
PHYSICAL REVIEW VOLUME 161, NUMBER 5 25 SEPTEM BER 1967

Pion-Nucleon Spin-Flip Sum Rule*
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Current algebra and the hypothesis of partially conserved axial-vector current are used to derive a sum
rule for the spin-flip pion-nucleon scattering amplitude analogous to the Weisberger-Adler (W-A) sum rule
for the non-spin-Qip amplitude. We 6nd that such a sum rule requires information about the weak amplitude
for axial-vector —nucleon scattering, in contrast to the W-A relation, which requires no such information.
As a byproduct we give a decomposition of this weak amplitude into tensor covariants which is more useful
than those previously appearing in the literature. This expansion applies to polar-vector —nucleon scattering
as well, and hence is relevant to Compton scattering.

a&A„(x)=c lr (x), (2)

have been intensively investigated recently. ' The most
celebrated of these is the Weisberger'-Adler' (W-A)
sum rule which relates the forward (or non-spin-flip)
w-Ã amplitude and the charge and axial vector coupling
constants of the nucleon. It is natural to expect that if
the spins of the nucleons are not summed than a second
W-A type relation should emerge, one which would
relate the spin-flip sr-X amplitude (at zero momentum
transfer) to the nucleon form factors and it is this
question which we study in the following. Such a sum
rule has, in fact, been proposed by Fuchs4 and by
Bouchiat, Flamand, and Meyer, ' however, the results
of these authors are not in agreement with each other. '

In a recent paper Schnitzer' has given convincing
arguments which suggest strongly that no spin-flip sum
rule of the W-A type should exist. ' He studied the
problem of computing the p-wave scattering lengths
and s-wave effective ranges from Eqs. (1) and (2) and
found he had to introduce a model for the weak. axial-

*This work is supported in part through funds provided by the
U. S. Atomic Energy Commission under Contract No. AT(30-1)
2098.' The currents A„'(x), V„'(x) are the isotopic vector, axial and
polar vector weak hadron currents. The omitted terms in Eq. (1)
are proportional to gradients of 5 functions and will be ignored
in the following. In Eq. (2) x (x) is the pion held operator.

~ W. I. Weisberger, Phys. Rev. Letters 14, 1047 (1965); Phys.
Rev. 143, 1302 (1966).

~ S. L. Adler, Phys. Rev. Letters 14, 1051 (1965).
4 N. H. Fuchs, Phys. Rev. 150, 1241 (1966).
~ C. Bouchiat, G. Flamand, Ph. Meyer, Orsay Report No.

th/187, 1967 (unpublished).' The sum rules in question are Eq. (18) of Ref. 4 and Eq. (11)
of Ref. (8).

7 H. J. Schnitzer, Phys. Rev. 158, 1471 (1967).
By "sum rule of the W-A type" we mean a relation which

follows from Eqs. (1) and (2) alone without any further model-
dependent assumptions.
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I. I5TRODUCTION

sUM rules for pion-nucleon scattering which follow
from the equal-time commutation relation

b(x') LA „e(x),A e'(0) 3=64(x)ie "V„'(x)+, (1)

together with some form of the PCAC (partially con-
served axial-vector current) hypothesis

vector —nucleon scattering amplitude to do so. It is
known ' that the non-spin-flip W-A relation is equivalent
to a prediction of the s-wave w-S scattering lengths, and
it is not dificult to see that a calculation of Schnitzer's
type involves some knowledge of the forward spin-flip
amplitude. If this contention is correct, then neither
of the sum rules given in Refs. 4 and 5 can be completely
right since both of these are model independent. In any
event, we believe the situation warrants a careful
investigation.

Our derivation of pion-nucleon sum rules will proceed
in two steps. First we derive sum rules for the invariant
amplitudes appearing in a decomposition of the weak
axial-vector —nucleon scattering amplitude, ' using the
method introduced by Fubini, "then we use the PCAC
condition to combine certain of these sum rules into
sum rules for m-Ã scattering. This procedure has the
advantage that the use of PCAC is clearly separated
from the derivation of the sum rule and that no singular
limits involving Born terms, of the type familiar in
early derivations of the W-A relation, appear. It is,
perhaps, the complexities of this last which lead to the
di6erences between Refs. 4, 5, and our result. We
proceed in a covariant manner throughout and in this
respect our derivation may be more transparent than
that of Ref. (7).Our conclusion is that there is no model-
independent spin-flip sum rule.

In Sec. II, we choose a set of tensor covariants to
expand the weak amplitude. This choice is much more
subtle than has been previously recognized in the
literature and is the crux of this paper. In fact, this
decomposition has been made differently by several
authors" " but we find all of their choices to be
deficient in some respect. We shall mention the points of
disagreement in the appropriate place. We derive sum

"S.Weinberg, Phys. Rev. Letters 17, 616 (1966).
9 We shall refer to this amplitude, or its vector counterpart, or

any of the invariant amplitudes as a weak amplitude. It should be
clear from the context which function is meant."S. Fubini, Nuovo Cimento 43A, 475 (1966).

'M. Gourdin, Lectures perpared for 1966 Cargese Summer
School, Orsay Report No. th/161, 1966 (unpublished); (also
Ref. 15).

'~ J. W. Meyer, Phys. Rev. 153, 1653 (1967)."D.Amati, R. j'engo, and E. Remiddi, Nuovo Cimento (to be
published) .
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rules for the weak amplitude in Sec. III and for the
vr-E amplitude in Sec. IV.

II. DECOMPOSITION OF THE
WEAK AMPLITUDE

We de6ne the weak axial-vector —nucleon amplitude
to be

T "=—i d'xe'ez *8(x,)(p, )[A '(x) A„'(0))~p,), (3)

with imaginary part

d xez~~'~(Pz~[g ~(x),g„'(0))~Pt). (4)
2

In Eqs. (3) and (4),
~ pt) and (pz~ are nucleon states, we

do not specify their helicity or isospin label explicitly.
We also define

q2 p1+ql p2 )

P= k(pt+ pz),
Q= 2 (qt+qz),

p2 pl&

v=P.Q=P qt=P. qz,
t= iV.

Invariant functions &vill be considered to be functions
of v) t, q2', and qg'.

In order to apply the technique of Ref. 10, we have
to expand T„„and A„„in a complete set of independent
covariants. Since we will have to assume unsubtracted
dispersion relations in the variable v for the invariant
amplitudes appearing in this decomposition, it is
necessary that these functions have no kinematical
singularities in this variable. If we think of T„„asa real
scattering amplitude for axial-vector and pseudoscalar
particles from nucleons, then an elementary helicity
counting yields the result that there are 32 independent
amplitudes. '4 If we have equal current masses, q&' ——q&',

then time reversal invariance reduces" the number of
amplitudes to 20.

The dB5culty which arises in choosing an appropriate
set of 32 tensor covariants comes from the fact that at
first sight we can write down 34 apparently independent
tensors, namely,

P.P.v Q P.Q P.e.v.Q,
P„h„, P„h„y Q, Q„P„, . Q„P„y Q,
e.e. , e.e,~ e, e.~„e.~,~ Q,

~.P.v. Q ~.e ~.Q.7 Q,
~v~V Q gv g»& Q

p.';.Q", p.'...e", e.'...Q", e;-..e",
h„io„ge", A„io„xQ", P„y„, P„y„,
e.v. , e,v. ,

—:(~.~ e~,-~.~ e~.), '..„
'4 This result holds equally well if the axial-vector currents in

Eq. I'3) are replaced by vector currents and, in fact, all the results
of this section and the followmg section hold for the latter case
also.

'z Ci. M. Gourdin, Nuovo Cinwnto 47A, 14S (1967),Appendix I.

all of which are understood to appear between Dirac
spinors tz(pz) and zz(p&)."Of course, only 32 of these
are independent and a straightforward but tedious
algebraic manipulation yields the identities

0=P' ,' (y-„y Qy„y—,y Qy.„) m—via„„

:(p.~,--p,~.)v e+.'Q ~(p.~-, p,v.)—
,' v (A—„y—„A„y„—) m(P—„io „)Q" P„ia—„.Q"), (5)

and 6nd
K„=Q„(v/P—')P„—(Q 6/6') 6„

K'= Q' —("/P') —L(Q ~)'/~'j

Now when we choose to eliminate two covariants we
must ensure that the use of Eqs. (5) and (6) will not
introduce any kinematical singularities in v when these
invariants are projected onto the remaining 32. That is,
we should not eliminate any covariant whose coefFicient
is E2 or v. We should further not discard covariants
whose coefEcient is Q 6=-,'(qt2 —qzz) since this factor
vanishes when the current masses are equal. Put another
way we would be eliminating covariants whose coefB-
cients vanished by time reversal invariance when
q&'=q&' anyway so that in this limit we would have
to use Eqs. (5) and (6) again to remove two other
covariants.

To be specific it is useful to look at the one-nucleon
intermediate-state contribution to the absorptive part.
This is

(Z „„)v.),= —~h (s—m')u (pz) zpz[y, G~ (qz') —qz,&p(qz') j
X [v (P+Q)+m]ivz[V, G~(qt')

+q,„pz(qp)]zz(p, )+crossed term (7)

for axial-vector currents, and

(~"),"=—&( — ') (p)[v.p (q') —(/2 )
Xa„&qPFz(qz')][y. (P+Q)+m]
&& [V.Ft(qt')+ (z/2m) o.~qt"Pz(qt') 7N(pt)

+crossed term (8)

for the polar vector currents. We have used the usual-

definition for the vector vertex function of the nucleon
and have omitted isospin factors. We now see, for ex-
ample, that the covariant-', [y„y Qy„—y„y Qy„] appears
in both of these so that according to Eqs. (5) and (6)
unless the covariant (io„„)is inclu. ded in our set of 32,
we will already have kinematical singularities in the
Born approximation.

We consider briefly the choices made by other
workers. Gourdin"" uses the first 32 of the covariants.
Thus, in omitting (io„„)his amplitudes have kinemat-

~' We shall sometimes omit these spinors in the rest of this paper.
It is understood that any Dirac matrix appears between them.

0=LVKzia»+2Kz(P 6 P„A—„)—2Q A(P K, P,K—)
+2v(B„K„A„K—„) 2m(A—„K„0.K—„)y Q
+2mK'(d y A.y—„) 2mQ—A(K y. K„p —)

+6'(A „io„„Q" K—„za„),Q'), (6)

where we have defined



PION —NUCLEON SPIN —I'LIP SUM RUl E

ical singularities. Meyer" omits (P„y„P—„p„) and
(Q„P„—P„e„)&e.But the first appears multiplied by
Q.h, while the second does not appear at all in Eqs.
(5) and (6), and so is actually independent. This is
rejected in the fact that he 6nds 22 nonvanishing
amplitudes after using time reversal rather than 20

which is the correct nuinber. ls Amati, Jengo, and
Remiddi" use all 34 covariants and so have a redundant
set.

We Anally give an expansion of A„„which we believe
meets all the requirements for the correct derivation
of sum rules'"

P P [+1+air Q]+P„q2 [+2+a2r 'Qj+P ql [+2+as'r'Q]+q2 P tra4+a4r 'Q j+q2 q2 I as+asy Q]
+qg ql I «+asv'Ql+qi P

I al+an'Qj+qi qg I as+asv'Ql+qi ql I ag+agV'Qj+g I ale+a»v Qj
+srr .di+ '$Vp'-QV. V.V—QV,g&4+P,V.h+P.V, frs+qg V.& +sq .V,tr +qi,V.b +qi.V,&s

+I.p:-;e"+p;...e"1"+Le.';.e"+e,'-..e")"+L~:-,.e"+~,-..e'r +L~.'".e"-~,'...e"i"

We have not specified isospin labels since all our results
will refer to isospin one in the 3 (1Vg annihilation)
channel. Specihcally, we decompose

Arr„= A rlrid r+rsA &rtrl2LTrrrTsl

and we work throughout with A„„& &. With this under-
stood, we 6nd that the invariant functions satisfy

a(v f ql q2 ) &a( v l ql q2 )

the even amplitudes (plus sign) being

al a2 as,a4,as, as,ar, as, ag, aio, bi, b2 cl d2 (10)

and the remaining ones being odd. For completeness, we
give the properties of these amplitudes which follow
from time-reversal invariance":

ag(v, t,qlg, q22) = az(v, t,qgs, qlg),

ag( ")=at( )

as(" )=a4(" )
as( )=a4(" )

as(. ")=ag(" )

as(. ) =as( )

&i( )=&2( )

outline the important steps. We compute the quantities
q2„AI'", q2„T&", A&"q~„, and T&"q~„and project these onto
the set of eight independent vectors

P.~ Q qg. qg.~e
qlr & ' Q r rv & shirr& Q

WX

We assume unsubtracted dispersion relations for the
invariant amplitudes and obtain a sum rule for those
amplitudes v hose coeKcient is the variable v. The lack.
of conservation of the axial-vector current is no handicap
here if we also assume unsubtracted dispersion relations
for the invariant amplitudes appearing in the decom-
position of

d'* '" *(P I LA. ( )8"A.(0) IP ), (12)
2

on the vector covariants (11).We obtain 16 sum rules
this way, six of them being identically satis6ed because
of the crossing relations (10).The remaining ten are,

Fg(t)
dv(ai —ci) =

4m

bs( .)=&4(.. ),
b( )=~( )
c,( )= —c;( ), 2=1, 2, 4.

The remaining amplitudes go into themselves upon
interchange of q&' and q2'.

F.(l)
dv(at+el) =

00

dva;=0, ~=2, 3, 4, 7

(13b)

(13c)

III. SUM RULES FOR WEAK AMPLITUDES dv(b, +dg) = ——4'LFl(t)+F2(/)), 2=1, 2 (13d)

The method of Fubini for deriving sum rules from
commutation relations is by now well known, and we
refer the reader to the original paper, "here we merely

8v c;=0. (13e)

~6'Our choice of eliminating Q„k,&,Q"—Q,k.»Q" using Eq (6)
suffers from the defect that a pole at k=0 is thereby introduced.
In fact, for the purpose of this paper, this choice is correct be-
cause the pole cancels in all amplitudes which are continued to
4=0 In general, howeve. r, (n„Q.—n„Q,)y Q should be eliminated
and then no such problems arise. I would like to thank M. A.3.Bbg for a conversation regarding this point.

"These hold for both the isospin-even and isospin-odd ampli-
tudes.

In deriving these sum rules we have expanded

(P2I V„'(0) I Pl) = —',T'I y„(Fi(~)+Fs(&))
—(P„/gts)F2(t) j. (14)

We obtain two additional sum rules- by considering
the coefFicients of P„ye and P„ye in the decomposition
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»
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—ql
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We can now write sum rules for the pion-nucleon
amplitudes if we have sum rules for the weak amplitudes
appearing on the right-hand side of Eqs. (23) and (24).
As a technical convenience, we remove the one-nucleon
intermediate-state contributions to the sum rules (13)
using Eq. (7) and apply PCAC only to the integrands
above the physical threshold. We obtain"

P

LG (0)2—2f'-
2

yp P

&(ImLAt &(v,0,0,0)+vBt &(v,0,0,0))=Fr(0), (25a)

1 dp
G&(0)ls 2f ' — —ImB& &(v,0,0,0)

yp V

4 "dv
=F,(0)+F,(0)—— —2mdt& &(v)0,0,0). (25b)

V

Our normalization, Eq. (14), implies

Fr(0) =1,
Fl(0)+Fs(0) = i"v I -=4—7

and Eq. (25a) is immediately recognized as the Weis-
berger-Adler relation. Equa, tion (25b) is the spin-flip
sum rule we hoped to derive. The appearance of d~, a
weak amplitude, on the right-hand side of Kq. (25b)
occurs because no sum rule for d~ is contained among
Eqs. (13). This is the covariant analog of Schnitzer's'
statement that to go beyond the s-wave scattering
lengths $Eq. (25a)j some model must be assumed for
the weak amplitude.

V. CON'CLUSIO5S

It is interesting to observe that the weak amplitude
which survives in Eq. (25b) is precisely the coefficient
of the covariant (io„„)which we have argued in Sec. II
must be included in the expansion of A„„if kinematical
singularities are to be avoided. It is easy to see that no
matter how we choose the remaining 31 covariants we
can never obtain a model-independent spin-Qip sum
rule. This is because

qs "io „„= i~„&Q"+my„—P„, —

'pÃe have changed variables to the more conventional p
=P.Q/m and have used the crossing relations (10).The threshold
is vs ——m (1+m /2m).

so that the Fubini procedure cannot yield a sum rule
for dy and

qs"io„„qt"=—s$'r. qs)y qr),

which is precisely the spin-Qip amplitude covariant so
that clearly d~ survives in the spin-Rip invariant even
in the limit q~' ——q2'=3=0. It is possible that, in fact,
a general statement may be made that for any pionic
process the only model-independent sum rule which can
be obtained by this method. is a non-spin-Qip one
although this is only a speculation at this point.

Fuchs'4 sum rule omits both the (G~)' and the weak
amplitude in Eq. (25b) and his numerical evaluation of
the resulting sum rule was in satisfactory agreement
with experiment. Bouchiat, Flamand, and Meyer'
obtained the (G~)s term and only neglected the weak
amplitude and, of course, obtained poorer results. Thus,
if the sum rule is correct, the weak term presumably
is the same order of magnitude as (G~)' l.4. This
conclusion is strengthened by Schnitzer's~ calculation.
He is able to show that for the p-wave scattering lengths
and s-wave effective ranges only intermediate states
with J= —,'+ in the direct channel contribute to the weak
amplitude and he obtains reasonable agreement with
this approximation.

We could attempt an evaluation of Kq. (25b) by
carrying out a procedure analogous to Schnitzer's for
evaluating the weak. contribution and evaluating the
integral over B& & (v,0,0,0) using phase-shift analysis as
was done in Refs. 4 and 5. This involves having some
reasonable information about the weak amplitude, at
least a good knowledge of the axial form factors for
S* production. We hope to return to this question in
the future. At present, it is probably best to use Kq.
(25b) as a low-energy theorem, in which case our
conclusions would be identical to those of Ref. 8.
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