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The restrictions on the K — 27 amplitudes which follow from the general SU (3) and chiral SU 3)XSU (3)
effective weak interactions are investigated. In particular it is found that the peculiar zero-energy limits
obtained in the “current-algebra” approach are a consequence of SU (3) invariance for the current-current
weak Hamiltonian wherein the symmetry breaking is thought to result from continuation of the external

meson masses to their physical values.

I. INTRODUCTION

ET us denote the amplitudes for the three CP-con-

serving K-meson decays: K+— rtr% K "> rtr—,

and K% 7% by A9, A4, and Ao, respectively. In

this article we shall assume that the effects of CP
violation are negligible.

The question of major interest is: Which nonleptonic
Hamiltonian is responsible for these decays? Generally,
the nonleptonic decay Hamiltonian density is taken to
be the following universal current-current one:

1G
H\NL=— — cosf sinf
22

XLV +Po1) (Vi +-Pi)u L+ (2 3)}, (1)

where sinf~%, G~10"%/M ,? and V;,* and P;,* are the
vector and pseudovector octet currents. H;N% gives rise
to both AT=4% and 3 transitions, so if it is employed it
is necessary to explain the tremendous suppression of
the AI=% Kt—rtr® decay by some dynamical
mechanism. An alternative approach is to postulate
that the nonleptonic Hamiltonian only contains a
AI=1% part and to assume that the small K*— 7tz0
amplitude comes from electromagnetic violation of
isotopic spin symmetry. A current-current Hamiltonian
density of this type is

Hy=Go{[(VAHP ), (Vo Po), Ji+ (2 3)}, (2)

where G is not @ priori known. Another Hamiltonian
density which has the AI=% property is most con-
veniently written in the framework of the quark model as

H3NL=G3((73Q2+(72Q3)+G3'(937592—(17275%) , 3)

where the g, are the quark fields and G5 and G5’ are also
not @ priori known.

In order to investigate the consequences of these weak
interactions, both the group theory'7 and current-
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algebra®—1* approaches have been used. Of these two,
the latter is clearly the more powerful since it does not
necessarily introduce unknown parameters into the
theory and is even expected to hold in the case when
the exact symmetry group invariance is violated.
Furthermore, it may also give some insight into the
construction of dynamical models.’!® On the other
hand, the interpretation of the current-algebra results
is not unambiguous since what is actually calculated
are amplitudes with one or more meson 4-momenta
extrapolated to zero. In addition, it is not always clear
what part of the current-algebra results comes from
dynamics and what part comes from the symmetry
structure of the theory. Therefore, as a supplement to
understanding this new method, it seems desirable to
investigate the restrictions on the K — 2r amplitudes
which follow from symmetry considerations alone. An
easy way to do this is to construct an effective interaction
which gives the decay in first order and which has the
appropriate symmetry property.

Many authors™” have shown that an effective non-
derivative interaction having the SU(3) transformation
property of either Eq. (1) or Eq. (2) vanishes identically.
On the other hand, no useful restriction is obtained in
the case of Eq. (3), which has a different transformation
property (Ts2— T3 instead of T34 T1%%).

In Sec. IT we shall consider the general effective
interaction, allowing derivatives, which transforms as
Eq. (2). By allowing derivatives, we obtain momentum
dependences for the amplitudes which reproduce
uniquely the current-algebra results in the appropriate
extrapolations to zero meson 4-momenta. We note
that this method takes some account of both medium
strong and electromagnetic violation of SU(3) sym-
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metry if the amplitudes are evaluated at the invariant
masses of the physical particles.

In Sec. IIT the general effective interaction which
transforms as Eq. (1) will be studied and the possible
relevance of these results to current-algebra calculations
briefly considered. Section IV will contain a discussion
of the additional restrictions imposed by chiral
SUB)QSU(3) invariance. This leads to one way of
obtaining octet dominance. Finally Sec. V is a short
resumé,

II. OCTET CURRENT-CURRENT

HAMILTONIAN

The SU(3) transformation property of Eq. (2) is
most conveniently described? by the “spurion” matrix

00 0
S=10 0 1. ()
010

We define 7 to be the 3)X3 matrix of pseudoscalar meson
fields. Then the general effective interaction for K — 27
which transforms as Eq. (4) is given by

Hete= fi(rrnS)+ folwn)(xS)
+g1(OnrrS)+ go(r O 7rwS) + gs(wr I 7S)
+ 2O (rS)+ gs(rm)(OxS)+- -+, (5)

where the bracket denotes the trace operation and the
fi> g, -+ are some arbitrary constants. To see that
our enumeration of terms in Eq. (5) is complete, we
note the existence in this context of relations like

(8, dyrnS) =3[ (rrOnS)— (Q7rmS) — (xO7xS)].

Next we impose CP invariance on Eq. (5). Under CP,
7(x,) = —xT(—x,f). This immediately leads to

fi=f2=0, (6a)
g2=84+=g=0, (6b)
g§1=—gs. (6c)

Equation (6a) is the well-known result'~3 that the non-
derivative effective interaction vanishes. There is only
one nonzero term to first order in the squared momenta.
Carrying through the above analysis also shows that
the general result to all orders in momenta is

@ 0 ©

Ileff= Z Z 8abe
=0

a=1b=0c¢
a>c

XLCeal Lol Joms) = (Cleal Pl Jems) ], (7)

where the g, are arbitrary constants and (1 denotes
the d’Alembertian raised to the ath power. The ex-
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pressions for the three decay amplitudes in momentum
space which follow from Eq. (7) are

( —1 ) atbtc
iy ~—8abe
X [K?e(Py2ap 24P 2P 2b)
— K2o(Py2P 2o P20P,2) ], (8a)
( —_ 1) atbtc

Ao(K% PP, PA)=3 — —fabe
V2

X EK2C(P12“P221’+1)22“1)12[')

A (KHP2P =3

— K20(P2vPy2A PP )], (8b)
_Q)atbre
Apo(K3L P2 PR) =3 V3 ~Babe
XK (PP Pye— Py 20D o)
KPP PP (89

In each amplitude of Eq. (8), K stands for the K-meson
four-momentum and the subscripted P’s for the final
pion-momenta as indicated. This approach requires the
conservation of four-momentum in each case. Never-
theless, the extrapolation to the (unphysical) SU(3)
limit gives

Ay(P*P%P?)=0, )

where ¢ and j stand for 4, —, and 0. The evaluation of
the 4;; in the limit of exact isotopic spin symmetry
simply gives the Al =13 relations,

(10a)
(10b)

A4o(K?,P2,P%) =0,
AL (K2 P2 P?%)=A4(K? P2 P?).
We also easily verify the following zero-energy relations:

A+0(0,P2:P2)=07 (113‘)

A40(P20,P?) = — A,o(P*P*0)
=—A, (P20,P?)=—4,_(P*,P%0)
=%A+—(O)P21P2) :%A 00(07P2)P2)

= — Ao(P2,0,P%) = — A0o(P%,P%0). (11b)

These are the equations obtained by Hara and Nambu!!
using current algebra and SU(3) with the Hamiltonian
of Eq. (2). From our derivation, it is seen that these
are to be expected from any dynamical model with
SU(3) symmetry provided the results are suitably
analytic in momentum space.

It is interesting to write out the amplitudes of
Eqgs. (4) explicitly up to second order in the squared
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momenta
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Ay (K2P 2P %)= (— g10o/V2) (P24 P_2— 2K%)+(g200/V2) (P '+ P_*—2K*)

Aoo(K%P1%P2%) = (— g100/V2) (P14 Po*— 2K %)+ (ga0o/V2) (P1*+ Py — 2K %)

Ao(K2,P4 2, Po%) = (— g100/V2) (Po*— P1.?)+ (g200/V2) (Po*—

If only first-order terms are retained, we have the
case considered by Hara and Nambu!! and also shown
by Sakurai'é to follow from a vector-meson-pole model.
This case evidently leads to a nonzero value for A4, if
the physical pion masses are used. This effect represents
the contribution to electromagnetic violation of isospin
symmetry resulting from the electromagnetic mass
splitting of the (external) mesons. In general, contri-
butions are also to be expected from other types of
diagrams. Neglecting these, we would have in this

scheme
Ay 2M 2K — M)
Aol D —Ma0)

which is much larger than the experimental value!'” of
21. Also

Ao MK —M*xb)
=~ ).995.
Aol MUK —M2(r0)

Unfortunately the experimental value of (1—|4,_/
Aogo|) is not well determined.®

Another possibility is to assume that, for some reason,
Z100= g200=0 in Egs. (12). Then to second order we have
only the gi10 terms and the results'

Ay MHat) MAK®)—M¥xt)
JA+0 MK ) M)
Agm| M) MK = M)
’H M) MR- M)

A model leading to this numerically interesting case has
been proposed by Clavelli.t?®

To end this section, we note that, if the universal
current-current Hamiltonian of Eq. (1) is adopted, it
is not necessary to explain A,, as an electromagnetic
correction.

III. UNIVERSAL CURRENT-CURRENT
HAMILTONIAN

The effective Hamiltonian in this case consists of
Eq. (7) plus a corresponding term which transforms

17 See Ref. 14, for example, for the calculation of the amplitudes
from experiments.

18 A discussion of the difficulties is given by T. D. Lee and
C. S. Wu, Ann. Rev. Nucl. Sci. 16 (1966).

19 See Ref. 15. Similar results have been obtained through the
use of current algebra and the quark-model Hamiltonian by
Y. Hara (to be published).
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+(guo/V2)[— K¥P_2+Py)+2P 2P ]+ -+, (12a)
+(g110/V2)[— K*(P1*H-Po?)4-2P2P* 1+ - -, (12b)
P+ (g110/V2) (P*— Py A K- - - (12¢)

like (7'12%+ 7'13'2), where T'pq%? is the symmetric trace-
less SU(3){27} tensor. Following a similar procedure
to the last section, we find the required additions to the
amplitudes of Eq. (8)to be

— 1)a+b+c
6A+“(Z{2)P+2>P—2> = Z —'—‘*‘ ‘“‘_ha be
b>c V2
XLK(P2ap_2-f P 2bp_2)
_K2b<[)+2(l[)_20+P_}?Cj);?a;)], (13&],)
— 1) at+b+tc
64 00(1{271)127P22) = Z ——_7’/la be
b>c¢ 2
>< [[{25(PIQGP2ZC+PIZCP22H/)
— K?(P2aPy?+ P20Py) |,

(_ 1)a+b+c

(13b)
04 4o( KL P2 PR = Y ——
+0( W +540 ) Igc _\/,2__

X [2]{2a(])02bP+2c_])020P+2b)
+K2b(P02aP+2c+P+2aP02c)
_KZc(PozaP+2b+P02bP+2a)] , (13(:)

llu be

where the /%, are some new arbitrary constants. From
now on let us, for convenience, set 4;; to be the sum of
terms from Egs. (8) and (13). We see, first of all, that
the new A, still do not contain any momentum-
independent terms and that Eq. (9) still holds. This is
the familiar result extended to include {27} contri-
butions.*7

To proceed we note that in the isotopic-spin-
symmetry limit the AI=3 rules of Egs. (10) are to be
replaced by the AI=$ rule®:
Aop(K2,P2%PY)— A, (K% P2, P?)=2A4,,(K?P%P?. (14)

In comparing this relation with experiment, it is
important to take account of final-state interaction
effects.’ Unfortunately, as remarked before, the
experimental value of [A,_/Ae| is not yet reliably
known to the required accuracy.

In this case we find the following seven relations

20 E. C. G. Sudarshan, Nuovo Cimento 41, A283.(1966); T. Das
and K. Mahanthappa, University of Pennsylvania report
(unpublished).
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among the nine zero-energy limits:

A:/(P2,0,P%) 4 A,;(P%P%0)= — 4;(0,P2,P?), (15a)

Aoo(0,P2,P?)— 4, _(0,P%,P?)=24,,(0,P%P?),  (15b)

A, (P20,P) =4, (P,P20), (150

Aoo(P2,0,P%) = Ao(P2,P2%0), (154d)
A.4o(P%0,P?)— A 1o(P%P%0) =54, _(0,P%P?)

—3400(0,P%,P?). (15¢)

With Egs. (15), we are in a position to discuss the
best way of getting results from the current-algebra
treatment of these decays. In this method only the
zero-energy limits are known and the problem!! is how
to relate these to the physical amplitudes. First, it is
natural to ask if there is any rigorous way to do this
in the most general case when all terms of Egs. (8) and
(13) are allowed. It is trivial to see that this is impossible
since the terms with all of (a,b,c) nonzero will contribute
to the physical amplitudes but not to the zero-energy
limits. What we can say is that, by Eq. (15b), the
results obtained by letting the K-meson momenta go
to zero will still satisfy the AI=% rule and so will not
be manifestly unreasonable. From Eq. (15a) we see that
(apart from an over-all factor) this is equivalent to
symmetrizing each amplitude in the two outgoing
pions, and letting each pion-momentum go to zero
independently. Various workers have used these
methods.®~* If only terms up to first order in squared
momenta are kept, the K-meson zero-energy limits are
seen from Eq. (12) and the expansion of Eq. (13) to be
actually proportional to the physical amplitudes.
Finally, we stress that the considerations of this
paragraph are only relevant for the current-current
Hamiltonian.

IV. RESTRICTIONS FROM CHIRAL
SUB)XSU®B)

Although the chiral SUQR)®SU(3) group?—2* does
not appear to be a very good symmetry of the strong
interactions, there are some indications that it may be
useful in treating low-energy pion phenomena.2’

Under this group the universal current-current
Hamiltonian of Eq. (1) transforms as (8,1)4(27,1),
where the terminology is standard.?6 The quark-model
Hamiltonian of Eq. (3), on the other hand, transforms
as (3,3%)—(3*3). The representation assignment for
the pseudoscalar mesons has generally been taken to
be either (8,1)—(1,8) or (3,3*)—(3*3). Nonlinear
representations have also been considered.2
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If we assume that the mesons belong to (8,1)—(1,8),
we find no restrictions beyond SU(3) for Egs. (1) and
(2) but that all K — 27 decays vanish with Eq. (3).

The meson representation (3,3%)—(3*,3) does not
lead to any restrictions for the quark-model Hamil-

‘tonian. However, it leads to the complete suppression

of the (27,1) part of the universal current-current
Hamiltonian (octet dominance) without giving any
further restrictions to the (8,1) part. To see this, we
merely note that the decomposition of [[(3,3%)— (3*,3)]?
does not contain (27,1). This appealing feature holds
if any number of derivatives are allowed in the effective
interaction.

V. DISCUSSION

In this article we have only considered those restric-
tions on the amplitudes which were independent of
dynamics. We cannot say anything, by this method,
about K — 3w decays or about K — 27 decays with
the quark-model Hamiltonian of Eq. (3). However,
the very interesting case of K — 2r resulting from the
current-current Hamiltonian turned out to be highly
constrained from the requirement of SU(3) symmetry.
If the universal Hamiltonian, Eq. (1) is correct we
must imagine a dynamical mechanism or a higher
symmetry like in Sec. IV suppressing the K+ — ztr?
rate. Then, if the electromagnetic corrections to this
rate are assumed negligible, the careful comparison of
Eq. (14) with experiment can be considered as an
excellent test of whether or not Eq. (1) is correct.

It should be stressed that we have assumed that the
effects of medium strong and electromagnetic breaking
of SU(3) symmetry arise only as a result of giving the
external mesons their physical [as opposed to SU(3)
degenerate] invariant masses. This is somewhat
different from the usual group-theory approach in
which symmetry-breaking perturbations are added
while the degeneracy of the masses is maintained. As
support for our alternative approach, we may mention
that such a situation explicitly holds for the medium-
strong breaking in Sakurai’s vector-meson model'® (see
footnote 28 of this reference). In the more general case,
if the internal particle masses are large compared with
the pseudoscalar meson masses, we may expect the
resulting SU(3) breaking effects on internal masses
and couplings to be of the order of 10%. On the other
hand, the percentage changes in the external masses
due to SU(3) symmetry breaking are enormous
(especially if the degenerate pseudoscalar multiplet is
considered to have zero ‘“bare” mass). Finally since
this approach reproduces the current-algebra limits, it
may be possible to show that it has a certain type of
“exact” validity.
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