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Electrofhsintegration of the Deuteron. II. Final-State Interactions*
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The eRects of interactions between the outgoing nucleons on the cross sections for the inelastic electron-
deuteron scattering process e+d-+ e+p+n are examined in detail. Results are presented as corrections
to the theoretical cross sections which were calculated in a previous paper with a relativistic theory but
neglecting final-state interactions. The changes are significant for the determination of the electromagnetIc
form factors of the neutron from the experimental cross sections. The method of the paper follows the
treatment of final-state interactions given by Durand, extended to include the D state of the deuteron and
the coupling between final-state partial waves of the same total angular momentum and parity. The re-
sulting expressions for the quasielastic peak cross sections are expected to be valid in the momentum-
transfer range 0&q'&1.0 (BeV/c)'. An alternative approach is suggested for the analysis of experiments
at larger q2 using an absorption model of the type which has been applied successfully to high-energy
particle reactions.

I. INTRODUCTION

HE best information on the electromagnetic form.
factors of the neutron has been obtained from

experiments on the electrodisintegration of the deu-

teron, e+d ~ e+n+p How.ever, the analysis of the ex-

perimental cross sections is complicated by problems
related to the detailed structure of the deuteron and to
the strong final-state interactions (FSI) between the
outgoing nucleons. In a previous paper' (hereafter re-

ferred to as I), a treatment of the electrodisintegration
was presented which considered higher-order corrections
to the theory given by Durand. "We consider in this
sequel the remaining important modifications to the
theoretical cross sections —the final-state interactions
(FSI) between the emergent nucleons.

Several authors4 ' have calculated FSI corrections
using basically the Durand theory and a variety of
phenomenological nucleon-nucleon phase shifts. Their
numerical results differ in detail because of different
models for the 6nal-state wave functions, approxima-
tions in the deuteron wave function, and a nonuniform
treatment of the higher-order interaction terms. How-

ever, the predicted cross sections are qualitatively the
same in the region of the large peak which corresponds
to quasielastic scattering from a single nucleon: for
q'&0. 1 (BeV/c)', the peak is decreased by —2% to
—6% depending somewhat on the momentum transfer
q'. The FSI corrections to partial-wave amplitudes for
transitions to final states of definite orbital angular
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momentum and parity tend to be niuch larger, but
cancellation between the corrections to different partial-
wave amplitudes leads to the rather small over-all

correction to the cross sections.
Effects of FSI are found to be largest for q' less than
0.2 (BeV/c)' as expected because the relative rno-

mentum of the outgoing nucleons is low for this kine-

matical condition. Near the threshold for deuteron

breakup, the eGects of FSI are large enough to be dis-

tinguished experimenta, lly. ' However, theoretical un-

certainties' make it. undesirable to analyze cross sections
in this region for information on the charge form factor
of the neutron. In this paper, results for the cross
sections d'o/(dQ, de, ') and d'o/(dQ, des'dQ„) are tailored
for use at the quasie1astic peak of the scattered electron

spectrum.
The calculation of these cross sections was considered

in Sec. IV of I. The interaction of the electron with the
two-nucleon system was calculated in first Born ap-

pioximation, and the transition amplitude (np~ j„~d)
was assumed to satisfy a Mandelstam representation.
The leading contributions to the quasielastic peak cross

section were shown to arise from the nucleon pole terms.

These contributions are completely speci6ed by the

asymptotic properties of the deuteron wave function

and the electromagnetic form factors of the free

nucleons. The single dispersion integrals which correct.

the pole-term result have anomalous thresholds close to
the physical region for quasielastic scattering. Further-

more, the spectral functions are practically identical in

the anomalous region to those for the nonrelativistic
deuteron wave function. Hence the replacement of the
single-dispersion integra, ls by wave-function results is a
convenient and accurate approximation provided the
relativistic momentum variables are inserted properly.

The effects of FSI and meson-exchange corrections

(which are ignored in this paper) are given by the

Mandelstam double-dispersion relations. A close con-

' M. R. Yearian and E.B.Hughes, Phys. Letters IO, 234 (1.964).
' The uncertainties are associated with off-mass-shell sects in

the nucleon form factors and in the e-p-d vertex function. It may
be that an analysis of this region is more amenable to Bosco's
approach )see B. Bosco, Nuovo Cimento 23, 1028 (1962)g.
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nection is also known to exist between the double
spectral function in the anomalous region and the wave
functions for the two-nucleon system in the initial and
final state. This connection and the smallness of FSI
effects suggests that these corrections can be computed
in a semirelativistic approximation. Approximation of
the dynamics should introduce no serious errors. Ac-
cordingly a semirelativistic Hamiltonian was developed
in I for use with approximate nucleon-nucleon wave
functions. It was shown that this wave-function ap-
proach, though ostensibly noncovariant, reproduces all
interaction terms through 0(m ') of the Mandelstam
representation for the transition amplitude (2'~ j„~d).
The approach has the important advantage that it
allows us to exploit in a simple manner the large amount
of information available on the nucleon-nucleon inter-
action. %e thereby sidestep the more complete and
probably impractical calculation of the single and double
dispersion relations by recasting their contribution to
the amplitude into a form which is correct to 0 (m ') and
can be computed using coordinate-space wave func-
tions. A rn.ore refined calculation would simply add
corrections to the corrections.

Our result for the cross section d'o/(dQ, deo') differs
from the Durand result mainly by the inclusion of terms
arising from the D state of the deuteron and from
coupling between final-state partial waves of the same
total angular momentum and parity. The time-reversal
svmmetry of the partial-wave transition amplitudes
gives a reliable method for inserting their correct rela-
tive phases in the cross sections. The method breaks
down only at very high energies with the onset of
important inelastic processes.

Significantly, more information is obtainable from
experiments which measure the coincidence cross section
d'0/(dQ„dQ. dco'). General invariance arguments show
that in the single-photon-exchange approximation, the
azimuthal variation of this cross section is limited to
terms in cosp and cos2$, with the angle p measured
between the electron-scattering plane and the plane
containing the final nucleons. The cosp dependence
appears directly as a result of interactions between the
outgoing neutron and proton. Its observation is conse-
quently a direct measurement of the presence of FSI.
Possibilities for its detection are discussed in Sec. IIIC.

The usual method of calculating FSI corrections is
extremely complicated at very high energies where
inelastic processes occur involving the outgoing neutron
and proton. The domain of applicability of the con-
ventional analysis is limited thereby to values of q~ less
than 1.0 (BeV/c)'. However, it may be possible to
extend the analysis of the electrodisintegration cross
sections to higher momentum transfers using an ab-
sorption model of the type which has been applied so
successfully to high-energy particle reactions. " In this

"See, for example, $. D. Jackson, Rev. Mod. Phys. Bi, 484
(196S); L. Durand, III, and V. T. Chiu, Phys. Rev. 139, 8646
(1965); J. D. Jackson, $. T. Donohue, K. Gottfried, R. Keyser,
and 9, E. Y. gvensson, jbjd, 139, 8428 (1965).

paper, we explore the effects of a simple model of this
type. The calculation indicates that inelastic channels
in the final state reduce the cross section by 9% rela-
tive to its unmodified value for 2 (BeV/c)'&q'&&
(BeV/c)'.

In Sec. II, we use the symmetry of the transition
amplitude to write the cross sections formally in terms
of a minimum number of helicity amplitudes. The
resulting expressions are used in Sec. III to obtain the
eGects of FSI using the semirelativistic Hamiltonian of
I. In Sec. IV, we estimate the eGect of absorptive
modifications on the cross section d2o/(dQ, deo') using a
simple model.

II. FORMAL EXPRESSIOHS FOR THE
DIFFERENTIAL CROSS SECTIONS

A. Kinematics

We are concerned with the electrodisintegration of the
deuteron in the region of the broad peak in the inelastic
continuum. This peak results essentially from the
quasielastic scattering from the individual nucleons in
the deuteron but is spread out in energy by the mo-
mentum distribution of the nucleons in. the bound state.
In general, the four-momentum transfer q is connected
to the electron energy variables by the relation

q'=4eoe2' sin2(-'8)

with eo, eo the initial and final electron energies and 8
the scattering angle. All the foregoing quantities are
measured in the laboratory system. The momentum
p=

~ p~ of either nucleon in their final c.m. system is
given by

2~u
P'=-'q'+m(eo —c)—meo'~ 1+ sin'(2a) ~, (2)

m
' )'

while the electron 3-momentum transfer in that system
1s

q2 q2+ (p2 2 q2+~2)2/PR E2—2g2+ p2 (3)

Here 0.' is related. to the deuteron binding energy,
e= 2.226 MeV, cP=me. Because of the binding energy of
the deuteron, the maximum of the quasielastic peak
occurs slightly below the final electron energy charac-
teristic of elastic electron-nucleon scattering,

eo'~ P„i,= (eo—e)L1+(2co/m) sin2(28)p'. (4)

For this condition, Eqs. (1)-(3) show that the nucleon
momentum is given by

2~ g2

and the electron 3-momentum transfer in the c.m.
system of the outgoing nucleons is essentially equal to
the invariant 4-momentum transfer,

~ il~
—+ (q')"'.

B. The Transition Amplitude

A first step in incorporating FSI corrections in the
partial-wave transition amplitudes is the examination of
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their symmetry properties. Although the amplitudes are
dynamical quantities, their number and symmetry
properties are determined by purely kinematical re-
quirements related to Lorentz invariance. Hence the
cross sections can be written down formally in terms of
a minimum number of amplitudes without first speci-
fying the interaction Hamiltonian.

The transition amplitude may be written in a partial-
wave expansion following Jacob and Wick":

= (4~) "' 2 (2~+1)"'&~ '*(0 8 —4)

X&J,M,~„~,Ij„ld,~.&; (6)

P ~, X~, and X~ are helicities for the proton, neutron, and
deuteron, respectively, and X is A, &

—X2. The helicity
state

I d, he& describes a deuteron moving along the s axis
with momentum —q, and

I p,0,&,XiXs& is a plane-wave
helicity state for the final two-nucleon system. Both
states are defined in the center-of mass frame of the
final nucleons. In this frame, the 6nal proton has mo-
mentum p and moves in the 8, g direction. The two-
particle angular momentum state I J,M,Xi,Xs& is defined

by Jacob and Wick
I Eq. (18) of Ref. 12 l as

(upi)»s
I~,M,~„~,&=

(16~s)»'

X diplo&se, i, *(4)e,—4) IPPA, ~i,~is& (&)

use the spherical vector representation of the transverse
currents,

9+i= +—(ji+sjs) . (10)

We use the notation ji, (k=&1, 0) to designate the
current components of interest. "

Conservation of the angular-momentum operator J3
provides further restrictions on the amplitudes. Recall
the familiar eigenvalue equations and commutation
relations for a vector and scalar operator with J3.'

Jsl d, Xe&= lb. o I
d, zo&,

Jell, M,~„~,&=Mls, M,~„~,&,

I Js,jpj=kji, , k=+1, 0.
This gives the relation

~.(J,M, ~„~,I j,Id, ~,&

=(M —k)(J,M,~„X,lj, ld, ~,&, k=1, 0, —1.
Thus M is restricted to the values M=he+k, and the
sum over M in Eq. (6) can be eliminated.

The behavior of helicity states under the parity
operation has been investigated by Jacob and Wick."If
the parity operator P is applied to a helicity state w'ith

momentum y, the new state has momentum —p and
opposite helicity. It is therefore more convenient to con-
sider instead of P the operator Y which corresponds to a
reQection in the x-s plane,

Y—~'«2P =P&'~» (13)

Finally, the rotation coefficients S, '(a,P,&) are defined
with the convention of Rose."

We consider the symmetry properties of the partial-
wave transition amplitudes (J,M,4,l~sl j„ld,&o& noting
firstly the restrictions required by conservation of the
electromagnetic current. In momentum space this re-
striction on the matrix elements of j„has the general
form

(P' —P).(P'I j.lP) =0

In the reference frame used here, q„= (0, 0, —q, qe), this
gives the condition that the matrix elements of j3 are
simple multiples of jo,

&J M l~i l~s
I js I

d ~e&= —(go/g) &J M lii ~s
I jo I

d ~'o&.

In particular, at the quasielastic peak (where ge
——0), we

see that the longitudinal component of the current does
not contribute to the electrodisintegration amplitude.
More generally, this relation permits us to consider only
the transverse components of the vector j and the scalar
component jo. It will be convenient in the following to

2 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).» M'. E. Rose, E/ementary Theory of Angnlar Momeninm Qohn
Wiley R Sons, Inc., New Y'ork, 1957), p. 52.

This transformation leaves the momentum of a particle
moving in the x-s plane unchanged, but changes the
sign of its helicity. More generally, the transformed
momentum of a helicity state di6ers from the initial
momentum only in the sign of its y component, and

Fl p,O,Q,Xi,'As&= (—1)"+'s "Ip, 8, —p, —Xi, —Xs&. (14)

Using this relation, we can deduce the effect of Y on the
angular-momentum states. The result is

Under reliection in the x-s plane, only the component j&
of the current operator changes sign,

lrj&F '= (—1)sj z, k=1, 0, —1. (16)

Hence, one easily obtains the restrictions on the partial-
wave matrix elements which result from conservation of
V parity.

(s,M,~„l,
I j, I d, ~.)

=&~,M,~„~,I
I - (I j.I -

)I Id,~,&

=(—1)~+"+"+~+""'(I —M, —Xi, —lesly ~IN,
—Xe)

=(J,—M, —I~i, —Xslg i, ld, —Xo&, k=1, 0, —1. (17)
~4This notation therefore does not mean the usual spherical

components of a 3-vector, i.e., j0 does not equal j3.
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Equation (1/) reduces the number of independent
matrix elements of jo, and permits the matrix elements
of j 1 to be written in terms of those of j+1.

The results of Eqs. (9), (12), and (17) can be com-
bined to determine the number of distinct matrix
elements. If the helicities are allowed to take all possible
values, one has 48 possible partial-wave matrix elements
of the current j, for each value of the total angular mo-
mentum J. However, the symmetry requirements re-
strict the number of independent amplitudes to 18, six
associated with the scalar component of the current and
12 arising from the transverse component of the
current. "

Unlike the previous symmetries, time-reversal sym-
metry does not reduce the number of independent
amplitudes for the interaction. Instead, it can be used to
exhibit the phase of the partial-wave transition ampli-
tudes. The time-reversal transformation acting on a
helicity state is equivalent to a rotation by x about the

y axis."For the partial-wave transition amplitudes, we
obtain the result

(J,M, Xt,'sl jsl d, 's)
=r(™,Xt,ks out

l
g&r ldi"&)r

=(JM, Xtks, in
l

e'~~sj sre '"~'l d, Xs)

=(IM,z„z„inl j„ld,X.)
=P,(J,M,Xt,&s, inln, out)(n, outl j&ld, X). (18)

The arguments "out" and "in" refer to the spherical-
wave modi6cations to the final states. We have used the
fact that, under time-reversal, the spacelike parts of
the electromagnetic current change sign, while the time-
component is unchanged. This result and the rotation
properties of the current were used in going from the
second to the third lines in Eq. (18).The states denoted

by ln, out), span all possible intermediate states, elastic
and inelastic, which lead to a neutron and proton in the
final state. However, most available experimental data
are in a region of q' less than 1.0 (BeV/c)s. At the
quasielastic peak (p'=tsq'), this corresponds to n p-
scattering at incident kinetic energies of 0.5 BeV
where inelastic cross sections are small. For this situa-
tion, Eq. (18) simplifies further:

(J,M, '„x,
l j, ld, '.)*

= Q (JiMikt, hs& lnl JPI&Xt &As &
out)

X(J,M, '1 "2 «tl jsld, "s)
= P (S~)~,~, , ~,.&„. '(JM,"t','s', outl jsld l'd) (19)

'A1'XP, '

In the last line, we have used the definition of the S-
matrix elements for elastic e-p scattering:

(Sg)., p (n, ou——tlP, in).

The above result for helicity states of the neutron-
proton system carries through for states of definite
parity, since the representations are related to each
other by a real orthogonal transformation. In terms of
Wigner 3-j symbols, the transformation matrix is

(J,M,I-,Sl J,MPt, hs)

1)~s(2L+1)'Is(2S+1

(L S J )-,' —,
' S

xl l
. (20)

(0 X —X (Xt

For the present case this observation allows one to
rewrite Eq. (18) in matrix form as"

J 1 1

J+1,0
(J,M J 0

0-

SJ 1 J 1 SJ—1)J+1

SJ+1,J—1 SJ+1)J+1

0

SJ)J)1 0

SJJO

(J,M

J—1, 1

J+1, 1

J
0.

(21)

The remaining coupling in Eq. (21) between the parity
states with I equal to J&1 can be eliminated by
recasting the result in terms of eigenstates of the n p-
system. For the uncoupled triplet and singlet states, the
S-matrix element has the form Sz= exp(2i5J, j,s), where
the quantity 5J,J,z is the phase shift of the partial wave
with total angular momentum J, orbital angular mo-
mentum, I.=J and spin, S=O, 1. For the remaining

"The appearance of 12 distinct amplitudes for the transverse
component is not unexpected, since this is the number required to
describe the photodisintegration of the deuteron, there being no
longitudinal component for this reaction.

6 We use the identity for arbitrary states f, @ and their time-
reversed states, rQ (g)r =(p[/)*.

where
SJ=U 'DU (22)

(cossg sins' g2i5z, ~ 0U=l, D=
(sin, cosy 0 e~" &)

8J, and 5J,p are the eigenphase shifts for a given J and

"A discussion of the n-p scattering matrix is given in the paper
of Jacob and Kick (Ref. 12, p. 422), which is pertinent to the
present treatment.

J.M. Blatt and L. C. Biedenharn, Phys. Rev. 86, 399 (1952).

coupled triplet states, the S matrix can be written in the
notation of Blatt and Biedenharn" as
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eg is the coupling parameter. Recast in terms of
eigenstates, Eq. (21) contains, by definition, a diagonal
S matrix and therefore is expressible in the form

&J,M, eigl j&ldpo)'
=e "' "&J,M, eiglyold, Xo), k=O, &1,

or more succinctly as

&J,M, eiglj &Id,hd)=e"~ "-"(real function). (23)

The form in Eq. (23) is the desired result, namely,
that the partial-wave transition amplitudes when ex-
pressed as eigenstates of the final I-p system are the
product of a real furiction and a known phase factor.
This simple form depends crucially on the absence of
inelastic processes in the final-state interaction. The
inclusion of such effects in this formalism would intro-
duce complex phase shifts, and a convenient separation
of real and imaginary parts of the amplitude would no
longer be possible. We are led to consider therefore an
alternative scheme in Sec. IV which explores the eGect
of inelastic processes in the final state on the high-
energy cross sections.

C. Formal Cross Section. s

The amplitude decomposition in Sec. IIB is well-
suited to the construction of the polarized cross sections
for inelastic electron-deuteron scattering. However, we

will consider only the unpolarized cross sections since
accurate polarization experiments do not yet appear
feasible. " In the first Born approximation, we require
therefore the square of the full transition matrix element
summed over final helicities and averaged over initial
felicities. The diGerential cross section in which both
the scattered electron and final proton are detected is
given by

d'~/(dn. «o'do. )
= (2~)-o(oo'/eo) (mP/32E) q'„, (e,o') T„„(n,P,d),

p, i = 1, 2, 3, 4. (24)

As before p, E, are the momentum and energy of either
nucleon in their c.m. system. The tensors 5„„,T„„de-
scribe the helicity sums for the electron vertex and
strong interaction vertex, respectively,

v'„,(e,e') =-,' g &e',x.
l j„le,x,)&e',x. l j„le,x,)*

= (2n/q') (4or) 'gee'8„„e„e—.' e„'e—„j
T"(N,p,d)=o & &~pl j.ld)&mpl j.ld)*,

) I, 'A2, )g

p, v=1, 2, 3, 4.

Here n denotes the fine structure constant, n=e'/(4or).
The sum over the current components p, v may be
simplified considerably using the symmetries of the
transition amplitude given in Sec. IIB.The result is

doo/(dQ+eo'dQ„) = (2or) '(eo'/eo) (mp/32E) I 9"ooToo(q /q ) +2 1'++T++

+ q'~(T~+T+o)(q'/a')+ q'+o(T o+T~)(q'/a-')+ &+ (T+ +T +)j
= oM, «(mP/2oro) (m/E) (1+v) Too+2L1+2 (1+r) tan (o6))T+~

(eo+oo')
+ sec(—'6)(T~+T~o)+(T+ +T +), = (q'/4m'). (25)

(2o o~)1/o

The subscripts 0, ~ on the tensor components refer to the scalar and, transverse components of the corresponding
interaction currents, k=O, &1. In particular, using Eqs. (6) and (25) we have

&&&~M,l i~-I j~ld, ~o)&~',M', ~i, l ol jo id~no)*, u, u'=O, ~1, (26)

where we have introduced the compact notation,

l = (21+1)'"

and included the @ dependence completely in the single
spherical harmonic, F';, o o(8,$). In the second line of
Eq. (25), we have evaluated the electron trace in terms
of electron variables i' the laboratory. 0.M,« is the Mott
cross section for the scattering of a relativistic electron

by a Coulomb field,

oM,« ——(n/2eo)' cos'(M) sin '(M).
The azimuthal dependence of the cross section is clear.

In particular, the first two terms in the cross section,
Eq. (25), are independent of the azimuthal angle g.

"Durand, however (Ref. 3, Sec. III), has calculated the fina, 1

proton polarization in the electrodisintegration of the deuteron.
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However, the last two terms, which arise from inter-
ference of the scalar and transverse components of the
interaction current, and the "+1"and "—1" com-
ponents of the transverse current, are proportional,
respectively, to cosp and cos2&.

The cross section d'o/(dQ. dep') in which only the
electron energy and angle are observed is obtained by
integrating Eq. (25) over the direction of emission of the
nucleons in their center-of-mass frame. The result is

d'o/(d Qgep')
1

=osr, ii(mP/m)(m/F)(1+r) i — d(cos8)Tpp
2 —1

1

+2L1+2(1+r) tan'(-', ti)5- d(cosg)T . (2'I)
2 1

The calculation of the e-d scattering cross sections is
now reduced to the evaluation of the components of the
tensor Tz, &., Eq. (26). The necessary partial-wave
transition amplitudes will be evaluated in the following
section using the semirelativistic interaction Hamil-
tonian of I.

calculating approximately the corrections due to FSI.
For the quasielastic peak condition, the double spectral
function looks practically identical to that obtained by
taking the matrix elements of the sum of electromagnetic
interactions for a free neutron and proton between
ostensibly nonrelativistic wave functions for the initial
and Gnal two-nucleon state. The identification of wave
functions depends on the same interpretation of the
momenta p and q as given above for the single dispersion
relations. To implement this result, a semirelativistic
interaction Hamiltonian was developed in I for use with
approximate nucleon-nucleon wave functions. Matrix
elements of the interaction Hamiltonian agree to O(m ')
with the two-component reduction of the dispersion
relation result. This method for calcu1ating corrections
for FSI is the same as that used by Durand. "Because
the corrections are small, the approximate form of
matrix elements used in their calculation should intro-
duce little error.

The following expressions are obtained for the scalar
and transverse components of the transition matrix
elements based on the effective Hamiltonian derived
ln I:

nI. DInZRZmu, L SmrrZRIgo
CROSS SECTIONS

A. Method of Calculation

The basic ideas of our reduction of the Mandelstam
dispersion relations for the transition amplitude were
discussed in I. The nucleon pole terms and, to a lesser
extent, the single dispersion integrals account for the
dominant contribution to the cross section at the
quasielastic peak. The pole terms can be calculated
exactly in the relativistic theory. The main contribution
of the single dispersion integrals were determined by the
near equality between the spectral functions in the
anomalous region and the spectral functions for the non-
relativistic deuteron wave function. The correspondence
depends on interpreting the rnomenta of the nucleons in
the deuteron as p, the relativistic momentum of the
outgoing nucleons in their c.m. frame, and interpreting
the 3-momentum transfer in this frame as the square
root of the invariant 4-momentum transfer,

~
ti

~

= (q')'~'.
This kinematical condition is well approximated in the
quasielastic peak region. Theoretical cross sections are
consequently most reliable there.

EGects of FSI arise from the Mandelstam double dis-
persion relations in which anomalous thresholds are also
present. The calculation of all diagrams which con-
tribute to the double-dispersion relations would include
not only corrections for final-state interactions but also
the effects of meson-exchange currents on the scat-
tering. "However, a simpler method is available for

"The eRect of meson-exchange currents is diKcult to estimate.
See R. 81ankenbecler, Phys. Rev. 111, 1684 (1958). Durand has
noted, however (Ref. 2, p. 1417), that configurations in which the
nucleons are sufficiently close together that exchange of a meson is
likely, yield only a relatively small fraction of the cross section.

(S,u, X,X,
~ qp~d, X.)

d'r fi„q,*(r){LFi —(q'/4m') apFs~ Ft„(ri '/2m—')

—(Ft~+2ir+s„) (ir„qX ii /4m')5e~p rl''
+Lneutron terms5e 'p'I'}pq„(r), (28)

(J,M,X,X,~q, ld, 7,)

d'r Pq, &„*(r)( L F t~(i—q+2 8„)~/2m

+ (Ft,+icQ,„)(e X q)~/2m5e'&' '

+Lneutron terms5e *p'i')pg„(r). (29)

Pq, &„(r) and fi,„(r)are nonrelativistic wave functions for
the initial and 6nal states and are cle6necl below. The
other notation is given in I.

We recall that the leading Born terms in the results of
I are correct to all orders in m ', whereas the higher-
order terms are correct only to order m '. In principle,
one should include FSI corrections to all terms through
order m '. However, it was argued that those higher-
order terms involving derivatives in Eqs. (28) and (29)
are inherently small. The calculation of FSI corrections
to these corrective terms is therefore of dubious value,
and we will omit such corrections in our results below.
Note also that relativistic corrections are omitted in the
FSI terms which we would argue again to be corrections
to corrections. Hence, we use a subtraction method for
giving these corrections to the unmocli6ed cross sections
of I, cf. Secs. IIIB, C.



1646 IAN J. McGEE

Lu'(r)+ w'(r) )dr = 1. (31)

The deuteron wave function was used in its standard
form,

Jt'1g (r) =1 'Lu(r) '91oi"'+w(r)'9»1 "3 (3o)

where the 5- and D-state radial functions satisfy the
normalization condition

The functions, 'JJizzs (P,sz, so) are the usual orthonormal
angular momentum eigenfunctions for definite J, L, and
S. The wave functions for the final neutron-proton
system are complicated by the two-nucleon interaction,
particularly for the coupled triplet states. However, the
time-reversal result of Sec. II provides a scheme for
writing such wave functions in terms of eigenphase
shifts. The helicity states for each angular-momentum J
are rearranged into states of definite L, 5 using Eq. (20).
The wave functions are then expressed as

that is,

iPkiie(I) ~ PJ,M, eig(r) = (Pr) ' g uL, s,eigFJ, L, eig(Pr)e " "g gzLS
L,S

e'".4 zr

e" VJ,~p
e'~ ~'ipse, oz, L;z,s=z

' '-y Z, X,L;Z, S-O-i8J,J,O. I. 0

0 1 0 (pr) FJ,z, z(pr)'JJz, z, z

0 0 1. .(pr) 'Fs, z,o(pr)'JJs, z, o

cosoz sinoz 0 0 (pr) 'Fz, z z, „g(pr)'JJiz, z 1,1

—sino J sinoz 0 0 (pr) 'Fz, q+z, „g(pr)'ljiz, z+1,1
(32)

The radial functions are subject to the asymptotic condition

Fz,L„,eig(Pr) —& sin(Pr L(m/2)+—8z,„g) for Pr))L. (33)

The transition matrix element is easily reduced to a form in which only radial integrals occur. These are an ex-

tension of Durand s definition for E~Ls integrals to include coupling in the final partial waves and the D state of the
deuteron. Although the integrals contain complex factors, they are easily related to a set of real matrix elements
KJL1 using the relations above. We define the radial matrix elements QJLS for the 5 state and Qzzs' for the D
state by the following matrix equation:

'Qz, z 1,1
' cosog sinoz 0 0 'e ' ~L Kgz

QJ,z+1,1

QJ, J,1

.QJ,J,O

0 1 0 e "»'Eggs

0 1- e " 'EJJp-

—sine J cosa' 0 0 e 'J»EqLp

where

KJLK P Fazed(pr)j L( ', qr)u(r)dr. -

The same relation holds for the D-state integrals, QzLs'
in terms of real integrals EgL~' where now we have the
result

B. The Cross Section do/(dQ, de o)

The cross sections can be written down immediately
in terms of the foregoing matrix elements. For the
integrated cross section, v e obtain the following
expression:

d o'/(d0 deo') = o'M te(mp/m) (m/F)I(8), (35)
where

KZLx p FzL1(pr)j &(oqr)w(r)dr. I(8) Io (8)+ Q CJLss s11&Lsss+ Q CzLS zJzLs
JLS ZLS

jL(Pr)j L(oqr)u(r)rdr. (34)

In the absence of FSI, the phase shifts vanish and the
radial functions F~L1,(pr)/pr reduce to spherical Bessel
functions. The radial integrals are then independent of J
and 5 so that Q~Ls reduces to KL, where

+ Z Czzs ~zzs . (36)
JLS

In Eq. (36), we have employed the usual subtraction
procedure of extracting the Born term result, Io(6) for
all partial waves from the relative corrections to the low
partial waves. The form of Io(8) is given by Eq. (45)
of I.
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Quantities similar to CJLs and A JLS have been
used by Durand' and others' as a measure of the
relative correction due to FSI on each partial wave.
Here, to include coupling, we define 6J;.& 8 as

A JI.S =
I Q.rr. 8

I

&—L ~

The weighting coefficients CJgg for each final state of
the neutron-proton system are as follows:

where

82= 3 (1+r) '[(Fzp
—«pF2p)'+ (FI-—«»F--)']

82= 3 (1+7) (F1p TKpF2p) (Fjn «nF2n) y

a3= err[2 tan2(-'6)+ (1+r) ']
X[(F,„+ „F,„) +(I',.+ .F .)'], (39)

a,=-'pr[2 tan'(-'8)+ (1+r)—']
X (F „+.,F..) (F .+ -F -),

Cr. I, L, I
——(2L—1)[az+(—1) a2]

+ (3I.—1)[az+ (—1)La4],

CL+I L 28' (2L+——3)[az+ (—1)L82]

+ (3L+4)[rzz+ (—1)La4],

CI. , L,1"= (2I+I)[Izl+Iz3+ ( I)—'(I32+ 84)] )

CL, ,SS (4L+2) [a3 ( 1)La4]

(38)

r = (q'/4'')
The quantities AJ'I 8 A JI,S in Eq. (36) contain the
FSI corrections which include the D state of the deu-
teron. However, because of the small D-state proba-
bility, as a practical matter we need only include the
contributions arising from the interference of amplitudes
containing the 5 and D states of the deuteron. This
gives the result

L I. 2i I. 1 I
CJLISDA JLISD (2I+1——)[az+ (—1)Laz](2+15) (—1)J+' «[Q JLIQ JL1 ]+(2I+1)

0 0 0) 1 L 2

/L I 2 /L 1 I
x [;+(—1)",](2g15)(2L+1)~(2i+1)I (—1)'+"+"'I

l E0 0 0 (0 1+pz —1 pr
(4o)

L
Crr. ALL =[& +(—1) az]V2( —1)L 'P(23+1)

l 0

In Eq. (40), and subsequent formulas, the symbols in
curly brackets denote Wigner 6-j symbols.

C. The Cross Section dpe/(dQ+ep'dip)

The FSI corrections to the cross section d'o/
(dQ, dep'dip) are rather cumbersome to write down. In-
cluding the azimuthal dependence, we obtain the result

dza/(dQ, dep'dip) =oM, 32(2232P/22r2E) A(P, q), (41)

where

A(pyq) Ap(p)qi)+ 2 [CJI I'L'8 A ILJ'L'8
JLJ'L'S

+CJI J'I'8 ~AJLJ'I'8 ]~ (42)

The Born term expression, Ap(p, q) is given by Eq. (36)
of I, extended to include the @-dependent terms:

Ap(p, q) = (1+x)—' ApL(p, q)+[1+2(1+x)tan2(2a)]

I
eoeo

X Ap (p,q)+
[Sepep' cos2 (20)]'"

x A."(p q)+ A."(p q) ~ .

The superscripts on the angular distribution functions
Ap~(p q) are intended to indicate their origin as due to
the longitudinal (j=I-) and transverse (j=T), com-

GS,=Fz, (q') (q2/42232) K;F2, ;(q'), —
G,r,=F„(q')+K,.F 2, (q'), z= P, 23.

(46)

The 5- and D-state functions u(k.;), w(k, ) ar«ourier-

J (2
Re[2 QJLIQJLI "'],

1 Zzl 4/33 Zzz 1 Zzr

)
2

'Q Lr, pQ I,r.p '*].
0 0

ponents of the interaction and also interference between
these components, (j =I-T, TT).

A, (P,q) =GS„'[u (k„)+w (k„)]yG,„'[u (k.)
+w'(k, „)]+2GS„GS„[u(k„)u(k.)

+w(kp)w(k„)P2(kp. k )],
Ap (P,q) = rGpr, '[u'(kp)+w'(k„)]+rGzr '[u'(k )

+w2(k„)]+3 rGII pG3I„[u (k„)u (k„)
+23 (k„)w(k„)(3P2(k k„)
+P2(k q)+P2(kp q) —1)] (44)
+23&2pG3I„G~g„[u-(kp)w(k. )P2(k q)

+u(k„)w(k, )P2(k„q)],
(P)q) = prGzrp2 cos2y[ —V2u(kp)w(kp)P2(kp q)

+2~v(k p) P22 (k„q)]
+3pG22.2 cos2y[ —V2u(k„)-w(k„)p, (k„j)

+w2(k )P22(k q)],
Ap Lr (p, q) =0,
where

k„=!-q—p, k„=
I
k„l = (p'+ —'q' —pq cos8)"', (45)

k„=-,'-q+p, k„= Ik„I = (p'+ ,'q'+pq cos&)'t', -
a.nd the nucleon form factors are regrouped into electric
a,nd charge form factors.
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Sessel transforms of the coordinate space wave functions.

u(k, ) = jp (k,r)u (r) rdr,

j p (k;r)~(r)rdr.

In a more complete treatment, u(lp;), cV(l'p, ) would be
replaced by dispersion integrals with anomalous thresh-
olds obtained from the relativistic e-p-d vertex function
(see comments Sec. IV or I).

Again note that the leading terms in AL and A." are
correct to all orders in m ' and reproduce the Rosenbluth

scattering off. the individual nucleons. However, the
other, smaller contributions are correct only to terms of
order (q'inz'). The cosp dependent term Azr is zero in

the absence of FSI, while the cos2$ dependent term Ar'
is present only when the D state of the deuteron is

included in the calculation.
FSI corrections which involve only the S-state part

of the deuteron are of course the largest. They are given

by the quantities d&L&.L 8, where

+JI j'I, 'S R e{QJLsQJ'L'S j +L+L' (4~)

The relative weights Cqq J- L 8 of these corrections are
given by

pL L' j ' L L'
Cere r. ass=

p P(2j+1)P,(cos8) (2J+1)(2J'+1)(2L+1)(2L'+1)~
2 (0 0 0

X (1+r)-'[Gr,,+(—) Gr, .][G,„,+(—1) 'G~ ]+,[( +r)-'+ tan'(-,'a)]
L L' j L L'

q
J' J j

X (2J+1)(2J'+1)(2L+1)(2L'+1) I 2 (—1)™I
0 0 0J' J' J Sr cV —0)

pI.' 1 J' I. 1 J
X

i
[G,~i,+ (—1)'Gas„][Gv, + (—1)"G,~r ]

&0 u —W 0
I/

Crzr~z~ p
=

p P(2j+1)P,(cose) (2L+ 1)(2L'+ 1) r[(1+r) '+2 tan'(p8)]
0 0 0

X[G.' —(—1)'G -][G.'.—(—1)"G.'-]
These corrections are the same as those given by Durand [Eq. (13) of Ref. 2] but generalized to include the form
factors of the nucleons, and the coupling between 6nal-nucleon states having the same total angular momentum
and parity, but different orbital angular momenta.

The main. effect of including the D state of the deuteron arises from its interference with the S state. The eBect
is to add the terms C~L,J L.8 AJLJ.L 8, where

CJLJ'L'1 ~JL J'L'1SDA

= ~ (+15)g (2j+1)P,(cosg) (2J+1)(2J'+1)(2L+1)(2L'+1)

I. I.' j L, L,' j I.' j / L'
X (—1)'+'+~'+~ P (2&+1)

~

0 0 0 J' J EO 0. 0 J' J 1

L / 2
X (1+r) '[Gz„+ (—1)'Gz.—][Gs,+ (—1) 'C,"g„]Re[i'Qz r, i*Qzrr']

0 0 0 5 I 2

(L I ' j I. I.' j
+r[(1+r) '+2 tan'(~p8)](2J+1) (2J'+1) (2L+1)(2I.'+1) (—1)~+~'~

(0 0 0 J' J 1

pL / 2 J J' j L' 1 J' ) L / 2
X&(2i+1)I 7 (—1)"'

(0 0 0 "'"'"' p, —p, 0 0 1+@, —1—p| \ —y 0 yl
I 1 J 2 1. 1

x [G,irn+ (—1)"G,i',.][G,ir.+ (—1) 'GM.]Re[~'Q~ i i*Q~~i'],
pg p2 —1—p] pg pg —1 —p]

CLLL LIO ALLI ~I 0
SD

J. j I. I
= '-,,K2 p(2j+1)P, (cos9)(2L+1)(2I.'+1) '

[(1+ ) '+2 tan'(-,'+)]
0 0 0 1 —1 0

.I l 2'
XLG-.—(—1)'G'.][G",—(-1)'-'G;.]Z(»+1) Re[i'Qz z p*Qr, r,p'].

l 0 0 0
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%e ignore corrections for I'SI involving the square of the D-state wave function.
A cursory examination of the g-dependent terms suggests that the co@ terms will be larger since they involve

the factor (q/2m) while the cos2$ teims contain the factor q'/4m'. In view of this and the small D-state probability,
we have not calculated FSI corrections for the cos2@ terms. The corrected cosP terms appear in the cross section,
Eq. (42), as A~r(p, q), with the same coe%cient as Apr(p, q) in Eq. (43).

A' (P,q) = cosP(q!2m) —,
' P(2j+1)Lj(j+1)]'~'P,'(cos8) (2J+1)(2J'+1)(2L+1)(2I.'+1)

0 0 0 J' J 1 &y=o, x 0 —3f 3II 0 1—M —'1 M 3f '1 —M —1

(-1)'-(-1)'
X &Gr.„G,ii„—Gs.G,~r.] ImI Qzr. iQz r. i*] (50)

2

Several points are worth noting for these terms. They
contain only n, pfinal trip-let states; the singlet terms
are down by a factor (q'/4m') relative to the triplet
terms. The nonzero contributions appear as the inter-
ference of amplitudes with n pfinal state-s having odd
relative parity, e.g. , ('Si,'P~, i,o), ('~~, i, o,'D~, i,o), «c.
Hence, , cosp terms will be appreciable only when there
are significant amounts of higher partial waves. All cosP
terms contain a factor sin8 Lin the factor E,"(cos8)
=sin8P, '(cos8)], thereby making the region around
8 ir/2 most favorable for their detection. Since the
usual @-independent terms are largest near 0 0, x the
Aux of nucleons is reduced for intermediate values of 0,
perha, ps suSciently so that the sin8 behavior can be
determined over the background Aux produced by the
tails of the ~p-independent angular distribution.

IV. VERY-HIGH-ENERGY BEHAVIOR
OF THE CROSS SECTIONS

Ke expect the foregoing formula. s for the quasi-
elastic peak cross sections to be applicable up to mo-
menturn transfers at which inelastic collisions between
the outgoing nucleons becomes significant. A mea, sure of
the inelasticity is given by the nucleon-nucleon cross
section data at c.m. momenta corresponding to tha. t for
e-if scattering at the quasielastic peak (p'=i4q'). For
example, at q'= 1.0 (HeV/c)~, the inelastic cross section
is 20% of the total n pcross s-ection while at q'=1.3
(BeV/c)', it has risen to about 40%. On this basis, a
reasonable limit to the conventional analysis of electro-
disintegration cross sections would be q'&1.0 (BeV/c)'
(although other considerations might impose a lower
limit" ).Higher values of q' are attainable in experiments
with present-day electron accelerators. Hence, it is of
interest to explore extensions of the present analysis to
include, at least approximately, inelastic processes in the
Anal state.

"For example, the onset of signi6cant antiparticle contributions
to the intermediate states in inelastic e-d scattering was estimated
in I to occur at q'=4p'~. 8 {'AeV/c)'

A description which extends the methods of Sec. I:[ is

hopelessly complicated since the inelastic channels give
rise to complex phase shifts and complex wave func-
tions as well as additional terms in the sum over
intermediate states. However, an alternative procedure
is suggested by the work on absorptive eRects in periph-
eral reactions at high energies. "These calculations have
had considerable success in describing qualitative and
quantitative features of scattering processes in which
single-particle exchange assumes a dominant role. The
fundamental idea in these absorption models is that one
may expect the contributions from a given exchange to
be strongly suppressed in the low partial-wave ampli-
tudes due to the strong competition from other open
channels.

For the electrodisintegration process, the eBect of
absorption in the 6nal state is easily demonstrated. To
do so, we ignore the complications arising from the D
state of the deuteron although the method can be ex-
tended to include it. The ii-p interference terms which
a,ppear in the cross sections are also neglected since they
are negligible as soon as q' is at all appreciable. AVe are
ignoring the complications of particle spins to the extent
that only diagonal elements of the 5 matrix are used in
the calculation. However, the resulting modifications to
the Born cross sections should still describe well the
over-aH high-energy behavior.

Absorptive effects which arise from close encounters
of the particles become increasingly important as the
momentum transfer becomes large. However the deu-

teron is a very diRuse structure, and the bulk of the
contribution to the matrix elements EI, arises from large
values of r, the internucleon separation. It is therefore
reasonable, as a first approximation, to use the asymp-
totic form for the final e-p wave function in this outer
region, and to neglect the contributions from values of r
inside the angular-momentum barrier or the region of
strong inelastic interactions. The final e-p radial wave
function is then approximated as a sum of incoming
spherical wave plus an outgoing spherical wave modifjed

by a factor Sl„ the partial-wave 5-matrix elements. The
integration over r is terminated for r L/p. This yields



a modified matrix element EL, given bp

ki, "&(pr)+Sik~" (pr)
- j I,( ', qr)u—(r)rdr

2

2
Lj.(Pr) (1+S..)

—inl, (Pr) (1—Si)jjI.(2qr)u(r)rdr, (51)

where jL, eL are the spherical Bessel and Neumann
functions, and. fzI"" are spherical Hankel functions of
the first and second kind.

The integral Eq. (51) is readily estima, ted by noting
the Bessel and Neumann functions behave as trigono-
metric functions in the region, pr))L. At the quasi-
elastic peak, p=-,'q, the functions ui, (pr) and jI(', qr)-
essentially oscillate out of phase for large r. Hence, the
integral containing their product is negligible compared
to the integral containing the product, j I.(pr)j I, (',qr)-
Furthermore, the functions jL, (pr) are well behaved at
small values of r, lim„ojl, (pr) (pr), so there is little
error incurred by extending the lower limit of integra-
tion to zero. In this approximation, Eq. (51) reduces
simply to

Kl.-'= -,'(1+Sr,) j r, (pr)j i,(', qr)u(r)rdr—

= —,
' (1+Sr,)KI. . (52)

The partial-wave matrix elements are thus reduced by
a factor ~(1+SI), where ~SI, ~

is less than unity in the
absorptive region. This leads to the following modi6ca-
tions to the Born cross sections at very high energies,
neglecting spin and the deuteron D state:

(dQ, deo')

'p .M(p, q) Pc,yG„], -
a.E

where

u~(k„) =P (2L+1)KI."Pl.(cos8) =u(k, )

LMax 5L—1
+ P (2L+1)KI.Pi, (cos8)

I=0 2

1

M" (p,q) =— d(cos8)fu" (k~)$'=M(p, q)
2 —1

LMax

+ p (2L+1)K '(S i1)J.

(54)

G~ and G„l'Ldefined by Eq. (61) of I),, are the combina-

tPo rN p
(Pu (k,)j'G,+$u (1 )]'G ),

(dQ+eo'dQ, ') 4''E
(53)

tions of form factors which appear in the Rosenbluth
cross section for electron-nucleon scattering.

In Eq. (54) the absorptive modifications are rewritten
as additive corrections to the Born terms, F(k„),M(p, q),
and affect only the low partial waves. For a quantitative
estimate of these corrections, we employed an opaque-
disc model to describe the high-energy neutron-proton
scattering. In the model, the scattering amplitude was
assumed to be purely imaginary. The 5-matrix elements
were given by

~~
—(v2/ y2}I (L+1)

7 (55)

where p is the opacity. y was typically taken between
1.0 and 0.6, the value unity being favored at lower
energies. The parameter v' is fixed by the total n-p cross
section

v'= 2m-y/o r. (56)

Such a one-parameter model gives only fair agreement
with available nucleon-nucleon cross sections in the
range corresponding to center-of-mass momenta from
0.7 to 1.4 (BeU/c)'. The main defect of the model is the
neglect of the real part of the scattering amplitude.
Pertinent data was available mainly for p-p differential
cross sections. Hence, these were used as an approxima-
tion to the u-p cross sections to obtain y at various
energies. v' was still determined from e-p total cross-
section values. With this model the following results
were obtained:

The correction to the cross section d'o/(dQ, deo') at the
quasielastic peak was —8.5+0.5% for q' in the range
1.8 to 6.7 (BeV/e)'. The correction was remarkably
uniform and was not changed signi6cantly by including
in the model an approximate correction for the real part
of the scattering amplitude. The negative correction
means that neutron form factors derived from uncor-
rected theoretical cross sections will be too small. This is

particularly true for the charge form factor GE„which is
rather sensitive to the subtraction analysis of nearly
equal cross sections for e-p and e-d scattering.

The coincidence cross section d'o/(dQ, de, 'dQ„) is

more strongly peaked in the forward and backward
directions when absorptive effects are included. The
peaking arises from the suppression of contributions
from the lower partial waves vhich are reduced by the
absorption. The effect is illustrated in Fig. 1, which
compares the corrected and Born-term values for the
matrix element u(k„) at q'=3.89 (BeV/c)'.

It is important to note that the absorptive correction
given above applies to the peak cross section of coinci-
dence experiments measuring quasielastic events only
(i.e., no mesons produced). Another experiment is the
measurement of the peak cross section when only the
final electron is detected. For this case the corrections
for absorption will be less than the above case with the
"good" kinematics because some inelastic events will be
counted along with the quasielastic events. Also, the
average correction will be smaller foi. those experiments
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averaging e6ect is accounted for by the sum rule which
holds approximately for inelastic e-d scattering. The
sum rule states" that if only the final electron is de-
tected, the e-d cross section over the peak is equal to the
sum of e-p and e-e cross sections. The result includes all
the relativistic kinematic factors and to a erst ap-
proximation, is independent of the aforementioned
e ects of strong interactions. However it does assumff

2 ' ) sume
that q is constant over the quasielastic peak.

In summary, the purpose of the paper has been to
present the corrections for 6nal state interactions to
inelastic electron-deuteron scattering in detail and indi-
cate the region of momentum transfers over which the
results are applicable. The changes are signi6cant in the
determination of the electromagnetic form factors of the
neutron from the experimental cross sections. A major
complication in the analysis appears at large momentum
transfers Lq'&1.0 (BeV/c)'], where inelastic processes
in t e nal e-p system require a more refined treatm t
o the theoretical cross sections. The exploratory calcu-
lation in Sec. IV suggests that these processes do change
the cross section significantly ( —9%). Derived esti-
mates of the neutron charge form factor will conse-
quently be even less certain at high q'.

Fio. 1. Effect of absorption on the Fourier-Bessel transform
function zc(k„) at p= 0.981 (BeV/c). Results were obtained using
the opaque-disc model for absorption as described in the text and
a Hulthen form for the deuteron wave function.

which integrate over the peak. This is because the
absorption while reducing the peak may increase the
number of events o6 the peak, and thereby affect the
average number of events to a lesser degree. The
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