3.23)

A qq(n) 30M'+' I'v

Assuming approximate constancy of the partial widths
this M—' behavior enables us to completely neglect the
contributions of resonances with mass m) 2000 MeV.
Provided C is not approximately zero, we see from Eqs.
(3.11)and (3.12a) that we have similar M ' behavior for
the other parity case.

Summing up this section, we have seen that the con-
tributions to the sum rule (2.3) of iedi~idgu/ resonances
belonging to the (0,0) and (0,1) supermultiplets are of
the same order of magnitude, whereas individual con-
tributions from the (0,2) and (1,0) multiplets are de-
pressed by at least an order of magnitude (and contri-
butions from higher multiplets negligible).

As to the question of cancellation within super-
multiplets the position is not clear, except that if the
U(6)&rXO(2)&r predictions for the (0,1) supermultiplet
are inserted in (2.3)" [in the limit of (6,6,3) mass
degeneracy], it is found that the (0,1) supermultiplet
alone does not satisfy the sum rule.

var ImA &r&(v 0)dv 0 (4.4)

where

(a) r=1: I=O,
l=1,
I=2

Sz ——1

Sz=0, 2

Sz=1.
(b) r=2: I=O,

I=1
I=2

(c) r=3, 7: I=i,

Sz=O
Sz=1
Sz=0'
Sz=0.

(4.5)

We de6ne A,~+( )&&in analogy with Eq. (3.4) for
I=1, 2) 3, 7 as

ImA;&~& (v,0)
=P A;~+(&&)-', [tI(v—vg~)+b(v+vg~)] (4.6)

taking upper and lower signs according as ImA, &r& (v,0)
is even or odd in v.

For the spin-J ields X coupling to the J~~=2++
field F and ~ (omitting isospin labels for convenience),
the effective interaction Lagrangians are

&'+= [g'Im' ']&&.,-', (p+~)
X &'2v F v (p)pvf p& I' ' 'p& y

X (p&„q,/nz'+Dg&, „,) (4.7)

where

3E„.„.„„
=A.e.e"e.e,+A.(e.e, e.p.+e.p. e.e,)

+A gQ„.P„.Q„P„+A4(P„P„.P„Q„+P„.Q„P„P„)
+A SP„.P„.P„P„+g„.„[Agg „.„+ A7Q„.Q„

+A8(P„.Q„+Q„.P„)+A9P„.P„]. (4.2)

The amplitude proportional to (P„P„Q„Q.+Q„.Q„P„P„)
has been excluded without introducing kinematic singu-
larities since it can be expressed in terms of the others
via the equivalence relation

rN'(P„.P„.eve„+Q„,Q„,P„P„)
', t[(m'-', t) (t—' -', t) —v'-]g„—,„g„.„

+2[(m' ——',t) (y' ——,'t) —v']g„.„P„.P„
't (rN ————t)g„„Q„Q„+—'v tg„„(P„Q„+Q„.P„)
4(p' ~—t)P„.P;P„P, 2(rN' ',—t)P„.Q—„.P-„Q„

+2v(P„P„Q„P„+Q„.P„P„P„). (4.3)

If we make the usual assumptions that the asymptotic
behavior of the A; is determined by Regge poles and,

branch points' ' [with ao(0)=1, 1)&&.~(0), o.'g(0))0,
where nq(0) is the pole or branch point intercept for
isospin I is the cross channel), we derive the nine sum
rules
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if D=O. (Note that m is now the mass of the 2+ field. )
Now for resonances in the high-energy region with

M'))m', it is the terms proportional to C' and D that
are relatively suppressed. Thus, for example, from (3.7)
and (3.8) we see that (assuming a constancy of elastic
widths) Ai~+ has asymptotic behavior of M r. In the
1500—2000 MeV range we do not expect the contribu-
tions from the resonances of the (0,2) and (1,0) super-
multiplets to be depressed as strongly as they were for
the pm. case, but for the moment we assume that to a
good approximation we can neglect them.

That the contributions of the mesons in the (0,1)
supermultiplet cannot be neglected in general (and do
riot cancel) can be seen in the following way.

Consider the case of frr elastic scattering. All reso-
nances in the s and I channels must have I= 1, G= —1.
Thus only the s.(140) of the (0,0) supermultiplet can

TABLE II. p values for scattering processes.

Scattering process

f'+E-+ j'+E
Intermediate state y

E(495)
J;*(89o)

LE' (1230)J
Eg(1320) L=1, ri'=0
IC v (1420)
E~(1800) L&1 or e'&0

E(495)
X*(890)

LE'(1230)j
E(1320) I.=1, e'=0
E(1420)
E~(1800) L)1 or I')0

„(SeV')

0.38

(:O.60

0.60

g
il"'~J(p+ J)~p& (P)pi3" 'Pi/

(m) ~—'

xDg&, „+cp„v„y~)p,&„+~'c'&,„&„„~ (4.s)

for the normal and abnormal parity cases, respectively.
Ke note immediately that for the special case D= C'

=0 the A,~+(X) of Eq. (4.6) are numerically equal to
linear combinations of the A@@~+,A p@~+, , etc. de-
fined by Eq. (3.4) and similar equations for the remain-
ing three amplitudes. For example,

contribute. Since the f~ ms coupling is certainly non-
zero, the A~, A2, H, H' must give a large contribution
to the f~ sum rules (I=O in the cross channel). These
contributions cannot be calculated, since we have no
information on 2+-+ 2++0 coupling constants.

%e now show that for some sum rules the contribu-
tion from the (0,1) supermultiplet is suppressed for
kinematic reasons, and to a good approximation can
be ignored. In Table II we exhibit the v values of the
intermediate states belonging to the (0,0) and (0,1)
supermultiplets for those scattering processes of physical
interest for which the J~~=2++ meson decays into
both 0 +1 and 0 +0 final states are kinematically
allowed. Ke notice that for a given process, with one
or two exceptions we have

v, (0,1)
Q 1

p„(0,0)
(4.10)

p' IniA ii'i(p, 0)dv=0. (4.11)

where X, X' are fields belonging to the (0,0) and (0,1)
supermultiplets, respectively.

For Kv(1420)s scattering the inequality (4.10) is
fairly well satisfied. For A&~ scattering the inequality
is not so well satisfied, since the f' in particular has an
exceptionally large p value for the (0,1) supermultiplet.
However, considering the f' as a member of an SU(3)
nonet, the absence of any significant f' —+ s.s- mode
requires that f' transform predominantly like Tss."To
the extent that f' is pure Ts it does not couple to Asir.
The suppression of the f'Asrr coupling constant makes
the violation of (4.10) not; as bad as it superficially
appears. For f'K scattering (4.10) is roughly satisfied.
It will be shown that. for this latter case the validity of
(4.10) happens to be irrelevant.

It follows that for any scattering process for which
(4.10) is valid the contribution from the (0,1) super-
inultiplet to moment sum rules will be depressed (by a
degree proportional to the order of the moment). It is
not likely that the (0,1) supermultiplet can be neglected
in the first moment sum rules, but for second moment
and higher the suppression will be by at least an order
of magnitude.

In the sum rules (4.5) there is only one sum rule
containing second or higher moments. This is

A2+vr ~ A2+x &(sso)
8'(960)
p(760)
8 (1210)
j'(1250)
D(128S)
E(1420)
f'(1500)
g (16so)
EI(1630)
z, (1700)
z (17s9)

L=a'=0

~L=1, n'=0

I.&1 or n'&0

~ —0.13—0.07
~ —0.03

+0.15
+0.29

0.48
0.45
0.60

&I gzv z~ &x* gxyx*~ =0p (4.12)

'9 S. L. Glashow and R. H. Socolow, Phys. Rev. Letters 15,
329 (1965); IK. J. Rivers, Phys. Rev. 150, 1256 (1966).

LThis is consistent with the f7r scattering dilemma, for
which the sum rule (4.11) does not exist. ]

Inserting the (0,0) supermultiplet alone in the sum
rule (4.11), we obtain the following results:

(a) ICv+rr +Ky+rr:—
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where grrvrr = g and grrvtr'»= g C (g =0, see Ref. 13)
in the terminology of Eqs. (4.7) and (4.8).

In the limit of U(6) XU(6) XO(3) mass degeneracy
(v~ ——v~ ), we reproduce the U(6)s predictions'0 Lin
which the 2++ mesons are assigned to the (15,15)
U(6) XU(6) multiplet, corresponding to two quarks
and two antiquarks in a relative s wave) and not the
U(6)tvXO(2)s prediction's in which gavel

——2glrvrr
In fact both sets of predictions are strongly in dis-

agreement with experiment. For example, taking v~
= v~ in (4.12) and taking physical masses in the phase
space gives

I &v~z*~/I Kv~rrw =0.20,

in comparison" to the experimental ratio

(4.13)

I xv~K m./I Kv~K~ 0 44
q (4.15)

I'rrv ~*:I'tv Ir =(36+6):(52+5). (4.14)

Inserting the physical v values in Eq. (4.12) improves
the prediction, giving

v 'A g'+(g)

v, 'A g(p)

2 2
vg (~Ay & g~d2~ I g~Agw

=0.6—
~

= . (4.19)
vv'kmv' I'g, v 44 MeV

Similarly,
va,2A i'+(Ri) I'z, ~,.

v, 'A g(p) 44 MeV
(4.20)

For the R2 (or at least the conjectured J~e=2 iso-
triplet part of R&), it is difficult to say anything, since
the three independent coupling constants only enable a
crude upper bound to be made. Inspection shows that
the magnitude of the R2 contribution is greatest for
large C in Lagrangian (4.8) )as in the p~ case) and
smallest, for large C'. For C'=0, Eqs. (3.11) and (3.13)
give

(taking I'~„tv ——6.4+4.0 MeV) if the Eg(1800) has
J~=O .

In the A2m sum rule the g(1650) gives a contribution
relative to the p(760) of

in much better agreement with experiment.

(b) A2+vr~A2+~:
vggm Ay (R2) I gim~gq~(

vp'A g(p) 35 MeV
(4.21)

vp gAgpw' vg g22qw vq' gA2g'r =0. (4.16)

In the limit of U (6)X U (6)XOI.(3) mass degeneracy
(v, = v„=v„.), we, again reproduce the U(6) s results
Land not the U(6) s XO(2) s prediction(. In this limit,
Eq. (4.16) becomes

0.25r, , „.+6.25r„„,.=0.18r,, „, (4.17)

giving I'~, „=2.i&0.2 MeV, in reasonable agreement
with the experimental value F~. .. &1.5 MeV.

Inserting physical v values in (4.16) gives I'&, „,
=4.2%0.6 MeV, in rather worse agreement. The fact
that the agreement with experiment is poorer for A.m

scattering is probably due to the fact that (4.10) is less
well satisfied, even when allowances have been made.

Since the f ' is an isosinglet, we can make no predic-
tions for f 'E scattering.

I et us 6nally attempt brieQy to calculate the con-
tributions of the X~(1800), the g(1650), and the R~,
R2, E3 to the sum rule to see whether our neglect of the
higher supermultiplets is justi6ed.

In Ezx scattering, vz'—vz~, so that the relative
contribution of the E~ is given by

Ag~(K~(1800)) (mrrv') /ply )"I'rr„„harv,

Al(E*(890)) Emrr„ml kplrv) I'~„„~'
= —0.13+0.08 (4.18)

' R. Delbourgo, M. A. Rashid, and $. Strathdee, Phys. Letters
14, 719 (1965)."U(6) ~&(O(2) ~ gives the even worse result of

&'&v~&" l«v z =0.05.
An s-wave symmetry breaking term will have little effect on this
ratio.

the maximum being attained for C~. We get a
similar contribution to (4.20) and (4.21) for the R3
contributions. In view of the small E~, E2, E3 widths
an.d the variety of decay modes the ratios (4.20) and
(4.21) are very likely to be considerably less than unity,
and it is plausible that the ratio (4.19) should be also.

The contributions of resonances (like 8, T, U) be-
longing to higher supermultiplets are depressed very
much more and can reasonably be neglected completely.

Thus after the possibility of partial cancellation has
been taken into account, the assumption that the (1,0)
and (0,2) supermultiplets can be neglected seems a fair
approximation, and the assumption that all higher
supermultiplets can be neglected a good one.

S. CONCLUSIONS

We have seen that the known meson resonances can
be conveniently classiled according to representations
of U(6)XU(6)XO(3) and a reasonable spectrum ob-
tained by adopting a simple nonrelativistic quark. model
with suitable potentials.

Using this spectrum, we have examined the contribu-
tions of the mesons with masses m&2000 MeV to the
px superconvergent sum rule. Two points emerge.
Firstly, the resonances within the L=0, m'= 0 and L= 1,
~'=0 supermultiplets give contributions to the sum
rule of the same order of magnitude, whereas the
contributions of the resonances wi. thin the higher super-
multiplets are depressed by at least an order of magni-
tude. Secondly, although the L=0, n' =0 supermultiplet,
if constrained to satisfy the sum rule alone, gives pre-
dictions consistent with U(6)s XO(2)s, this is not the
case for the L= 1, n'=0 supermultiplet. For very heavy
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mesons of mass M, 3P&&m, ', the contributions to the
sum rule are seen to be of the order 3f ', and can be
completely neglected.

Because the contributions of neither the (0,0) or
(0,1) supermultiplets can be ignored in meson-super-
convergence sum rules we can only make predictions
when one of the supermultiplets has its contributions
depressed for reasons of kinematics. The scattering of
J =2++ mesons with pseudoscalar mesons provides
such a case because the low v values of the resonances
belonging to the (0,1) supermultiplet cause their con-
tributions to be depressed in moment sum rules.

Predictions have been made which, in the limit of
U(6) X U(6) XOI.(3) mass degeneracy, are in agreement
with the predictions of a U(6) X U(6) meson classifica-
tion, rather than a classification by U(6) X U(6) XOI.(3).

In practice such higher-symmetry predictions are in

strong disagreement with experiment. For the predic-
tion where the kinematic suppression of the (0,1) super-
multiplet is the stronger, the insertion of physical
masses in.the sum rule gives a prediction in much better
agreemeiit with experiment.

The assumption that the higher supermultiplets can
be neglected for these sum rules has been examined
insofar as there is experimental evidence and found to
be reasonable.
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Bound States of a Relativistic Two-Body Hamiltonian: Comparison with the Bethe-Salpeter Equation,
NGUYEN D. SoNt AND J. SUcHER t Phys. Rev. 153, 1496 (1967)j. There are typographical omissions in

the expression for Ve(k, k') after Eq. (12); it should read

—g' 1 (k+k')'+ p' m m
Vo(k, k') = X X

(2m)' 2kk' (k—k')'+p' E(k) &(k')

$ Deceased.

Radiative y-Meson Decay, P. SiNGER LPhys. Rev. 130, 2441 (1963)].
(1) Eq. (12) should read

(m~ m ) 1+$ mp
y(k) = k„( — —k

~

ln- —
g k„—k

~

—k' .
k2 m, 9 1—$ 2 )

(2) The figures in Table I should read:

s (Mev)

Ele
2.3X10 '
8.3X10 '

30

1.6X10 '
5.)X10 '

45

1.2X10 '
3.7X10 '

60

9.7X10-3
3.0X10-~

105

5.3X10 '
1.6X10 '

165

2.6X10 3

7.4X10 4

225

1.1X10 3

3.1X10 4
3.3X10-4
8.7X10-5

Figure 2 should also be appropriately corrected. The revised numbers are slightly higher than the original
ones. The correction does not alter any of the conclusions of the paper and is given only to assure an
error-free comparison with experiment.

(3) The heading of the fourth column of Table II should read

I',+,-(~+ w'y)/I', +.-(2+) .

I am grateful to M. Sapir for discovering the error in Eq. (12) and for re-evaluating Table I.


