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Kubo s theory of irreversible quantum statistics is applied to the problem of electron mobility in a hard-
core gas. without any assumptions regarding a relaxation time, the mobility is evaluated by cumulus, nt tech-
niques to erst order in the gas density and second order in the scattering length. A momentum-dependent
relaxation time appears in a natural manner, as does the criterion for validity of the classical Langevin
theory.

I. INTRODUCTION

r 1HE calculation of electron mobility in a hard-core.i. gas was first carried out by Langevin who used
classical transport theory. ' It has been pointed out,
however, that the kinetic equation presupposes in its
derivation the existence of a single relaxation time and
may not always be valid. ' 4

Receritly, significant advances have been made in
the statistical theory of irreversible processes. In a
problem closely related to the mobility, Greenwood5
derived a formal expression which Edwards' evaluated
to yield the usual solution to the Boltzmann equation
for conductivity in a metal with a periodic lattice
potential, Fermi —Dirac electron distribution, and ran-
domly located impurities. I.ax' has treated the same
problem and also obtained the Boltzmann equation
in the limit of weak coupling. Kohn and t.uttinger'
started from the equation of motion of the density
matrix and, by adiabatically switching on an electric
field, derived the Boltzmann equation for randomly
distributed scattering centers. Kubo4 has treated irre-
versible processes from first principles and derived an
exact formal expression for the response to a weak
force. Nakano' evaluated the Kubo expression and
obtained the Gruneisen formula for conductivity in
metals by assuming the existence of a relaxation time.
Chester and Thellung' have shown that for a metal the
Kubo formulation leads to the Boltzmann equation,
with the sole assumption that the scattering is elastic.

In this paper, the mobility for a particular system is
evaluated from Kubo's quantum-mechanical formu-
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lation of irreversible statistical mechanics without as-
suming the existence of a relaxation time, which, under
certain conditions, is obtained as a direct coeseqlmce
of the theory employed. The calculation is carried
to second order in the scattering length by an extension
of the techniques used by one of us (M.H.C.) in the
evaluation of the free energy of an electron in a hard-
core gasm (hereafter referred to as I).

H= Hl~l+H~,

JI{N)= 2 e+ VfN} ~

(1)

(2)

Htg~ is the Hamiltonian of an electron in equilibrium
with E hard-core scatterers, T, the free-electron Hamil-
toniaii, V~~~ the interaction of an electron with E
scattering centers, and H~ the Hamiltonian of an
electron in an external field E.

T,=p'/2rrt, (3)

VlNl =g V(r;, ) =—g Vt,

=0,

Hg ———seE.

otherwise,

(6)

V; is the assumed hard-core interaction between the
'0 M. Coopersmith, Phys. Rev. 139, A1359 (1965).
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II. STATEMENT OF THE PROBLEM

The mobility p of an electron in, a gas of density p
under the inhuence of a weak external electric field E
is evaluated under the following assumptions: (1)
Interactions between electrons can be neglected, (2) an
electron sees the gas as a system of randomly located,
stationary, hard-core scatterers, and (3) collective prop-
erties of the gas enter the calculation through p. This
model is applicable to helium where the atom mass is
much greater than the electron mass and the s-wave
scattering length is positive.

The total Hamiltonian H is
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electron and the jth atom, r;, is the distance between
the electron and the jth atom, and a is the hard-core
radius. The mobility, as derived by Kubo, is given by

p, =ie tr R(t')dt' p, (firn tr{exp( —pB(~)/fi) }),

where

R(t) =exp( itsy—r~/Fi)

X[z~ exp( &ayr)) 7 exp(i'(~)/5). (8)

III. CUMULANT EXPANSION

An exact evaluation of p, would require the eigen-
functions and eigenvalues of Ht~» which are not known.
However, an approximate expression can be obtained
by rewriting R(t) as a generalized exponential and
using Kubo's cumulant techniques" to derive a cluster
expansion for it. Putting A=m=1, and using Eqs. (2)
(3), (4), and (8), we have

R=exp{ —it(p'/2++ V ) }

X[ P{ t3(P'/ +—Z V) }7 P{ t(P'/ +Z V) }.

The ordering operation means that proceeding from
left to right, we have (1) exp( —itp'/2), (2) all f(it)'s
(3) [z, exp( —pp'/2) Xall f(p) 's], (4) exp(itp'/2), and
(5) all f*(it) 's."

We now evaluate p, using the representation in which
T, is diagonal, as only the diagonal elements of R, E»,
are needed. E~~ is given by

Rij, ——&lr
I
R

I k)
= && I expo, r.{g[f (it) +f (P) +f'"(it) '7}

I
lr) (15)

The average of an operator 8 is defined as

where the normalization C is

C = &k I
lo, r. I

lr)
—= &lr

I exp( itp'/2—) [z, exp( —pp'/2) 7 exp(itp'/2)
I
lr)

=iQ(2z. ) '(8/Bk, ) exp( —Pk'/2) (17)

and 0 is the volume. From Eqs. (15), (16), and (17),
we get

~ =C(e p{Z[f (it)+f (0)+f "( t) 7}) (1g)

We now use the identity

exp[a(b+c) 7 =exp(ab)

X exp exp( —bs) c exp(bs) ds, (10)

Ri,i, is now in a form which enables us to utilize gener-
alized cumulant expansion techniques. "Thus,

Rig =C exp&exp {Q[f, (it) +f, (P) +f,*(it)7}—1),„,
(19)

where the symbol & )„means cumulant average.
In evaluating (19), the cumulant average must be
taken before the levelling operation is performed.

The remainder of this paper will be concerned with
a calculation of the mobility by expanding the cumulant
to first order in the f's. This is equivalent to an expan-
sion in powers of the density. The first term is given by

and define

g, (x) =exp — exp(p's/2) V; exp( —p's/2) ds
0

&g, (it) )=C '&lr
I exp{ —it(p'/2+ V,) }

X[z, exp( —pp'/2) 7 exp(itp'/2)
I iz), (21)

(13)
&g;(p) )=C '&k

I exp( itp'/2)—
can X[z, exp{ —p(pz/2+V) }]exp(itp'/2)

I
lz), (22)

&gt*(it) )=C '&&
I exP( —itp'/2) Lz, «P( —Pp'/2) 7

X exp{it(p'/2+V;) }I lz). (23)
R=expo, i, {P[f, (it) +f; (P) +f;*(it)7 }.

to rewrite Eq. (9) as follows:

R=e p{ itp'/2}II{1+—f;(it) }[z,e p{ pp'/2} —
& C &~[f ( t)+f (p)+f ( t)])

xII{»,( ) }7 .P{'tp'/2}II{1 f,*('t) }. (»)

Following Kubo, we introduce a levelling operator L
which levels (eliminates) all powers of f greater than (2o)

where the properties of cumulants and Eq. (11) have
f'(~)f'(&) ~+&7 been employed. The averages of the g's are given by

get

R=exp{—itp'/2} expi, {g f, (it) }[z,exp{ —pp'/2}

X expi {gf,.(p) }7exp{itp /2} expi {pf,.*(it) }.
P

Finally, introducing an ordering operator 0 we
write

"R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962). "Following Kubo, we have used expL, o to stand for L,o exp.
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Note that the ordering operation makes the average
of the operator g a functional of its argument. As a
result of the cumulant expansion, Eq. (20) for Rzk

contains the Hamiltonian for lV electrons each inter-
acting with 3 single scattering center, instead of the
more complicated Hamiltonian for one electron inter-
acting with X scattering centers.

IV. MATRIX ELEMENTS

From Eqs. (7), (17), and (20), the rnobilit;y is

eQ(22p) ' 8
p= dk k, exp ( —Pk'/2) dt'

tr{exp( —PH, /) )) }
'

(lk,

X e p ZL(a ( t'))+(g (p))+(g*( t')) —3] (24)

As was noted in I, the Gaussian factor in (24) limits
the significant values of k to k &p '".As a consequence,
lnatrix elements correct to second order in ka can be
obtained using only the s-wave contribution to the
wave function,

f«(r) = (22() / '{2exp'-(ik r) —sin(ku)

change of variables, s=r+r' and (j=r—r'. Similarly,

(g;(P) ) =iC '(8/Bk, ) dr. dr, ' dE P,*(r„)

Xexp( PE2/—2)P, (r„') exp{ i—k (r,—r,')] (22r)2

= 1—22pPa/0 —a' I L (1+2Pk' —P'kd) /Pk']M (kP)

—L(1—Pk')/P k)] exp(Pk/2) }/I 2(2~) 2n], (30)

( *( t) ) = ( ( t) )". (31)

Note that, as a result of integrating r, and r, ' over all
space, the coordinates of the scatterers no longer appear
in the right-hand sides of Eqs. (26) and (30). The
trace of exp( PH(/d)) w—as evaluated in 1 and was
shown to be given by

tr{exp( —PH(&)) } =Q(22rP) 2/2 exp( —22rPpa), (32)

where p=A)'/Q. Substituting the above matrix elements
into Eq. (20) and using Eqs. (24) and (32), we find
the following expression for the mobility:

We thus get

x exp{ ik(r —(g)]/kr}. (25) tg
— ep(2~)

—2/2 dK K (/(K ~ T)p(K ~)

(g((r))=(' ' dr. J dr. '(gr~ r) where
X (8/(lK, ) exp( —«2/2), (33)

X(r, I
e..-pL —it(p/2+V, )]l r.')

X (r, '
~ k) exp(itk'/2) (8/Bk, ) exp( —pk'/2)

=exp(itk'/2) dr, dr, ' de)t'yy" (r„)

a(K, (2, T) = I(«, (2, T')dT', (34)
0

I(Ky (1' T) =rexP{ 42r'/'(2{ (K'T+—1)8(KT'")

+(K T—1)g(KT ) +KT (cos(K T/2)
—sin(K'T/2) )]/K}, (35)

Xexp( itE2/2) Py(—r„') expL —ik (r,—r, ')]/&

= 1+exp(itk2/2) d r d r'

XexpL ik ( r ——r') ]{ (2(r+r') +(22L1+i—(r+r')'/t]

S(2:)= sin(y'/2) dy,

8(x) = cos(y'/2) dy,

(36)

(37)

= 1—2~i(it/0+2 (22r) '"(2'{
I

(itk' —1)/k]
—exp(K'/2) L (1—K') /K]/L2 (2m.) 2/'K] I . (38)

The following dimensionless parameters have been

v here

r= rej)
/ Ir =rej)

(k
I

r)=(2yp) 2/'exp(ik r), (27)

(2g)

~=p(22pl/2

T=—t/P,

K—=P'/'k.

(39)

(40)

Angular integration of Eq. (33) gives
(29)gg(r) =J erp(y'/2) dy.

0
p, = {2eP/3(22() "'] dK K' exp( —«'/2)

0

Xe(K, ~, T)F(K, u). (42)
The integrations over r and r' are performed by first
integrating over the solid angles and then making the

O
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V. RELAXATION TIME

In obtaining Eq. (42), no assumption was made
concerning the existence of a relaxation time. Expansion
of the Fresnel integrals" shows that for ~'T&&1,

10 „

where
I(», n, T)=exp( T/r—),

r = (4vra»)

(43)

(44)

10—

The values of ~ which contribute significantly to p, are
restricted to»~1 by the factor»' expL —(»'/2) 7. For
these ~'s and experimentally obtainable values of the
parameters, the condition that the time an electron
spends under the influence of E be large (»'T))1) is
equivalent to the condition that this time be large
compared with the relaxation time. Thus, Eq. (34)
can be written as

103—

10

d(», n, T) = I(», n, T')dT'

I(», cr, T')dT'

+ exp (—T'/r) dT'
10— 0

I (K, o', T') dT'+ exp( —T'/r) dT'.

r can therefore be identified as a relaxation time in the
sense that after a sufFicient lapse of time, the approach
to a steady-state condition is always given by an
exponential decay, namely exp( T/r) . —

Expression (42) is equivalent to the Langevin mo-
bility formula provided 4m+((1. With this restriction
on rr (low density or high temperature), we can ap-
proximate 8 and Ii by
a(», n, T= ~)

I(K rr T)dT= exp( T/r)dT=r (46)—

Thus, p, reduces to
E(», rr) =1.

p~eP/L3 (27/) r~ cr7»s exp( —»'/2) d»

=2eP/P3 (27r) @'m"'n7 (48)

13 EIondbook of 3IIathematica/ Functions, edited by M. Abramo-
witz and I. A. Stegun (U.S. Department of Commerce, National
Bureau of Standards, Washington, D.C., 1964), Appl. Math.
Ser. 55."T.F. O'Malley, Phys. Rev. 130, 1020 (1963).

In general, p was found numerically as a function of
p and T. The result is shown in Fig. 1 for T=3.96'K
and a=0.62 A (Ref. 14) along with the Langevin-theory

10'
)019

I 1 I i I ilil
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CS,

I 1 I ) lilted "0 1 I I I I

10 1 10

Fro. 1. Mobility p (cm'/Vsec) versus number density p
(atoms/cm~) at constant temperature for u=0.62 A. .

' J. L. Levine and T. M. Sanders, Jr. , Phys. Rev. 154, 138
(1967).

value of p. (The circles are the experimental results of
Levine and Sanders" and show the very sharp drop in
mobility which occurs at the onset of bubble formation. )
The Langevin theory is seen to be accurate to within
5% for cr(4X10 ', 10% for n&5X10 ', and 50% for
o.(2X].{) '.

Assuming an ideal-gas equation of state for the helium
and an electron trapped in a 3-dimensional well of
depth 2s.pa/l/m, the condition that there be no bubble
is approximately rr'(p'f'/a)«10-s. In order to simul-
taneously have n)1 and crs(p'f'/a)«10 one must,

go to small p (high temperature). However, this de-
creases e unless the fractional pressure increase equals
the fractional temperature increase raised to the —,

'
power. Thus, it is not feasible to construct an experi-
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We have demonstrated that the Langevin theory for
electron mobility in a hard-core gas can be derived
from irreversible quantum statistics without postulating
any relaxation time. Rather, a momentum-dependent
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ment in which the deviation from the Langevin theory relaxation time emerges as a direct coesequeece of the
calculated above could be seen. expansion procedure employed. This treatment also

yields criteria for the limits of validity of the classical
VI. CONCLUSION Langevin theory that help explain why it has been so

successful.
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Static He-II films which are locally disturbed are investigated with the two-Quid model. It is assumed
that motion of the normal fluid is retarded by a viscous force per unit volume rcopv„, in which r is a dimen-
sionless viscosity parameter whose value in He-II films is shown to be 10'&r&10'. A general surface wave
and thermal disturbance is propagated through the film by two wave modes: a third-sound wave and a new
highly attenuated, wave; these are first redescribed. For arbitrary initial conditions, the amounts of each
mode produced are derived for a general experimental case. In particular, conditions which will produce
third sound alone and the new mode alone are derived as functions of temperature and r. It is shown that
pure third sound is difficult to produce, since the requirements on phase between the surface wave and tem-
perature excitations are not experimentally natural ones. It is shown that, when the film is locally disturbed
with a pure thermal excitation varying as expect, both modes are excited equally and are 180' out of phase,
so that the net surface is undisturbed. When the film is locally disturbed with an isothermal pure pressure
excitation, then for large viscous force on the normal Quid, almost all of the displacement is in the new mode.
The motions of the film variables characteristic of each of the modes are analytically obtained in general, and
described quantitatively for a particular case. In the new mode, the normal Quid and superfluid move with
almost the same phases and velocities, and are 180' out of phase with the surface wave. In the third-sound
mode, the superfluid moves in phase with the surface waves but the normal-Quid motion is more complicated.
The results are compared with Lifshitz's results on first and second sound in bulk helium.

INTRODUCTION

RHERE ale thoro simple ways in which a static He-II
. film may be disturbed locally. The surface con-

6guration itself may be changed, say by an indentation,
and the temperature may be changed. This paper treats
the question: What is the behavior of the him after
arbitrary disturbances of these kinds) In general the
answer is: Two, mixed thermal and pressure, wave
modes propagate away from the source. The net veloc-
ity and attenuation of propagation in the film depend
on how much of each of these two modes is excited. The
principal purpose of this paper is to describe in detail
the quantitative relations between initial conditions
and the amplitudes and phases of the propagated waves.
We shall also brieQy redescribe both modes in terms of
the two-Quid model of liquid helium. ' Then the results
will be applied to some interesting examples.

Actually if the normal Quid is totally immobile, as

*This research has been supported in part by the U.S. Atomic
Energy Commission.

' F. London, Superguids (John Wiley 8z Sons, Inc. , New
York, 1954), Vol. II.

is often assumed, then only one kind of wave (third
sound) is allowed in the film. ' To explain recent ob-
servations of eriergy dissipation in He-II films it has
been suggested that normal-Quid motion is merely
retarded by large viscous forces in the 61m.' This extra
degree of freedom brings with it into the problem some
normal-Quid motion, energy dissipation, and a new
overdamped wave mode. 4

We intend then to complement Lifshitz's classic
study on radiation of sound in He-II. 5 In Lifshitz's
paper, which treats bulk helium, waves excited by
thermal and pressure variations are considered, and
the qualitative relations between initial conditions and
propagated waves are found in a very elegant way and
applied to some interesting examples. For that case, as
is well known, the two modes are first and second sound.
For our case the two modes are third sound and a new
mode, not yet directly observed. Also, unfortunately,

' K. R. Atkins, Phys. Rev. 113, 962 (1959).' G. L. Pollack' Phys. Rev. 143, 103 (1966).
G. L. Pollack, Phys. Rev. 149, 72 (1966).' E. Lifshitz, J. Phys. USSR 8, 110 (1944).


