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Previous work on the long-range electromagnetic forces between neutral particles is extended to obtain a
more detailed understanding of the atomic or molecular van der Waals forces within the framework of
covariant dispersion theory. It is shown that the modulation of the two-photon exchange potential V» from
the London form Vg~~E to the Casimir-Polder form V2~~A ' has an interesting dispersion-theoretic
interpretation: It arises as a consequence of singularities in the momentum transfer t of the scattering
amplitude P(s,t) in the physical region of t but on an unphysical Riemann sheet. The connection of the
present approach with that of Casimir and Polder is explained. The one-photon exchange potential V1~ is
also studied for systems bound by either short-range or Coulomb forces. Some of the modi6cation of the
usual assumptions of dispersion theory required to deal with the latter case are described. An erroneous
statement in the literature regarding V1~ (in the static limit) is pointed out. The character of V~„and Vy~
arising from photon exchange between elementary particles is described and contrasted with the atomic case.
Some of the advantages of a covariant approach to the problem of interatomic forces are discussed.

I. I5'TRODUCTION

' 'N a previous paper, ' the long-range electromagnetic
~ ~ forces acting between elementary systems or par-
ticles were studied with the help of the ideas of disper-
sion theory and the general principles of quantum
electrodynamics. In that work, motivated by some
anomalies reported in experiments involving the pass-
age of neutral E mesons through matter, the emphasis
was on the forces arising from multiple photon
exchange between a neutral spinless particle such as
the E' meson and a charged particle such as the
proton. An interesting byproduct of the techniques
developed in FS was a simple proof of a general property
of Vav(R), the two-photon exchange potential acting
between any two neutral spinless particles: For large
separations E. one has

V2, (R) R-'.

Since, for example, a hydrogen atom in its ground state
may be regarded as an elementary system or particle,
this result is in agreement with, and constitutes a
generalization of the much earlier work of Casimir and
Polder' on the van der Waals forces acting between
neutral atoms. These authors considered a pair of
hydrogen atoms with (infinitely heavy) protons sepa-
rated by a large distance 8 and computed the level
shift hE"'(R) arising from the combined effects of the
electrostatic interaction V, between the atoms and the
interaction of the electrons with the transverse radia-
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r G. I"einberg and J. Sucher, Phys. Rev. 139, 81619 (1965),
henceforth referred to as FS.

~ H. S. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948),
henceforth referred to as CP. A convenient introduction to the
subject is given by E. A. Power, IrItrodlctory Quaetlm Electro-
dynamics (Longmans Green and Company, Ltd. London, 1964),
p. 108.

tion 6eld. They showed that for R —+~

BR&4'(R) R '. (1.2)

This was in contrast to the result of the again much
earlier and pioneering work of London, ' who had con-
sidered only the level shift hE„(R) arising from V.
taken in second-order perturbation theory and had
found that for E~~,

AE,.(R) R '. (1.3)

The purpose of this paper is to extend the work of
FS to obtain a more detailed understanding of the
atomic or molecular van der Waals forces from the
viewpoint of dispersion theory.

The particular problem which initiated this study is

the following. The result (1.2) of CP, is, more precisely,
thtat

~Ztt&(R)=C'R r, (R»b)- (1.2')

where a is a length characterizing the sise of the inter-
acting systems. For hydrogen atoms, we therefore have

Now, as shown in CP,

a ao.

2Et4&(R) =CR 'g(R) (1.4)

where g(R) is a "slowly varying" function for R«b,

3 F. London, X. Physik 63, 245 I'1930).
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where C' is a constant and b is of the order of the
longest mraveleegfh associated with excitations of the
individual atoms. Thus, for hydrogen atoms,

b~2000ao,

where a, is the Bohr radius. The result (1.3) of London

is, more precisely, that

aE...(R)=CR ', (R»a)-
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with

g(0) =1,
g(R)=(C'/C) 1/R, (R&&f)

(1.5)

1+2—+ 1'+2', (1.7)

where "1"and "2" denote neutral spinless particles
with initial and final 4-momenta p; and p (i=1, 2),
respectively. Let F(s,t) denote the invariant Feynman
amplitude for (1.7), with s and t the squared invariant
energy and momentum transfer, respectively,

=(p+p)', t=(p -p.')
Two-photon exchange contributes a term Fs~(s, t) to F
which is an analytic function of t with singularities
which include a branch point at 1=0. As shown in FS,
it follows from general principles that the discontinuity
across the associated cut, taken. from 0 to +~, behaves
like t' for t&0, and it is this property which leads to
the asymptotic form of the two-photon exchange po-
ten'tial given by Eq. (1.1). The answer to the problem
posed can now be stated as follows: The behavior in
question can be regarded as a consequence of singulari-
ties of F(s,t) in the physical region of t but on an Nn

physica/ Riemann sheet of the function F(s,t). This
rather surprising result shows that not only can dis-
persion theory give insight into the nature of electro-
dynamic forces, but that, conversely, the study of
virtual electrodynamic processes, i.e., multiple photon
exchange, can illuminate some aspects of dispersion
theory which are obscured when only the strong inter-

. actions are considered.
The singularities referred to occur for real values of

5 with /&0 and occur both as poles and as branch
points. They are thus rather different from the familiar
second sheet poles with Re/&0 and Imt&0, which
may be interpretable in terms of resonances if Ret and

~
Imt

~

are suKciently large and small, respectively. A
more detailed discussion is given in Secs. II and V;
we want to emphasize here only that these singularities
do not depend sensitively on the nature of the systems
exchanged but are more or less determined by the
"structure" of the particles undergoing the scattering.
They are present even in the contribution to, e.g. ,
hydrogen-hydrogen scattering arising from the ex-
change of, say, two m' or p' mesons, However, in that

so that a reconciliation between (1.2') and (1.3') is

tkE&'i (R)~CR-' (a&&R&&b) (1.6a)

AE'4' (R) C'R—', (R»b) . (1.6b)

The dispersion-theoretic interpretation of (1.6b) has
already been given, but the question now arises: How
can the behavior (1.6a) and more particularly the
changeover to (1.6b) be understood within the context
of dispersion theory? To state the answer, it is necessary
to introduce some notation.

Consider the elastic scattering process

case the singularity is quite far from any physical
region. It is only when the cut at t=0 introduced by
two-photon exchange is taken into account and when

the scattering systems in question are atoms that the
singularity is relatively close to the physical region, as
measured in terms of path length on the Riemann
surface.

In the above discussion, we have emphasized the
two-photon exchange force. What about the eGect of
single-photon exchange? This is sometimes stated to
vanish identically, for atoms with 1.=0 in the ground
state, at least in the static limit. However, in fact it
gives rise to a force which falls o6 exponentially with
R. As we shall see, this is an immediate consequence
of dispersion-theoretic considerations and is in agree-
ment with what is really obtained from ordinary non-
relativistic quantum mechanics. For, although the ex-

change of a single transverse photon is forbidden be-
tween two (infinitely heavy) hydrogen atoms each of
which is in its ground state, the expectation value of
the electrostatic interaction V, is not zero in this state,
contrary to the assertions made in a number of text-
books. 4 This fact is undoubtedly well known to many
people'; we mention it here only because so many
physicists have learned quantum mechanics from one
of the two classics in Ref. 4.

We now outline the content of the following sections.
In Sec. II, the basic ideas of the dispersion-theoretic
approach to multiphoton exchange forces are first
brieQy reviewed; the second-sheet singularities in ques-
tion are then exhibited with the aid of a simple model
and their connection with the two-photon exchange
potential is explained. In Sec. III the results of Sec. II
are confirmed by showing that the formula for bE&'& (R)
obtained by CP can be rewritten, with the aid of a
fivefold integration by parts, in a form which makes
manifest the relation of their result with that obtained
from dispersion theory. In Sec. IV, the single-photon
exchange potential is brieQy studied and some of the
modifications necessary to adapt the dispersion theory
methods to cases where bound states are produced by
the Coulomb force are described. Finally, Sec. V con-
tains a summary and a discussion of the following
topics: (i) comparison between the atomic and ele-
mentary particle cases, (ii) reduced diagrams and the
critical role played by intermediate particles with spin,
(iii) the advantages of a covariant approach in the
study of photon exchange forces, and (iv) the generality
of the results. Some additional considerations con-

' See, e.g., L. Pauling and E.B.Wilson, Imtroduction to Quawtzcm
Mechanics (McGraw-Hill Book Company, Inc. , New York, 1935),
p. 384. A similar discussion is given in L. I. Schiff, Quaetltri
j/Iechaeics (McGraw-Hill Book Company, Inc. , New York, 1955),
p. 176.

That iV,)&0 is implicit in many publications; we thank
Professor E. A. Mason and Professor L. S. Rodberg for discussion
of this point. The value of iV,) for two hydrogen atoms is re-
corded in Kq. (4.32). To our surprise, we were unable to 6nd
this easily obtainable expressjon in the literatgrq,
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we are led to de6ne
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FIG. 1.General form of a Feynman dia-
gram corresponding to the exchange of
two photons between particles "1"and
CC2 s7

const
V (R) p i'(t)e (~i)Rdt (2.3)

cerning the connection between the potential and
second-sheet singularities are given in the Appendix.

where

p„„'"(t)=p„,'—"(sp,t) .

II. TWO-PHOTOS' EXCHANGE AND
THE SECOND RIEMANN' SHEET

A. Definition of V„~(R), the n Photon
Exchange Potential

Let F„~(s,t) denote the contribution to the amplitude
F(s,t) for process (1.7) of all Feynman diagrams which
involve the exchange of precisely e photons between
particles 1 and 2, each assumed to be neutral and
spinless. The contribution of, for example, two-photon
exchange is symbolized as in Fig. 1.We define F„~'"(s,t)
as that part of F„~(s,t) which comes from irreducible
diagrams, i.e., those for which there is no intermediate
state containing "i" and "2"only. '

. Both F„,(s,t) and F„,'"(s,t) are expected to be
analytic functions of t with a right-hand cut starting
at t= 0 if e& 2, so that we may write

The constant unspecified in (2.3) is equal to
(167r'MiMs) ' if F(s,t) is normalized so that the
scattering amplitude is ( 87r+—s) 'F.

B. Second-Sheet Singularities of Es~(s, t)

As discussed in FS, the discontinuity p~7(s, t) is given

by

ps~(, t) " I'ii)»(q, q') (si""(—q, q')

X8(pi pi' —
q q—')dC—s„(2.4)

where I"
&; „i„( ,qq) is the form factor for two-photon

emission by "i" and the integration is over the two-

photon phase space,

d4 s, ~ ti(q') 8 (q")d4qd4q'.

1 "p„(s,t')F,(s,t) = d—t'+.
7T 0

(2.1)
V"~ (i)~.—q

"~(i)~.—o, (2.5)

The neutrality of the particles and conservation of the
electromagnetic current imply that'

p v
' (s,t')F,'"(s,t) = —dt'+

7I

and these relations together with a very mild assump-
(2 2) tion on the analyticity properties of I'&,

&
are sufhcient

to show that for t 0,

where 2tp„~(s, t) is the discontinuity of F„~(s,t) across
the right-hand cut and p„~'"(s,t) is similarly defined.
The dots in (2.1) and (2.2) represent the contribution
of left-hand singularities; these correspond to exchange
forces and are not of direct interest here. An effective
potential may now be defined by setting t = —g', where

is the 3-vector momentum transfer in the center-of-
mass (c.rn. ) system, and then taking the Fourier trans-
form of the first term in (2.2) with respect to q. The
resulting potential will depend on s, but this depend-
ence is expected to be rather weak for s near threshold,
i.e., for s& so, where

sp= (Mt+Ms),
and can be ignored for our purposes. Thus, using

e—(~t') R

eiz R dg
(2w)' t'+ q' 4w R

6 The reducible Feynman diagrams, when written as a sum of
time-ordered diagrams, contain parts which have intermediate
states different in type from the initial state. These parts should
really be included in F'rr (s,t) and hence in the de6nition of V, if
one wishes to use V in a Schrodinger equation. However, in our
problem such diagrams give rise only to short-range forces (see
Sec. IV), so that we need not discuss this in detaiL

p»(so~t) t
~

(2.6)

from which the universality of the R ' behavior follows.

To understand the behavior of Vs~(R) in more detail,
it is necessary to know more about ps, (sp, t) than Eq.
(2.6) and hence more about the I't;~„„ than Eq. (2.5).

Rather than attempt to discuss the information
needed about the F (,) in general terms, it is more trans-

parent to study a simple model for the 1 (i) which,
however, contains the essence of both the mathematics
and physics which comes into play here. %e assume

that "1"is coupled to a neutral vector particle "3"in

such a way that the virtual transition

"1"—+ "3"+photon (2.7)

is possible. Let V&i& &(q,p) denote the vertex function
for the process (2.7) to first order in e, as symbolized
in Fig. 2. There is then a contribution T I&i"i( , q)qto
F (~)&", corresponding to It ig. 3, which is given by

T(i)"""V(i)p" (q' —Pi') V(»""(q Pi)
X (gs.—pssp3. jMs') (pss —M3s) ', (2 g)

where ps ——p,—q and Ms is the mass of pa«icie "3."
The simplest choice for V&i~ "(q,p) consols«nt with
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Fro. 2. Symbolic representation of the
vertex function for the transition de-
scribed by Eq. (2.7).

EI=t' —dj
D

(2.12)

where E=E(t,xz, x&) is a low-order polynomial in xi
=p q and xs ——p' q with coefficients which are simple
algebraic functions of t (polynomials in t, gt, and
(t 4M')'~' i=1, 2—j, while

D= (ps' Mss) (p4' —M4') =—Dz(t, xz)D—s(t, —xs),

with

D (t y) =M' Ms' ,'t+y( 't' —M't)'—~— — —
It follows from (2.12) that I(t) is an analytic function
of t whose dynamical singularities include those arising
from the vanishing of the D, (t,x;) at the endpoints
x,'= ~i. The -condition

current conservation and gauge invariance is'

~(» "(q p)=g(q p" qp—g "), (29)
where g may be a function of the invariants q', p', and

p q, but will be taken as a constant for simplicity.
From (2.8) and (2.9) we get

T&»""(q',q) ~ (pP —Ms') '[pz q pi' q'gs"+ ], (2.10)

where only one of the eight terms in T(&)&" has been
written explicitly. We now assume that "2"is similarly
coupled to a vector particle of mass M4 and get a
contribution T&»&" to I'&s~&" analogous to (2.10),

T&»""(—q', —q) - (p4' —M4')-'

X[P, qP, ' q'g"+" j, (2.11)

where p4=ps+q. The corresponding contribution to
p» is most readily evaluated by working in the c.m.
system of the crossed reaction

1+1'~ 2+2',
where we may write

p=(dt ) =(vt —)

f =('V t, —u')-, P'=(-'V't, lz'),

and, on the mass shell of the photons,

q= sV't(1 q), q'= 2V't(1, q) . —
Using (2.4), (2.10), and (2.11), we then get a con-
tribution. to p» proportional to

Fze. 3. Lowest-order diagram corre-
sponding to two-photon emission by "1,"
arising from the vertex displayed in Fig. 2.

yields as singularities the points t= r& and t = r2, where

r i= —(Mss —Mzs)'/Mss,

r s ———(M4' —Mss)'/M4s
(2.13)

The integrations in (2.12) can be carried out explicitly,
but we need not record the result. We remark only
that the singularities (2.13) are logarithmic if rzWrs,
while if rz=rs, I(t) has both a pole and a logarithmic
branchpoint at t= ry= v 2.

Now let Fzz(s, t) denote the analytic continuation of
F(s,t) obtained by starting in the upper-half t plane
and passing through the cut starting at t=o, below the
next real singularity of F(s,t) at t= tz) 0. Let pz(s, t)
denote the analytic continuation into the complex t
plane of the function defined by

p(s, t)= [F(s, t—+i0) F(s, t i—0)$/2i—, 0&t(tz. (2.14)

Then

Fzz(s, t) =F(s,t)+2ipz(s, t) .
It follows that Fzz(s, t) is in general singular at points
t which are singularities of p&, and certainly so at
points t for which F(s,t) is regular and pz singular.

ln the model under consideration, with exchange of
more than two photons neglected, pz(sp t) ~I(t) Eq.
(2.12), so that ri and rs ale singularities of Fzz(se, t)
and hence second sheet singu-larities of F(se,t). These
singularities are also singularities of psr'"(se, t), since
Fig. 4 represents an irreducible diagram, and can be
regarded as resporzsi hie for the modulation from (1.6b)
to (1.6a) in the following sense: If pz(t) were analytic
in the entire disk

~ t~ (tz, then Vs, (t) could be written
as a sum of terms involving inverse powers of E., the
lowest power being 1/R', and terms involving lower
powers, such as 1/R', multiplied by exp( —Ritz) Lsee
Eq. (A6)$. It follows that in this case one cannot
expect a dominant 1/R' behavior in an appreciable
interval. Of course, the existence of the singularities
does not by itself assure such behavior. However, a

D;(t, a1)=0

'Equation (2.9) corresponds to an interaction LagrangianI ~g(8&x"—8"x&)F„„,where p and x& are the spin-0 and spin-1
fields associated with particles "1"and "3," respectively, and
Ii„, is the electromagnetic held tensor.

FIG. 4. Simplest irreducible scat-
tering diagram with exchange of two
photons.

e4
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more detailed analysis of Eq. (2.12) shows that if

r=—min( —r;)«t i,i~1,2

III. CONNECTION BETWEEN THE CASIMIR-
POLDER FORMULA AND

DISPERSION THEORY

The result of CP for EEt'&(R) (defined in Sec. I)
may be written in the form

hE'4&(R) = — Q k k„q 'q„'I,„,„(R), (3.1)
~A,g m, n

where

I,„(R)=
dl n'e 2"~

(tt'+k„') (n'+k„') R'

2 5 6 3
X 1+ + + -+ . (3.2)

NR zPR2 zPR' N4R4

Here k =(E„—Eo)/hc is the wave number of the
photon emitted when one of the atoms undergoes a
transition from a state of energy E to the ground
state of energy Eo, and q2 is equal to the sum over a
degenerate level of the squares of the matrix element
of the electric dipole moment operator es,. taken be-
tween the ground state and the states of energy E
(necessarily p waves).

Equation (3.2) can be brought into the form (2.3),
exhibiting the potential as R ' times a Laplace-like
transform of the discontinuity of the scattering ampli-
tude. This is achieved by carrying out repeated inte-
gration by parts on the coeKcients of e '" to remove
the higher inverse powers of R in (3.2). With the
change of variable 4N'=t this procedure yields, after a
lengthy but straightforward computation,

00

I,„(R)=— p, ,„(t)e ' ""Ch, (3.2')
R 0

where for k ~k,

p-, -(t) =
—1 -(tQt k '

+ ',Qtk„+-
2(k '—k„') (8k . vl)

tan ' —~~k ' —k.,—+k, 3.3
2k .

then I(t) is dominated by a term of the form

P[tan '(t/r)"']/(t/r)'t'

for 7&&/« t1. As shown in the Appendix, this is just
right to ensure the validity of a 1/R' approximation in
a region (t&) 't2«R«(r) "'. In the atomic case, this
corresponds roughly to an interval (tte, ct 'ae), as ex-
pected from the discussion in Sec. I. The connection
between the above analysis and the nonrelativistic
calculation of CP is considered in Sec. III.

7.1 —4k ', r2 —4k„', (3.6)

in agreement with (3.5).
It is interesting to note that I, (R) may be ex-

pressed completely in terms of the cosine-integral and
sine-integral functions Ci(x) and Si(x), which are ex-
tensively tabulated. In the case where both atoms are
excited to the same state the result is

where
I,„(R)= (3w/4k') (1/R') g(P), (3.7)

g(P) =(4/3-)[ :P :.P+(C-P—.—P P- P)-
X (2 —eP'+ ~ ~P')+ (CiP cosP+siP sinP)

X ( ;P+.'P' —,',—P5)]-, —(3.8)

with P=2kR, and siP=SiP —i2w.

It is easy to see that g(P) is in fact an analytic
function of p whose only singularity is a logarithmic
branch point at p=0.'

The form of g(P) shows, incidentally, that an expansion of
the two-photon potential in inverse powers of R cannot converge
for large R, and so can at best be an asymptotic expansion. Thus,
even if exponential parts of the full potential, such as those
arising from one-photon exchange, are included explicitly, the
full potential is unlikely to permit a convergent expansion in
inverse powers of R. This observation reinforces some remarks
of $. O. Hirschfelder, in I'ertgrbation Theory and Its Applications
t'st Qttantttm Mechanics (John Wiley tk Sons, Inc. , New York,
1966), p. 21,

and for k„=k =k,
1-(tgt ~t 3k)(
4 (Sk' 2k gt) 5 2k

2k'
+ + +1 (34)

/+4k' 4k'

One can easily check that p, t2 for t~ 0, as ex-
pected from the discussion in Sec. I. Furthermore,
since

tan —'s= —',i ln[(i+s)/(i —s)],
(3.3) shows that p „ is an analytic function of t whose
only singularities are a pair of logarithmic branch
points on the real negative axis at

t= —4k ', t= —4k„'. (3.5)

In the case m= m, we have both a pole and a logarithmic
branch point as seen from (3.4).

We can compare these results with those obtained in
Sec. II for the singularities of I(t) [Eq. (2.13)]. We
identify particles "1"and "2"with hydrogen atoms in
their ground state and particles "3" and "4" with
bound p-wave excited states of these atoms, p and

respectively. Then (in units with ttt=c=1) Ms
=MH+k, M4 MH+k„, ——where MH=Mi M2 is the-—
mass of the H atom, so that

r, + —k„'(2M—H+k„)'/(MH+k„, )'.
Since k„,/Mn o.'m, /Mn«1, we have
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From the asymptotic forms of CiP and Sig one finds,
for P((1,

g(p) = 1 '—p—2+p'/12 2r 7—p4/48

+ (11Ps/902r) in/+0 (jets), (3.9)

and as already given by CP, for P ~~,
g(p) 46/32rp. (3.10)

g(P) differs from unity by less than 0.1% for P(0.1.
This corresponds to E&18uo for the contribution
of the (1s,1s) ~ (2p, 2p) transition for hydrogen atoms
(k=3cs/Stip). The departure of g(p) from unity begins
to exceed 10% or so for P&1. The asymptotic form

(3.10) becomes a good approximation for P)10, cor-
responding to R&1800ao for the same transition. There
is thus a rather large domain in which neither (1.6a)
nor (1.6b) is a very good approximation

IV. SINGLE-PHOTO5'-EXCHANGE POTENTIAL

The dispersion-theoretic treatment of the one-photon
exchange force between neutral spinless particles is
very simple but has some interesting aspects. The
matrix element for one-photon exchange is propor-
tional to

where I'&,&&(q,p) is the vertex function for single-photon
emission by particle "i." The general form of I'(;)& is'
(with P=p'+p, q=p' p)—

I'l &"(q,P) =g'(q')L —
q Pq"+q'P"1,

where g;(q')qs is the charge form factor of "2." Since
q„l'&2&&=0, and on the mass shell (pi+pi') (ps+ps')
= 2s 2' 2' 23'2'+ t, w—e get f—or s= sp= (cVi+M'2)',

Ft, (SP,i) =gt(t)g2(t)t(4M tM2+i).

It follows that the analyticity properties of F&~ are
determined by

gt2(&) =gt(i)gs(t) .

If "i" is a "pure" hadron (massive particle with zero
lepton number), then g;(t) is expected to be an analytic
function of t with a right-hand cut starting at t = to~ ) &0.
(In the absence of anomalous thresholds, gtpt'& is equal
to the rest mass of the lightest charged-particle —anti-
particle pair coupled to "i.") It follows that if, say,
to~ )(to~ ' then, using square brackets to denote the
discontinuity across the cut,

in[(t —tp)/Mpsge t '&R(0

tp

(4.2)

whose asymptotic form is proportional, with RO=.VO ',
to

(1/E2) in(R/Rp)e & "'R. (4.3)

It is amusing that the identity of the two particles
thus has a dynamical consequence for the one-photon
exchange potential in the sense that the logarithmic
factor is present only in this case.

For the case of atom-atom scattering, to=4@', where

p is the mean momentum of an electron. Thus gtp
=2uo ' for hydrogen and t/'~7 becomes small very
rapidly for R&ap. However, (4.3) is, in fact, not fully

applicable to atom-atom scattering, as we shall now see.
Let us compare the result (4.3) with that obtained

by direct evaluation of (V,), where V, is the electro-
static interaction between two H atoms separated by
R:

e2

IR+ri —rsI IR+riI

e2

A short calculation yields, for R ~~,
(V )~ (e2/6@ps)+2e 2R/eo— (4.4)

in disagreement with (4.3). The source of the dis-

crepancy is not far to seek. It arises from the fact that
we have used hydrogegic wave functions,

y(r) Xe—x', (4.5a)

in the evaluation of (V,). Had we used a bound-state
wave function appropriate for binding by a, short-
range force, in which case, for large r,

so that if [g;(i)] is analytic at 3=tp"'., so is pi„(t). For
pt&(/p) WO, we then get from (2.3), for E -+op,

Vtv(&)-[exp( —~V'«"') j/~' (4 1)

However, if "1"and "2" are identical [gt(i)=gs(t)
=—g(t) and tp

' tp"——=/pe, then gis(t) -+g'(t), which is

singular at t=tp if [g(t)g is regular at tp. If tp is an
anomalous threshold, e.g., if "1"and "2" are atoms,
then g(t) in[(t —ip)/3Ipsj, so that'P

[g'(i)g- 4—~i 1»[(i—&,)/g, 'g+ 4 '.
Thus the leading term in V~~ arises from an integral of
the type

[gts(&)1= [gt(&)jgs(&), y(r)-&7'e R'/r, —(4.5b)

' After this work was completed, we became aware of a paper
by W. J. Meath and J. O. Hirschfelder PJ. Chem. Phys. 44, 3210
(1966)g, in which the CP integral (3.2) is also evaluated explicitly
for the (is, 1s) —+ {2p,2p) excitation in hydrogen. Our Kq. {3.8)
is in agreement with the result of these authors, who give an
extensive discussion of g(p), especially with regard to the nu-
merical accuracy of asymptotic formulas such as (3.10). We
thank Professor G. Feinberg for bringing this work to our attention.

we would have obtained precisely the result (4.3) for

(V.) as R —+~.

'P Mp is a constant with the dimension of a mass. The general
form oi g(2) is A(2) lnL(2 —2p)/Mpsg+B(2}, where A (2} and B(2)
are analytic at t =tp, so that the precise value of M p depends on
how B(t) is defined.
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The moral is that some of the usual assumptions .of
dispersion theory must be modi6ed when the binding
is caused by the long-range Coulomb. force. A simple
way to see what is going on is to regard the charge
form factor G(q2) = q'g(q') of a neutral particle as, the
Fourier transform of a charge density p.z-(r), via

Since
b~ &(t'—r)

dt'=
(r—t) "+'

we may infer from (4.10) and (4.11) that

(4.11)

G(—IP) = e'~'p q(r)dr, (4.6)

4 C„
pq~(t) = (const)x P 8&" '&(t—4E') .

~=~ (n —1)!

~ (r) =e[~(r) &'(r)7 (4 7)

where p(r) is the wave function of the light particle of
mass m. If the binding potential behaves asymptotically
as r ', (4.5a) holds, whereas for a short-range binding
force (4.5b) holds for large r. We thus consider for
p(r) the two cases (4.5a) and (4.5b), corresponding,
respectively, to the extreme cases of a pure Coulomb
binding force and, a short-range binding force in the
zero effective-range approximation. Here S and X' are
normalization constants and —E2/2m is the binding
energy. Correspondingly, we get from (4.5a), (4.5b),
(4.6), and (4.7)

G(t) =1—(2K)'/(4K' —t)' (4.8a)

and. to consider two simple models for the density. In
either case we picture the particle as corresponding to
an s-wave bound state of a pair of oppositely charged
particles. For simplicity, the positively charged particle
is taken to have ininite mass. Then

The resulting potential is then given, using (2.3) and
correct normalization, by

e2 4 C (gn 1

V (g) g "
~

e—(voz
~

(412)
R ~=& (n—1)!(Bt"' ) (=4K'

The leading term for E.—+ ~ comes from m=4 and is
readily seen to be the same as given by (4.4). Of course,
(4.12) could also be obtained by direct computation of
the Fourier transform of F»(t).

To conclude this section, we remark that the argu-
ment that V»(R) [Eq. (4.12)7 is zero' is fallacious
because although it is true that each term in the
multipole expansion of V„ in inverse powers of 8, has
zero matrix element in the ground state of two hydrogen
atoms, the expansion of P, does not converge for,
e.g. , r&+r2) 2R. Consequently, the sum of the matrix
elements of the individual terms, though convergent,
need not and in this case does not represent the value
of (V,). No matter how large R is, the overlap of the
atomic charge distributions gives a nonzero contribu-
tion to (V,).

tan-'[(g —t)/2E7
G(t) =1-

(+—t)/2K
(4.8b) V. SUMMARY AN'D DISCUSSION

A. Summary

F~~ ——const[G'(t)/t7, (4 9)

with G(t) given by Eq. (4.8a). The partial fraction
decomposition of (4.9) is

F» ——(const) g C„(4E'—t) " (4.10)
e 1

where Cq ———1, C2———(2E)', C3 ——(2E)', and C4= (2K)'.

Thus in case (b) the charge form factor, and hence
the one-photon exchange amplitude G'(t)/t, has the
analyticity properties assumed in the discussion leading
to Eq. (4.3), with to 4K'. In case ——(a), however, G(t)
has a (second-order) pole rather than a logarithmic
branch point at t=to, so that the simple-minded dis-
cussion in terms of the properties of the spectral func-
tion appears to break down.

The case of a Coulomb binding force can, neverthe-
less, be included in the dispersion-theory framework:
it is only necessary to permit the spectral function to
contain derivatives of the Dirac delta function. To see
this, let us consider the speci6c case at hand:

%e have seen that the behavior of the potential
arising from two-photon exchange between neutral
spinless systems has an interesting interpretation from
the viewpoint of dispersion theory.

In Sec. II we studied the contribution to the two-

photon exchange amplitude F2, (s,t) arising from the
irreducible Feynman diagram shown in Fig. 4 in which
the intermediate particles "3" and "4" have spin 1.
It was shown that the corresponding amplitude has
singularities on the Riemann sheet reached through
the cut at t=0, at the points r& and r2 [Eq. (2.13)7.
Although a model was used, the existence of such
singularities is expected. on quite general grounds, as
will be emphasized below.

In Sec. III it was demonstrated that in the case of
atom-atom scattering these singularities are responsible
for the changeover from the R ~ behavior to the E '
behavior. For simplicity this demonstration was based
on the CP formula (3.1), suitably transformed to
facilitate comparison with covariant dispersion theory
[Eqs. (3.2) and (3.3)7, This had the advantage of
further exhibiting the connection of the present ap-
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proach with the nonrelativistic calculation of CP. How-
ever, as. would be expected, the conclusion is in fact
independent of any such comparison (see the Appendix).
Also, in this section the modulation function g(2kR)
was exhibited in terms of well-known functions (Eq.
(3.8)] and some of its properties were discussed. .

In Sec. IV, the dispersion theory of Vi, (R) was con-
sidered and the asymptotic form of Vi, (R) was ob-
tained both for systems bound by short-range forces
LEq, (4.3)j and by Coulomb forces $Eq. (4.4)j. Some
of the modifications of the usual assumptions of dis-
persion theory which permit one to deal with systems
bound by Coulomb forces were described, including
the necessity of allowing derivatives of the delta func-
tion to occur in the spectral function. The fallacy in
the argument that Vi~(R)=—0 in the static limit was
explained.

B. Discussion

We now turn- to a discussion of a number of points
related to the preceding part of this paper. First, we
describe the difference between the character of the
two-photon exchange forces in the case of elementary
particles and. atoms. Next, we explain why an appeal
to the method of reduced diagrams for location of the
singularities (2.13) would have been insufficient and,
in this connection, why it is necessary. to allow the
intermediate particles to have spin. We then discuss
some of the theoretical advantages of a covariant ap-
proach to interatomic forces and consider the question
of the generality of the results obtained. Finally, we
list a number of related problems which seem to merit
further investigation.

I Comparisor. t bettoeert the Atomic artd

Elementary Particle Cases

The distinction between the behavior of Vs~(R) in
the case of two neutral elementary particles and. in the
case of two atoms is best surrunarized by the following
statement. In both cases Vq~ E.—~ for large E., but in
the first case there is no appreciable region of calidity
for the approximation Vs~ CR '. This is a consequence
of the fact that the lowest excitation energy of a
strongly interacting "elementary" particle (not a mole-
cule, atom, or nucleus) is m, so that the associated
wavelength is m —', which is of the same order of
magnitude as the length associated with the size of the
particle.

With regard to the second-sheet singularities LEq.
(2.13)), in the elementary-particle case these are
located at t~ —4m ' or so and hence are as far from
't="0'as the right-hand normal threshold singularity at
&=4m ', arising from 1+1~tr+tr. The latter gives
rise to terms in V»(R) which fall off exponentially,
but at distances- at which the second-sheet singularities
make themselves felt (R not much larger than m ')
such 'terms are not small relative to the E—' type

FIG. S. A reduced diagram
arising from Fig. 4.

terms. Moreover, Vt„(R) is not small compared to
Vs, (R) in this region.

It is clear that the existence of an appreciable domain
of validity for the London potential LEq. (1.3)) in the
case of atoms is directly related. to the smallness of
the fine-structure constant. However, Vi, (R) is negli-
gible relative to Vs, (R) for R large compared to the
size of the interacting systems in both the atomic and
elementary-particle cases."

Z. Reduced Diagrams and the Role of Spin
- The locationof the si, ngularities (Eq. (2.13)] can be

obtained much more simply than in Sec. II by applica-
tion of the Landau-Bjorken" rules to the reduced.
diagram shown in Fig. 5. For clarity we erst imagine
that the photon has a small mass M~. The condition
for a singularity, det(tt;. q,)=0, with q; the momenta
of the internal lines, then implies that

L~12 (ilfs+~ )2$(~12 (tlat s ~ )2j/~ 2 (5 1)

If Mss+3/I~'(Mrs, then Eq. (5.1) corresponds to an
anomalous threshold, at a positive value of t if M~
is stable. If, instead, Mss+M„')Mrs, the right-hand
side of Eq. (5.1) is negative and we seem to get a
singularity in the physical region of process (1.7). In
fact, however, under this circumstance some of the
Feynman parameters associated, with Fig. 5 are not
positive, so that the singularity (5.1) must be on a
Riemann sheet diGerent from the physical sheet. This
is in agreement with the explicit calculations of Sec.
II, and, indeed, if we let M~ -+ 0 in Eq. (5.1) we recover
(2.13).

Since the rules for finding (Landau-type) singulari-
ties of Feynman diagrams are independ, ent of particle
spins (which affect only the numerator in a Feynman

"In FS it was speculated that the modulation from 1/R' to
1/R7, in the case of hydrogen, is effected by the presence of an
exponential exp( —nR/ao) in the expression for Vs„(R). This in-
correct suggestion arose out of a careless use of excitation energies
rather than mean momenta in determining the location of anomal-
ous thresholds on the physical sheet of F(s0,t). In elementary-
particle scattering these two quantities are normally of the same
order of magnitude but in the atomic &ase they diGer by a factor
of 0.. The'excitation. energies do play their role in determining the
nearby second-sheet singularities, as we have seen.

~~ An excellent introduction to these rules is to be found in J.D.
Bjorken and S. D. Drell, Relatisistic Qgaltlm Fields (McGraw-
Hill Book Company, Inc. , New York, 1965).For a comprehensive
discussion of.analytic properties of Feynman diagrams see R. $.
Eden, P. V. LandshofF, B.I. Olive, and J. C. Polkinghorne, The
Analytic S-Matrix (Cambridge University Press, Peer York,
1966).
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integral), it may be asked why it was necessary to
consider "3" and "4" with nonzero spin. The answer
is that although spin can usually be ignored in con-
sidering analyticity properties of Feynman integrals,
this is not true for the case at hand. If, say, "3"has
spin zero, the Feynman integral corresponding to Fig.
4 is not singular at t=0, appearance to the contrary.
In that case, the general form of the vertex function is,
as in the case where "3-" is identical with "1,"

V„=g(q')( qPq—„+q'P„) (with P=p+p'),
where g(q')q' is a transition charge form factor. Using

Eq. (2.5), one finds that the Feynman integral associ-
ated with successive photon emission via V„(see Fig. 5)
has an integrand proportional to

(p' ~') 'P P'I' ""(qq 'P )g(q')C(q')'

the photon propagators have been cancelled by the
coeKcients g' and q" of Pj„and PJ,'. As a consequence,
the amplitude is analytic at t=-0 and the nearest
singularities are those associated with the singularities
of I'(s) and g(q')."

The fact that intermediate spin-zero pa, rticles do not
contribute to the long-range part of Vzr(R). has a
simple analog in the calculation of dE&'&(R) -in non-
relativistic quantum mechanics, say, for two hydrogen
atoms. If we consider hF.„(R), the shift arising from

V, in second-order perturbation theory, it is easy to
verify that the contribution of intermediate states in
which one of the atoms is in an excited s state decreases
more rapidly than any inverse power of R. (In the
dipole approximation such states contribute zero to
AE„.) Our choice of spin-1 interinediate particles in

Sec. II was made in order to facilitate comparison with
the work CP. In Ref. 2 both V, and the interaction of
the electrons with the radiation field were treated in

dipole approximation. As a consequence, BE&4&(R) re-

ceived nonzero contributions only from excited p:states
for either atom. Such states are, of course, nonrela-

tivistic analogs of vector particles; we note in passing
that the choice Eq. (2.9) for V,„ is such that in the
nonrelativistic limit it just reduces to the amplitude
for photon emission by an atom making a transition
from an s state to a p state.

3. Adearztages of a Coeariarzf Approach

We would' like to stress several advantages of the
covariant dispersion-theory approach to the problem of
electromagnetic forces between neutral systems. (i)
Relativistic corrections to the values of such quantities
as C and C' LEqs. (1.2') and (1.3')$ are likely to be
small for most cases of interest, at the present level of

"This result- could have been anticipated: If we identify "3"
with "1"and "4" with "2" we are dealing with an iteration of
single-photon exchange. Since single-photon exchange gives rise
to a short-range force (see Sec. IVl; its iteration should also. give
rise to such a force.

experimental accuracy. However, " from a purely theo-
retical point of view, the covariant approach has the
virtue of showing that these quantities have quite
general physical signi6cance and that they may be
given sharp definitions in a wide class of Lorentz-
invariant. theories. That this should be so was not a
priori clear since these quantities were first introduced
and defined within the framework of nonrelativistic
quantum mechanics. The work of FS and of the
present paper shows how such quantities may be
defined solely inI. terms of concepts associated with the
on-shell invariant scattering amplitude F(s,t) (ii) .At
the same time, a path is indicated for the calculation
of these quantities if a case should arise in which
either nonrelativistic approximations are invalid or
relativistic corrections are not negligible. Although this
possibility seems academic at the moment, this may
not always be the case. (iii) More generally, the dis-
persion-theory approach may suggest useful new ap-
proximation procedures in the computation of atomic-
scattering processes, as it has in elementary-particle
scattering. -

4. Gerzeralzty of Results

Th'e disc'ontinuity across the cut in F»(ss, t) starting
at t=0 is proportional to the integral over the two-
photon phase space of the product of the on-shell
amplitudes A ~ and A ~, where

If we regard A;. as a function of the invariant energy
f= (p;+p;)' and momentum transfer o,= (p;—q)', we
can expect that A;=A;(t, a;) will sa, tisfy a dispersion
relation in 0 .

1 "LA(t,o. )j
A;(t,o ~) = — do, (5.2)

I0'' 0~'i

spin labels being suppressed. For t(0, A; represents
.the amplitude for Compton scattering by "i." If we
reserve the integration over 0. , we recover the ex-
pression. (2.12) for ps~ on identifying Msz with oi' and
354' with os'. Thus, the full p»'"(f) corresponds to a
superposition of the diagrams typified by Fig. 4 and
the rather general nature of our model becomes clear.
t We have ignored subtractions in (5.2) as well as a
term obtainable by replacing o.; by o;= (p,—q')'=4rl'

f o; on the r—igh—t-hand side of (5.2). Inclusion of this
term would generate contributions to p'"(t) correspond-
ing to those arising from diagrams obtained by crossing
the photon lines in Fig. 4. These may be analyzed as
in Sec.II and have analogous second-sheet singularities. )

However, it must be emphasized 'that in this paper
we have regarded the Compton amplitude A, as given
to all orders in strong interactions but only to lowest
order in e. For the'case of elementary-particle scatter-
ing the, meaning of this statement is clear and an
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immediate consequence is that

rr;)MP, (i=1, 2) (5.3)

if "i" is stable. In this approximation we then expect,
as in the model, that ps, '"(t) is an analytic function of
t for

~

f
~
( min(o; —M;s)'/o;.

i 1,2

For the case of atomic (e.g. , hydrogen) scattering, the
phrase to "lowest order in e" must be understood, as
referring to photon emission and absorption apart from
that which is to be regarded as giving rise to the
vertex function for the virtual process

H~e+p. (5.4)

The hydrogen. atom, of course, owes its very existence
to electromagnetic forces and. its wave function, and.

correspondingly the vertex function for (5.4) cannot
be treated, in perturbation theory.

From the present point of view, the calculation of
CP corresponds to an approximation in which the
elastic unitarity cut of the amplitude for y+H -+ y+H,
starting at o =Mzz', is replaced, for o ((M,+M,)', by
an (inlnite) sequence of poles. These correspond to the
very narrow resonances in p-H scattering, usually
called the excited states of hydrogen. Since the width
of these levels is neglected. , the first excited state is
sharply removed in energy from the ground state and.

the equivalent of Eq. (5.3) obtains.

5. Comclldhrrg Remarks

Ke have seen that the nature of the one-photon and
two-photon exchange forces between neutral Spinless
systems can be related, to and understood in terms of
the analyticity properties of the spectral function p(f).
These properties are in turn closely related to- the
structure of the colliding particles, as seen by one or
more photons. For the case of two photons, all previous
work on this subject, as well as the present work, has
implicitly assumed that the two-photon probe xnay be
regarded as weak, in the sense described in Sec. V 84.

Now although this would certainly seem to be a
good approximation from a numerical point of view, it
falsi6es slightly the singularity structure of the spectral
function p»(t). For, in the "weak-probe" approxima-
tion, the Compton amplitude i+y —+ i'+y' does not
satisfy elastic unitarity and correspondingly has a cut
in the energy 0-; starting at O.i&Mi2. This leads to a
p»(f) analytic in a neighborhood of f=O and to the
universal R 7 behavior. However, if the elastic branch
point at o;=M,s is kept, p»(t) develops a singularity
at t=0 and the asymptotic behavior may be modified
unless cancellations occur, e.g., as a result of 3-photon
exchange. One would, of course, expect-such e6ects to

be, extremely small, "but. this point may deserve further
exploration. Another interesting problem is the question
of what inQuence terms corresponding to the exchange
of an arbitrary number of pbotons would have. Perhaps
these can be summed in the neighborhood. of t=0.

Finally, we remark that some of the equations and
considers, tions one encounters in the covariant dis-
persion-theory approach to photon exchange forces bear
eerie resemblance to those met in the currently popular
game called, current algebra. This similarity arises from
the need to deal with scattering amplitudes continued.
to zero values of some external masses and from the
important role played by 4-vector currents and.
(massive) vector particles; the photon, of course, is a
nonfictitious zero-mass vector particle. It may well be
that there are some further insights to be gained, by
studying amplitudes for processes involving photons
which can be applied to those involving fictitious zero-
mass particles. "

APPENDIX

It was stated above that certain second-sheet singu-
larities of F (so, f) are "responsible" for the change from
the R " behavior for R))b to the R ' behavior for
a«g«b, of the two-photon exchange potential V»(E).
This assertion is supported. and made more precise as
follows. We divide the integration in Eq. (2.3) into
the intervals I=—(O,tz) and II—= (fz, oo), where fz)0 is
the first singularity of F(se, f) on the positive real t
axis, and write

V~ Vx+Vxz,

1
Vx= — pz(f)e '~'& "ll,

R 0

oo

Vzx= — pzz(f)e '~'& "df.
1

(A2)

(A3)

Hire, pz(t) denotes the spectral function p($) zn
interval (O, tz) as well as its analytic continuation to
complex f Lsee Eq. (2.14)j; note that fz is necessarily
a singularity of pz(t), so that pz(t&i0) for f) fz, obtained
by analytic continuation from 0&t&t&, is rIot equal to
pxz(t).

z4 For example, if p(t) =Zs/1+O(n) (tIs)" ln(tI2)g, where I is s,
length, there is no modi6cation of Eq. (1.1) at all if m)0. For
e=O, Eq. (1.1) is modified, but only at distances which are large
even by astronomical standards. For e sufELciently negative, there
would be an appreciable eBect if, say, L b.

'~A good illustration is given by S. Adler and Y. Dothan,
Phys. Rev. 151, 31267 (1966).
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Suppose now that pz(t) has no singularities in the
entire open disk

I tI &tz, then we may write the con-
vergent expansion

(A4)

where S' is, for simplicity, an integer or half-integer.
Then,

(2 const') (—8) 'N'+'

pz(t) e z~—"ddt =
kaz/

-g—(&&)& e—{&t1)&-

allowing for a zero of order X at t=0 Fr.om (A2) and
(A4), it then follows that

Vz(&)

For
t;&i2«Z«Z-»2

(A12)

(A13)

which can be rewritten as

the right-hand side of (A12) is approximately

(2 const') (—8 '~'+z 1

iBR R R'~'+'

Vz(R) =

where

g I

g2N+3 n~ g2n

szr+2n+z (gg/z) ~-

&& 1—e z~'»s
j=o

Thus, for 1P=2 the contribution to Vz(E) from the
interval (T,tz) is approximately proportional to p—', zn

domazn (A13). To see that this contribution can
indeed dominate that from the interval (O, T), we con-
sider a very crude model for pz(t), call it pz. (t), obtained

(A6) by taking (A10) and (A11) as exact and assuring
continuity at t= P:

C„'=2C„(2K+2N+1)!.

From (A3) it follows that, for a wide class of pzz(t),
e.g., for pzz(/) such that

pz (t)= P (0«&T)
= (QT)t'i' (T&t&t,). (A14)

tp

I pzz (~) I d« ~,
—2(

zlzz'

(A7) R EM)

we have, for all E,

Vzz(~) I & (A/E)e-(~'»~. (A8)

~e specialize now to V~~(R) and to the case of
atom-atom scattering, in particular to H-H scattering,
so that X=2 and

gtz=2uo '. (A9)

Then (A6) exhibits Vz(E) as a sum of terms involving
inverse powers of E, powers lower than I' occurring
only when accompanied by the rapidly decreasing ex-
ponential exp( —2Rao '); the latter also controls the
decrease of Vzz, as seen from (AS).

The preceding discussion shows that one cannot
expect a dominant 8 ' behavior in an appreciable
region unless pz(t) has singularities for

I tl &tz. However,
the mere existence of such singularities is by itself not
enough to ensure the precise behavior in question. In
fact, what is really inore directly relevant is what

might be called the "medium-energy" behavior of
pz(t); by this we mean the behavior of pz(t) in the
interval (T,tz), where T is such that

pz(t) =- (const)P, (0&&&T) (A10)

but for ~)T, Eq. (A10) ceases to be a good approxima-
tion. In particular, suppose that

g
—(&T)R (QT)g~ (v'gg) )z-—

X
E2

(A15)

For &))T z~~, both the exponential terms in (A15) can
be dropped and Vz =E z, but in the interval (A13),
the quantity in square brackets in (A15) is approxi-
mateiy T'"& ', so that Vz = (const)/E' in this region.

Although the cancellation mechanism is very trans-
parent with the model (A14), in detail it is misleading
because of the presence of the "small" exponential
expL —(QT)E1 in (A15) (see also Ref. 10); this arises
from the nonanalytic nature of pz. (/) in the neighbor-
hood of t= T. However, the shift from t' to t'" can be
accomplished by a function which is analytic in a
region containing the interval (O, tz). An example is

pz(~; «)—=PLtan '(P"/iz) j/(~'"/&) (A16)

An even simpler example is provided by the function

P(~'+t) (A17)

The crossover point T for these examples is

g2 ~

T=~~ t

so that, characteristically, the transition from P to te"
is "bought" by the introduction of a singularity at

pz(t) = (const')t~', (T&t&tz) (A11) if we are to have T&tz, then this singularity must be
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inside the disk
~

t
~
& t» in agreement with the previous

general analysis. The two examples show, on the one
hand, that the precise nature of the singularities is not
crucial for obtaining the R—~ to R ' changeover, the
singularity being logarithmic in (A16), but of the
inverse square-root type in (A17). On the other hand,
an arbitrary singularity structure is not permitted
either. For example, a simple pole, i.e., pz(t) ~ t /(t+K2),
gives Vz=R 5 in the interval (A13), corresponding to
the fact that now py= t for t))~'.

In summary, the R ' dominance is tied to the
existence of one or more left-hand singularities of
pz(t). If we denote the nearest left-hand branch point
by tz, (&0) and neglect possible complex singularities
of pz(t), we may write

with
pz(t)" t'C'(t) (A18)

"Ct')
dt'+c(t)= L ()

2%i — t' —t

"Lc'(t')3,
dt'. (A19)

2~i ], t' —t

If the discontinuity LC(t)j for t&tz, is such that the
first term in (A19) is O(1) for 0&t& tz„and is—
0$( tz/t)"j —for —t«&t&«» one expects R ' domi-
nance in the interval

Vz(R) =
dmin

h(K) Vz(R; K)dK. (A21)

For K&&gtz and R))(ti) '", one may replace the upper
limit in (A20) by infinity, to obtain

(2K) 24 12K' K4-

Vz(R; K) = (const)i —
i
—+-

i R R R

X (CiKR sinKR —siKR cosKR)

24~ 4x'-
(CiKR cosKR+siKR sinKR)

R4 R'
18~

+ ——. (A22)
R' R'

is then expected, on the basis of the analysis of Secs.
II and III, to represent the dominant contribution to
pz(t) in an interval

tc;„2((t((ty.

Correspondingly, in an interval

t;»2((R((~;.-1,

V2~(R) should be well represented by

t —'"(&R(&(—t )-'"
It follows that for (ti)

—zi'«R((K —'

Vz(R; K) = (const')/R'. (A23)

The validity of (A23) lead. s one to expect that Vz(R)
will satisfy, for a wide class of h(K),

Vz (R)= (const")/R'
for

(t,)-z~'&&R«K--z.

Here k is a mean value of ~, determined by ~;„and
the falloff of the weight function h(K) for large K.

Our discussion, heuristic in part, may be useful in
suggesting a rigorous approach to some questions which
can be raised regarding the standard discussions of
interatomic forces. In particular, we note that the
argument which leads to the London potential (1.3)
involves the interchange of the order of two operations:

(i) summation over an infinite number of inter-
mediate states in the expression for AE„ in terms of V„

(ii) replacing V, by its dipole approximation, i.e.
letting R become large.

To our knowledge, it has not been shown that inter-
changing the order of (i) and (ii) is really permissible.

where pz(t; K) is defined by Eq. (A16). A superposition

h(K)pz(t ' K)dK

dmin

provided that the second term in (A19) can be neg-
lected. Such a neglect seems plausible in the atomic
case, where it is related to the validity of the dipole
approximation for single-photon emission.

The functions defined by Eqs. (A16) and (A17)
both provide examples of pz in which the second term
in (A19) is in fact absent. The functions p „(t) and

p, (t), Eqs. (3.3) and (3.4), obtained by transforma-
tion of the CP formula provide more physical examples;
the singularity at t& is absent again because the dipole
approximation has been made. The covariant calcula-
tion of Sec. II gives rise to such a term if the structure
of the vertex Viz& & $Eq. (2.9)g is taken into account.

The above discussion suggests that one define a sort
of prototype potential Vz(R; K) by

(const)
Vz(R; K) = Pz(t; K)e z~'& "dt) (A20)—

R


