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Current algebra and the hypothesis of partially conserved axial-vector current are used to derive a sum
rule for the spin-flip pion-nucleon scattering amplitude analogous to the Weisberger-Adler (W-A) sum rule
for the non-spin-flip amplitude. We find that such a sum rule requires information about the weak amplitude
for axial-vector-nucleon scattering, in contrast to the W-A relation, which requires no such information.
As a byproduct we give a decomposition of this weak amplitude into tensor covariants which is more useful
than those previously appearing in the literature. This expansion applies to polar-vector-nucleon scattering

as well, and hence is relevant to Compton scattering.

I. INTRODUCTION

UM rules for pion-nucleon scattering which follow
from the equal-time commutation relation

3(a)[4,(),40°(0) J=8*()ie*>V o (@) +- -+, (1)

together with some form of the PCAC (partially con-
served axial-vector current) hypothesis

014, (x) = ¢, 11°(x) 2
have been intensively investigated recently.! The most
celebrated of these is the Weisberger®-Adler? (W-A)
sum rule which relates the forward (or non-spin-flip)
m-N amplitude and the charge and axial vector coupling
constants of the nucleon. It is natural to expect that if
the spins of the nucleons are not summed than a second
W-A type relation should emerge, one which would
relate the spin-flip 7-V amplitude (at zero momentum
transfer) to the nucleon form factors and it is this
question which we study in the following. Such a sum
rule has, in fact, been proposed by Fuchs* and by
Bouchiat, Flamand, and Meyer,’ however, the results
of these authors are not in agreement with each other.®

In a recent paper Schnitzer” has given convincing
arguments which suggest strongly that no spin-flip sum
rule of the W-A type should exist.® He studied the
problem of computing the p-wave scattering lengths
and s-wave effective ranges from Egs. (1) and (2) and
found he had to introduce a model for the weak axial-

* This work is supported in part through funds provided by the
U. S. Atomic Energy Commission under Contract No. AT (30-1)
2098.

1 The currents 4,%(x), V,2(x) are the isotopic vector, axial and
polar vector weak hadron currents. The omitted terms in Eq. (1)
are proportional to gradients of § functions and will be ignored
in the following. In Eq. (2) #*(x) is the pion field operator.

2W. 1. Weisberger, Phys. Rev. Letters 14, 1047 (1965); Phys.
Rev. 143, 1302 (1966).

85, L. Adler, Phys. Rev. Letters 14, 1051 (1965).

4N. H. Fuchs, Phys. Rev. 150, 1241 (1966).

5 C. Bouchiat, G. Flamand, Ph. Meyer, Orsay Report No.
th/187, 1967 (unpublished).

6 The sum rules in question are Eq. (18) of Ref. 4 and Eq. (11)
of Ref. (5).

7H. J. Schnitzer, Phys. Rev. 158, 1471 (1967).

8 By ‘‘sum rule of the W-A type” we mean a relation which
follows from Egs. (1) and (2) alone without any further model-
dependent assumptions.
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vector-nucleon scattering amplitude to do so. It is
known? that the non-spin-flip W-A relation is equivalent
to a prediction of the s-wave =~V scattering lengths, and
it is not difficult to see that a calculation of Schnitzer’s
type involves some knowledge of the forward spin-flip
amplitude. If this contention is correct, then neither
of the sum rules given in Refs. 4 and 5 can be completely
right since both of these are model independent. In any
event, we believe the situation warrants a careful
investigation.

Our derivation of pion-nucleon sum rules will proceed
in two steps. First we derive sum rules for the invariant
amplitudes appearing in a decomposition of the weak
axial-vector-nucleon scattering amplitude,® using the
method introduced by Fubini,' then we use the PCAC
condition to combine certain of these sum rules into
sum rules for =-IV scattering. This procedure has the
advantage that the use of PCAC is clearly separated
from the derivation of the sum rule and that no singular
limits involving Born terms, of the type familiar in
early derivations of the W-A relation, appear. It is,
perhaps, the complexities of this last which lead to the
differences between Refs. 4, 5, and our result. We
proceed in a covariant manner throughout and in this
respect our derivation may be more transparent than
that of Ref. (7). Our conclusion is that there is no model-
independent spin-flip sum rule.

In Sec. II, we choose a set of tensor covariants to
expand the weak amplitude. This choice is much more
subtle than has been previously recognized in the
literature and is the crux of this paper. In fact, this
decomposition has been made differently by several
authors™3 but we find all of their choices to be
deficient in some respect. We shall mention the points of
disagreement in the appropriate place. We derive sum

8a S, Weinberg, Phys. Rev. Letters 17, 616 (1966).

9 We shall refer to this amplitude, or its vector counterpart, or
any of the invariant amplitudes as a weak amplitude. It should be
clear from the context which function is meant.

10 S, Fubini, Nuovo Cimento 43A, 475 (1966).

1M. Gourdin, Lectures perpared for 1966 Cargese Summer
Schoolé) Orsay Report No. th/161, 1966 (unpublished); (also
Ref. 15).

12 J W. Meyer, Phys. Rev. 153, 1653 (1967).

1 D. Amati, R. Jengo, and E. Remiddi, Nuovo Cimento (to be
published).
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rules for the weak amplitude in Sec. III and for the
N amplitude in Sec. IV.

II. DECOMPOSITION OF THE
WEAK AMPLITUDE

We define the weak axial-vector-nucleon amplitude
to be

Twtt=—1 / dtx €729 (w0)(p2| (44 (%),4,2(0) ]| p1), (3)
with imaginary part

A,.,00= I/d“ iq2 -z iAa A4,%(0 4

pitm = [t el LA, 4O 2. )

In Eqgs. (3) and (4), | p1) and (ps| are nucleon states, we
do not specify their helicity or isospin label explicitly.
We also define

¢=p1tq— P2,
P=3(p1tp2),
Q=3(q1+q2),

A=P2_Pl>
V=P'Q=P'Q1=P‘QQ,
1= A2,

Invariant functions will be considered to be functions
of v, 1, ¢o% and ¢:%

In order to apply the technique of Ref. 10, we have
to expand T, and A4, in a complete set of independent
covariants. Since we will have to assume unsubtracted
dispersion relations in the variable » for the invariant
amplitudes appearing in this decomposition, it is
necessary that these functions have no kinematical
singularities in this variable. If we think of T, as a real
scattering amplitude for axial-vector and pseudoscalar
particles from nucleons, then an elementary helicity
counting yields the result that there are 32 independent
amplitudes.!* If we have equal current masses, ¢,2= g2,
then time reversal invariance reduces!® the number of
amplitudes to 20.

The difficulty which arises in choosing an appropriate
set of 32 tensor covariants comes from the fact that at
first sight we can write down 34 apparently independent
tensors, namely,

PP, P,Py-Q, 2.0, POx-0Q,
PA,, PAY-Q, Q.P,, 0.Pry-Q,
QuQv, QuOr-Q, QuA,, Qubdyy-Q,
AP, ALPy-Q, AQs, A07-Q,
ALA,, AAYQ, g, w0,

- P ,,'ia,.)\Q)‘, Pjic MQ)‘ s Q,;ia’,.)\Q)‘ ’ Qvi”qu)‘ )
A,‘ia,,)\Q)‘ ’ A,’L'O',,)\Q)‘ 5 P,(Yy y P,‘Y,, )
Quvs, OYus Aty AYu,

Ty Qv =70V 5 o,

14 This result holds equally well if the axial-vector currents in
Eq. (3) are replaced by vector currents and, in fact, all the results
of this section and the following section hold for the latter case
also.

15 Cf. M. Gourdin, Nuovo Cimento 474, 145 (1967), Appendix I.
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all of which are understood to appear between Dirac
spinors %(ps) and #(p1).1® Of course, only 32 of these
are independent and a straightforward but tedious
algebraic manipulation yields the identities

0=P2% (vwy - Qvo— vy - Qvu) —mvic,,
—3(Pudy—PA)y-Q+3Q- A(Puv,— Pyy,)
— (A — Bry) —m(Pio QM — Pyig QY ,  (5)
0= AK?ig,,+2K*(P,A,— P,A,)—2Q-A(P,K,—P,K,)
+2v (ALK, —AK,)—2m (8K, — AK )y -Q
+2mK2 Ay, — Avv,) — 2mQ - A(K v, — K v,
+ A (K iopnQr—K,ioaQY),  (6)

where we have defined
Ku=Qu— (v/P)P,— (Q-A/A%)A,,

K== (#/P)—[(Q-a)/47].

Now when we choose to eliminate two covariants we
must ensure that the use of Eqgs. (5) and (6) will not
introduce any kinematical singularities in » when these
invariants are projected onto the remaining 32. That is,
we should not eliminate any covariant whose coefficient
is K2 or v. We should further not discard covariants
whose coefficient is Q-A=2%(g:®*—¢-*) since this factor
vanishes when the current masses are equal. Put another
way we would be eliminating covariants whose coeffi-
cients vanished by time reversal invariance when
@1*=¢s* anyway so that in this limit we would have
to use Eqgs. (5) and (6) again to remove two other
covariants.

To be specific it is useful to look at the one-nucleon
intermediate-state contribution to the absorptive part.
This is
(A Aw)pole= —md (S_ m2)"z(P2)7:’Yﬁ[7uGA (922) - QZ;LFP (922)]

X[y (P+Q)+mTivs[vGa(g:®)
+ g1 Fp(g:2) Ju(p1)+crossed term  (7)

for axial-vector currents, and

(4 w)pole= — T8 (s—m*)yu (1)2) [’YﬂFl (922) — (3/2m)
Xong2 Fa(g) Iy - (P+Q)+m]
X [vF1(gi)+ (i/2m)angi*Fa(gi®) Ju(p1)
+crossed term  (8)

and find

for the polar vector currents. We have used the usual
definition for the vector vertex function of the nucleon
and have omitted isospin factors. We now see, for ex-
ample, that the covariant 1[y,v-Ov.—7v.v-Qv.] appears
in both of these so that according to Egs. (5) and (6)
unless the covariant (is,) is included in our set of 32,
we will already have kinematical singularities in the
Born approximation.

We consider briefly the choices made by other
workers. Gourdin! % uyses the first 32 of the covariants.
Thus, in omitting (4s,,) his amplitudes have kinemat-

16 We shall sometimes omit these spinors in the rest of this paper.
It is understood that any Dirac matrix appears between them.
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ical singularities. Meyer® omits (P,y,—P,y,) and
(QuP,—P.Q,)¥Q. But the first appears multiplied by
Q-A, while the second does not appear at all in Egs.
(5) and (6), and so is actually independent. This is
reflected in the fact that he finds 22 nonvanishing
amplitudes after using time reversal rather than 20
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which is the correct number.!®* Amati, Jengo, and
Remiddi®® use all 34 covariants and so have a redundant
set.

We finally give an expansion of 4,, which we believe
meets all the requirements for the correct derivation
of sum rules!®

A,=P, P, a;}ary Q1+ Pugalaetary- Q1+ Pugulas+asy- Q1+ qeuPilast- ey - Q1+ qeugal as+asy - Q]
+ququlastaey - Q1+ quuPLar+ary - Q1+ quugalastasy - Q14 grugul as+asy - Q14 guwlar0+a10v - Q]
+'I:G'“yd1+%[')’“'y ¢ Q’Yv""Yv’Y * Q’Yp]d2+Pp')’vb1+Pv'Yub2+q2y'va3+ q2v’7ub4+ q1;4'va5+q1v'YubG

+[PyiginQ* Pric QM o1+ [QuionQ + Quig inQ* Jeo+ [AionQ M+ Avig jnQ Jes+[AianQr — Ayio QO Jes.

We have not specified isospin labels since all our results
will refer to isospin one in the ¢ (VN annihilation)
channel. Specifically, we decompose

A#vab= 4 uy (+)6ub+Auv(_)%CTa:"'b:| )

and we work throughout with 4,,. With this under-
stood, we find that the invariant functions satisfy

d(”;t,912,q22)= :ta’(_ v ¢, 1112, ‘]22) )
the even amplitudes (plus sign) being
(10)

and the remaining ones being odd. For completeness, we
give the properties of these amplitudes which follow
from time-reversal invariance'?:

@1,02,003,04,05,06,07,08,09,810,b1,02,1,d2 ,

az(V,t;‘I12,‘]22) = 07(",%922,912) ’

(- )=ar(--+),
as(-)=as(--+),
az(--)=aq(---),
as(--)=aq(--+),
as(--)=as(---),
bi(---)=ba(-+),
by(---)=bg(--),
ba(-+)=bs(---),
(- )=—c(--), i=1,2,4.

The remaining amplitudes go into themselves upon
interchange of ¢,? and ¢.%.

II1. SUM RULES FOR WEAK AMPLITUDES

The method of Fubini for deriving sum rules from
commutation relations is by now well known, and we
refer the reader to the original paper,® here we merely

162 Qur choice of eliminating Q,i0,\Q*—Q,ia,aQ* using Eq (6)
suffers from the defect that a pole at £=0 is thereby introduced.
In fact, for the purpose of this paper, this choice is correct be-
cause the pole cancels in all amplitudes which are continued to
t=0. In general, however, (4,Q,—A,0Q,)v-Q should be eliminated
and then no such problems arise. I would like to thank M. A.
B. Bég for a conversation regarding this point.

17 These hold for both the isospin-even and isospin-odd ampli-
tudes.

©)

outline the important steps. We compute the quantities
g2, A%, @2, T, A*qy,, and T#q,, and project these onto
the set of eight independent vectors

P#Y'Q)
ql#'Y'Q’

P,

Q15

qzl"YQ ’
i ,,)\Q)‘ .

We assume unsubtracted dispersion relations for the
invariant amplitudes and obtain a sum rule for those
amplitudes whose coefficient is the variable ». The lack
of conservation of the axial-vector current is no handicap
here if we also assume unsubtracted dispersion relations
for the invariant amplitudes appearing in the decom-
position of

Q2u 5

Yus

(11)

1
D=~ / dtx e x| LA () 34, 0) 1), (12)

on the vector covariants (11). We obtain 16 sum rules
this way, six of them being identically satisfied because
of the crossing relations (10). The remaining ten are,

1 Fq(1)
—_ dV(al— 61) = ) (133)
21 J o 4m
1 F(2)
— dv(a1tcr)= , (13b)
T J—w 4m
1 v
— dva;=0, 1=2347 (13c)
21 J oo

0

1
— dv(bitdo)=—1[F1()+F.(1)], i=1,2 (13d)

T J —

1 00

dve;=0. i=1,2 (13e)

21 J o
In deriving these sum rules we have expanded

(3] V.20 | pr)=47Lra (B2 () + Fa(0)) |
- — (P/mF0]. (14)

We obtain two additional sum rules 'by cdnsidering
the coefficients of P,yQ and P,yQ in the decomposition
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of go,4* and A#q,,, respectively. That is, we define

D= 1/d4 iar-x(py | [ 4, (2),9°4,(0)]]
b= 2 X e P2 ul%), v Pl>

=a1Py+aiPyyQ+ - - - +asicnQ*, (15a)
and
_ 1 .
D= = [t s el 24,9, 4,011 )
=B1P,+B1PyQ+ - - - +BsicnQ*, (15b)
and we have _
vy +qtast g1 ot bot-mey—de=181,  (16a)
v@1~+q1 - qolat qi2@s—mey+b1—do= —i@;.  (16b)

Integrating Eqgs. (16a) and (16b) over » and using
Eqgs. (15) yields

1 1 p~
— dV(Va—1+»b2—d2)=i——/ v, (173.)
27 J—w ) 211' —»
1 o '1 o
- dV(Vd1+b1—d2) =—q— dllal. (17b)
27 —» 2 —o. .

We could now derive sum rules for & and 1 by applying
the Fubini technique to D, and D, if we knew the equal-
time commutator

8(2*)[0,4%(x),40(0) ].

In fact, it is sufficient to assume that this commutator
is local to obtain such sum rules. This is because

qouD*= (vau+ - ) +¥Q(vas+-- ),
but if
8(a20)[8,4#(x),40(0)]=86*(x)G (),

then the expansion analogous to Eq. (14) is

(2l G(O) | pr)=5 (D).

Since there is no term proportional toy-(Q here, we have

1 > _ 1
- dvﬁl=—/ dV&1=0,

21 J_w T
and the additional sum rules

1 0
- / dv(vartbi—dy) =0, i=1,2.  (13f)
T J —

We get some estimate of the validity of these sum
rules if we can find out some information about the
asymptotic behavior of the integrands. It has been
repeatedly emphasized by Fubini and his co-workers
that the Regge-pole model provides just this informa-
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tion'® and it has been made plausible!® that the Regge
asymptotic behavior controlled by {-channel exchanges
will apply to the absorptive parts of weak amplitudes.
Taking into account the complications due to spin, we
find that all of the integrands in Egs. (13) behave
asymptotically ~»*®-2  where the leading Regge
trajectory is that of the p meson. Thus, according to the
arguments of Ref. 19 we may have confidence in the
convergence of the sum rules for t<m,?2.

IV. SUM RULES FOR PION-NUCLEON
SCATTERING

In this section we combine the sum rules of Eq. (13),
using the PCAC hypothesis Eq. (2), to obtain sum
rules for the pion-nucleon scattering amplitude which
we define as

T“"="'/ s =) (s (@), 54 (O)]| Py (18)

=A4(y,7,0:%,¢D)+v0B*®(v,7,91%,¢2) . (19)
Applying PCAC to Eq. (4) we have
QA g1 =2 (g2 — my?) ! (g2—m 2
X [ImA**+~Q ImBe*]. (20)

We restrict ourselves to the antisymmetric isospin
amplitude and find

ImA4 (v,t,q:%,92?)
=[(g?—m.?) (g2—m:?)/c* Va1 +vq1- rartvgi®as
+ V922d4+ g1 q2q22a5+ 912%206—*— vq1- qﬂ7+ ((]1 . 112)2(18
+Q1 . 4241209+ qi* Q2a10+%V (422"— Q12)62— vics
—V(gz2'—Q12)C4—2Vd1], (21)
ImB (V;t,‘]127422)
=[(g2—m.?) (gt—m.?) /e @+ vq1- godatvgi®ds
+vq?astq1 - goq’dst qi%q et vg - Qalrt (g1 g2)’ds
+q1°2q%GsF 1 - galrot v+ vbetqoPbst- g1+ gobs
41+ @abs+ q2be— 3m (g — q1®) catmics

+m(g?—q)cat2md,], (22)
and so
(1/v*) Im[4 (#,0,0,0)+ (v/m) B (»,0,0,0) ]
= 2/ fAL/m)ar+ (brtbo)/m+a],  (23)
(1/») ImB(»,0,0,0) , ‘
= (2/ fA)vast+bitbot (2m/v)dr ], (24)

where we have used the charged-pion decay constant
fr, related to ¢, by :

me/ct=2/f.

18 S, Fubini and G. Segre, Nuovo Cimento 45A; 641 (1966);
V. de Alfaro, S. Fubini, G. Furlan, and C. Rossetti, University di
Torino Report, 1966 (unpublished). ) i

19 ], B. Bronzan, I. S. Gerstein, B, W. Lee, and F. E. Low,
Phys. Rev. Letters 18, 32 (1967).
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We can now write sum rules for the pion-nucleon
amplitudes if we have sum rules for the weak amplitudes
appearing on the right-hand side of Egs. (23) and (24).
As a technical convenience, we remove the one-nucleon
intermediate-state contributions to the sum rules (13)
using Eq. (7) and apply PCAC only to the integrands
above the physical threshold. We obtain®

1 r dy
[G4(0)P—27. / it
Tty VP

XIm[A4 (»,0,0,0)+»B (2,0,0,0)]=F1(0), (25a)

1 r® dv
[G4(0) =2/, / 2 ImBO (5,0,0,0)
Tt ¥

0

4
Py 0)+Fa(0)—— [ = 2mdy(50,0,0). (25b)

TS ¥
Our normalization, Eq. (14), implies
F,(0)=1,
Fi1(0)+F(0)=pp—u.=4.7,

and Eq. (25a) is immediately recognized as the Weis-
berger-Adler relation. Equation (25b) is the spin-flip
sum rule we hoped to derive. The appearance of d;, a
weak amplitude, on the right-hand side of Eq. (25b)
occurs because no sum rule for d; is contained among
Egs. (13). This is the covariant analog of Schnitzer’s’
statement that to go beyond the s-wave scattering
lengths [Eq. (25a)] some model must be assumed for
the weak amplitude.

V. CONCLUSIONS

It is interesting to observe that the weak amplitude
which survives in Eq. (25b) is precisely the coefficient
of the covariant (io,,) which we have argued in Sec. II
must be included in the expansion of 4, if kinematical
singularities are to be avoided. It is easy to see that no
matter how we choose the remaining 31 covariants we
can never obtain a model-independent spin-flip sum
rule. This is because

q2“i‘7uv= - io'v)\Q)\'I_m'Yv‘—-Pv )

20 We have changed variables to the more conventional v
=P-Q/m and have used the crossing relations (10). The threshold
is vo=mz(1+m,/2m).
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so that the Fubini procedure cannot yield a sum rule
for d; and

goPio g’ = =3[y g2,y @11,

which is precisely the spin-flip amplitude covariant so
that clearly d; survives in the spin-flip invariant even
in the limit g2=¢*=1¢=0. It is possible that, in fact,
a general statement may be made that for any pionic
process the only model-independent sum rule which can
be obtained by this method i§ a- non-spin-flip one
although this is only a speculation at this point.

Fuchs’¢ sum rule omits both the (G4)? and the weak
amplitude in Eq. (25b) and his numerical evaluation of
the resulting sum rule was in satisfactory agreement
with experiment. Bouchiat, Flamand, and Meyer®
obtained the (G4)? term and only neglected the weak
amplitude and, of course, obtained poorer results. Thus,
if the sum rule is correct, the weak term presumably
is the same order of magnitude as (G4)*~1.4. This
conclusion is strengthened by Schnitzer’s” calculation.
He is able to show that for the p-wave scattering lengths
and s-wave effective ranges only intermediate states
with J=3+in the direct channel contribute to the weak
amplitude and he obtains reasonable agreement with
this approximation. .

We could attempt an evaluation of Eq. (25b) by
carrying out a procedure analogous to Schnitzer’s for
evaluating the weak contribution and evaluating the
integral over B (»,0,0,0) using phase-shift analysis as
was done in Refs. 4 and 5. This involves having some
reasonable information about the weak amplitude, at
least a good knowledge of the axial form factors for
N* production. We hope to return to this question in
the future. At present, it is probably best to use Eq.
(25b) as a low-energy theorem, in which case our
conclusions would be identical to those of Ref. 8.
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