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The rare decay modes of the q meson are considered. Since in these decays the electromagnetic inter-
action for the Ieptons is well known, this work is concentrated on the strong interactions acting at the gyp
vertex. A model for the form factor of this vertex function is constructed. In this model the low-energy and
the high-energy behavior of the form factor are separately considered. The Bjorken limit is applied to
determine the asymptotic behavior of the form factor. Predictions on the branching ratios of both the Dalitz
pair and the direct decay modes are given as functions of the various parameters involved. Further experi-
ments are needed to determine these parameters. A discussion of the model is also presented.

I. INTRODUCTION

E shall concern ourselves with the following
decay modes of the p meson:

n ~v+I++~,
q —+ y+e++e

n ~~++a,
g~e++e .

(I3)

(I4)

Processes (I1), (I2), and (I3), and (I4) are known, re-
spectively, as the Dalitz pair' and direct decay modes.
The processes corresponding to (I2), (I4) for m' have
been considered in several recent papers' 4; processes
(Il)—(I3) have also been considered. '

To lowest order in the electromagnetic interaction,
these processes, and the corresponding processes for m

decay are related to the gyes and m'yy vertex functions.
These vertex functions are expressible in terms of the
two form factors F„(kP,k22) and F, (kP, k2'), where
k~' and k2' are the photon masses. These form factors
contain to all orders the strong interactions that are
responsible for the transition q, m' —+ 2y. We use the
properties of I'„,o(kP, kP), which may be inferred
by knowing the branching ratios of the above processes
with g, w —+ 2y, and the lepton-pair distributions
of the Dalitz-pair decays, to investigate these strong
interactions.

Let us sketch how each of these processes relates to
the form factors and what we expect to learn from them.
Since past work treats ~', '—'we shall start with this case.

The relation between the Dalitz-pair decay and the
m'yy vertex can be seen from the following transition:

e+ie .
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Its branching ratio to w' —+ 2y is the order of 2e, and
has been checked experimentally. The electron-pair
distribution provides a way to study the form factor
F o(O, k'), where k' is the virtual photon mass squared.

Use of the vector-meson-dominance model, together
with SU(3) symmetry, enables us to evaluate this form
factor and thus gives a definite prediction for the
distribution of the outgoing leptons. We can therefore
use this prediction to obtain a check on the combination
of the vector-meson-dominance model and SU(3)
symmetry.

The direct decay process relates to the form factor in
the following way Lsee Fig. 1(c)]:

m'-+y+y —+ e++e .

To obtain the amplitude for direct decay, an integration
over all the possible virtual photon momenta has to be
performed. The result is, however, divergent unless the
form factor provides a damping effect when the virtual
photon momenta become large. This particular aspect
of the direct decay implies that F ~(kP, k22) cannot be
constant. Unfortunately, the branching ratio F o,++.-/
I 0 gv ls about 2nm„ /m, o' 10 ' (Refs. 2, 4) which
means that the decay will be very hard to observe.

A parallel situation holds for g. Nevertheless, because
of its higher mass, the p-pair channels are open and
provide useful applications.

The branching ratios of the Dalitz-pair decays to
the decay g

—+ 2y are also of order n. Now 0(k'&~ m„';
since m„'=16m O', F„(0,k') can be probed to a larger
extent than F 0(0,k'). Another interesting feature of
these Dalitz-pair decay modes is to provide a possible
test of the difference between e electrodynamics and
p, electrodynamics for a timelike low-energy photon. '

For the direct decays of q, we estimate the foHowing

branching ratios:

F„,+,-/F„„-2 ' n/mm2„'-10-',

F„„+„/F„2, 2n'm„'/m„' -10 "".

The e-pair process is again too small to be interesting.
The p-pair process is expected to be observable. As will

become clear later, its sensitivity to the structure of

F„(kP,kP) enables us to make observations and
predictions which are hopefully to be checked by
future experiments,
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H. FORMULAS OF THE DECAY
BRANCHIN'6 RATIOS

To lowest order in the electromagnetic interaction,
the decay amplitude of the processes rr ~ 2y, rr ~ l++l
+y, and rr

—+ i++l can be written, respectively, ass

FIG. i. Feynman diagrams of the decays: (a) p —+2&, (b)
p ~ l++l +p, (c) q —+I++l . Only first order in the electro-
magnetic interaction is considered.

In the previous work."the high-energy behavior of
F 0(kP, k22) has not been investigated, but instead ad boo

cutoR-type functions were assumed in the calculations.
There are difhculties associated with these form factors.
For instance in Ref. 3, the assumed form factor does not
satisfy the analytic property [Eq. (2.2), Ref. 3j derived
from the general spectral condition. ' A modification of
results of Refs. 2 and 3 to be applicable to the case of

g has been carried out in Ref. 5, and the numerical
results indicate that the model of Ref. 3 is very insensi-
tive to the cutoff mass, while that of Ref. 2 depends
strongly on the cutoff masses.

In this paper we shall present a model for the vertex
function I'„(kP,k2'). The attractive model of vector
dominance of the low-energy behavior of the electro-
magnetic interaction of hadrons is applied. In the
language of dispersion relations, this is equivalent to the
statement that at small virtual-photon masses only
the vector-meson contributions have to be considered in
the intermediate states. The question of subtractions is
guided by the following consideration: Since an
unsubstracted dispersion relation (by means of vector-
dominance model) does not predict the m' lifetime
correctly, the subtractions are in order. In our treat-
ment, one subtraction will be taken. For the high-energy
behavior we construct a model which is guided by the
approximation that at high energies they VV interaction
(V—=a vector particle) can be mediated through nucleon
intermediate states. The asymptotic behavior of the
form factor is subjected to the condition of the Bjorken
limit. ' The resultant form factor can be shown to satisfy
the analyticity properties derived from the general
spectral condition. In view of the lack of a reliable
theory for treating high-energy behavior of form factors,
hopefully the present model incorporating the Sjorken
limit will provide some understanding of the high-energy
properties of the frorm factor.

In Sec. II we list the formulas for the di6erential
cross sections of the Dalitz-pair (DP) and direct (D)
decays with respect to the 2p decay mode. Two import-
ant properties of the vertex function are mentioned in
Sec. III. Section IV is devoted to the construction of a
model of F„(kP,k22). Predictions on the decay branching
ratios and the Dalitz-pair distributions are presented
in Sec. V. In Sec. VI we discuss the general features
of the model.

I am indebted to Professor Geffen for pointing this out to me.
J. D. Bjorken, Phys. Rev. 148, 146l (1966).

phd~
T2= eg" e2"e„„g, P„(0,0),

QXqr

Trr= —18M(p2)r"'U(py) 6"spry~

(rf—k)' m.

xr„(0, (q—k)'), (»2)
$«o 2

T4 rr'x(p2)pic' rr'~ err(pl)elva@ d p
(2m)' 5$~o

(~i+p)"'"(pi+p)'(p2 —p)'
X

(p' —mr'+ is) [(pg+p)'+ iej[(p2—p) '+ iej

x&„((pi+p)', (p2 —p)'), (»3)
where, with k~+k2 ——q, the rryy form factor F„(kP,kP)
is dehned by

ki "k2'
1'„„(kg,kg)

—=e„„)„P„(kp,k2"-)

d4~ ~i{&I—k2) X/2

R'
~DP=

R2 ()2

drrrp 2n F„(o,m„'x) 1
-(1—x)'

dx 3+ F„(0,0) x

R4 1n
(1-4«')

Rg 2 m- r„(0,0)

X i 3A+ (1 4«2)8 i
' (117)—

We use a positive metric, i.e., a b=epbp —a b, and natural
units A=«,.=1.

X(0[T{J„(x/2),J„(—x/2)) ]q). (II4)

The Feynman diagrams of the above processes to the
given order in the electromagnetic interaction are illus-
trated in the diagrams of Fig. j.. In the above expressions
we use q to denote the four-momentum of the g and e to
denote the outgoing photon polarization. Also kq, k2, k,
p~, and p2 are the momenta of the various outgoing
particles in the appropriate processes. The details can
be read from Fig. 1.

I.et us denote the corresponding decay rates of the
above processes by R&, R3, and R4, respectively. Ke
have the decay branching ratios:
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where $~ ——mq/m„. Here A and 8 are invariant scalar
functions and are defined by means of the following
expression:

i~ p"p=—Ag" —4 8
i
. (II8)

2 m„' )
The above formulas hold also for x' if we replace I'„by
I' o and m, by m o. In this case, of course we have e-pair
processes only.

III. PROPERTIES OF THE FORM FACTOR

We state some of the properties of r„(kt', ks') that
wi11 be useful in later discussions.

A. Symmetry Property and the Absorptive Part
of the Form Factor

From the definition of r„(krs, ks') (II4), it is easy to
show that the form factor possesses the following
symmetry property:

IV. EVALUATION OF THE FORM FACTOR

In this section we shall construct a model for the
form factor. The method applies also to the correspond-
ing s' form factor r, o(kt', ks').

The k~', k2' dependence of the form factor in general
can be separated into diferent energy regions. Each
energy region is characterized by the intermediate
states dominating the form factor. For example, at low
energies only the low-lying states are important; this
has been shown to be true for the pion and nucleon form
factors. As the energy becomes higher and higher, more
and more intermediate states become accessible to the
process under consideration. It is not unreasonable to
contemplate that at sufficiently high energies the contri-
bution of the relatively low-lying states become less
important, and the process considered is characterized
by high-mass iritermediate states.

With such preliminary understanding we shall make
a few assumptions which form an integral part of our
investigation and are crucial to the construction of the
model.

(a) The form factor r„(kts,ks') can be factored into
two parts which give the low-energy and high-energy
contributions:

r„(k„k,)= r„(k„k,). r (k, ks) =a(kp ks')L(kr' k,')

H(0,0) = 1, i.e. , L(0,0) = r„(0,0),
(IV1)

The absorptive part of r„(kr', ks') can be obtained by
applying I'T invariance to (II4).' We report only the
result:

kg"k2'
e x Imr (k 'k ')=- d'Se"s' ""'"

X(0
~ {J„(x/2), J„(—x/2) ) j q) .

B. Asymptotic Behavior of I'„(kP,ks')

The asymptotic behavior of the form factor is'

e'2C0m o

I'„(k', (q
—k)')

kss 3V3

where LI and I. are, respectively, the high-energy and
low-energy functions which dominate at the respective
energy regions.

(b) The low-energy function L(krs, kss) is dominated

by the vector-meson intermediate states (p', co, and y)
(III2) and satisfies a once-subtracted dispersion relation in

k&', when k&' is Axed, and vice versa. The quantity
I (k ' ks') has a cut in each of the variables k and kss

from 4m & to 3P, where M &~2M~ (M~ is the nucleon

mass). This particular choice of M comes from the
consideration of the analyticity property of the high-

(III3) energy function. We also assume

CnL = —2e'C.~/3v3. (III4)

The above result is obtained by means of the method
discussed in Bjorken's recent work on current algebra. '
The derivation of (III3) will be given in Appendix A.
We shall call (III3) the Bjorken limit and shall denote
the coefficient of the Bjorken limit as

lim L(k', (q
—k)') = const—=L„.

/I@0(
—+oO

(IV2)

(c) The high-energy function H(kts, kss) represents
contributions of the high-mass and multiple-particle
intermediate states, and has a cut from 3P to ~ in one
of its arguments when the other one is fixed. Equations

~ From the analysis of J. Bernstein, G. Finberg, and T. D. Lee
t Phys. Rev. 159, 31650 (1965)],it can be shown that (II2) holds
even without the assumption of T invariance for the electro-
magnetic interaction of hadrons.

"We like to point out that the 1/ko' asymptotic behavior of
F„QP,A2') can be obtained by other methods. For example, in
the Dyson representation [F. Dyson, Phys. Rev. 110, 1460
(1958)g, if a suitable convergence condition on the spectral
function is assumed, this behavior is obtainable. However, the
coeKcient (III4) cannot be obtained in the Dyson representation.

y po

FIG. 2. Vector-meson-dominance model for the low-energy function
of the gyp form factor.
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(d) In analogy to (III1) we take

L(kP kss) =L(kP kP) H(kP ks') =H(ks' kP) .

A. The Low-Energy Function —Vector-Meson-
Dominance Model

From assumption (b) we can write

P2 M2

I.(kP k, ') =L(kP 0)+
4m +'

and

ImL, (kP x)
dx (IV4)

x(x—kp)

L(k P 0) =L(0,0)+
ImI. (*,0)

dx . (IV5)
4 ..I a(x—kP)

Since for 4m~& &~k,'&~M',

ImI. (kP kP) = Iml'„(kP kP)/H(kP, kP)

then ImL(kP, kP) can be evaluated by means of (III2).
Only the vector mesons p', co, and p are considered in
the intermediate states. The evaluation of (IV5) is
standard. To evaluate (IV4) we have to express the

Vqy vertex function (V—=p', to, q) as a function of kP.
This vertex function can be calculated, using a once-
subtracted dispersion relation, " by means of vector-
meson-dominance model in terms of the phenomenolog-
ical coupling constants of the Vqy and VV'g interac-
tions. The Q.nal result is

L(kP,kP)

)„,k,X;f,kr' f
=r„(o,o)+ p

(ttt, —kP)H; (mt —ks )H;

X;X,g;,ky k2
(IV6)

', ~ po, , ~ (ttt;s —kP)(its —kss)H, ;
where H, =H(rtsts, 0), H,,=H(ttsrs, its), and X; are the
dimensionless phenomenological coupling constants of
V, and y, f, that of V,rty, and g,; that of V,V;rt, where

i, j=pe, co, p. Equation (IV6) is expressed diagramatic-
ally in Fig. 2.

Although we have obtained an explicit expression for
the low-energy function, its usefulness depends on our
knowledge of the various coupling constants f; and g,,

1'We cite two reasons that we are in favor of a subtracted
dispersion relation in evaluating the Vpp form factor by means of
the vector-meson-dominance model. The erst is that a gauge-
invariant coupling of V-y as we have used makes this form
factor tend to a constant when the virtual-photon mass becomes
large. The second is that an unsubtracted dispersion gives f~ ~
= —(e/3p, )g, . When we incorporate this relation with a recent
work of A. Donnachie and G. Shaw /Ann. Phys. (N. Y.) 37, 333
(1966)g who found f, „0in fitting the experimental data of
pion photoproduction, we obtain g,„„0which is a disturbing
result and makes the decay co ~ 3~ di6icult to understand from
the viewpoint of the present theoretical framework.

(III3) and (IV2) imply

lim H(k', (q—k)') = const/ke'=— H /ko'. (IV3)
[ Jg0/ —+Oo

At the present time, since the experimental situation
does not allow us to evaluate them phenomenologically,
me must resort to a model calculation. Using the
methods of the algebra of currents we have obtained
relations between the coupling constants of the Vqy
and VVg interactions, respectively. " The results are
that to the 6rst order in the symmetry-breaking effect,
the relations so obtained are identical to those obtained
from the Lagrangian approach of exact SU(3) symmetry.

Ke use the popular choice of the co-p mixing angle
sin8=1/v3, " and assume f„~ 0 and g,„~0,'4 then
we can calculate all the relevant coupling constants as

o].].ows12

P,,= e/y p, X„=—(e/3y p) m ps/hatt„',

X„=(e/3p p) mp'/m, ', (IV7)

2'�.
Using the following pieces of information":

F„„+, 1.3 MeV, F„3 10.6 MeV,

F, 2 120 MeV,

we get"

f„7s/4tr 0.186n, g p .s/4tr~0. 5, y p'/4m~2. 4. (IV9)

The form factor at zero photon masses, I"„(0,0), can
be determined from the decay width p —+ 2p. In fact,
because of the experimental uncertainty, I'„(0,0) is
determined from I',o(0,0) by tt-spin conservation,

"Bing-lin Young, Ph.D. thesis, University of Minnesota,
1966 (unpublished).

"The value of the co-y mixing angle is not settled yet. The
value we used is supported by both the mass formula and the
algebra-of-currents calculations. For the latter we refer to M.
P. Khanna and A. Vaidya, Trieste report, 1966 (unpublished).

"g, 0 is supported by experiment. Although we expect
g« '/4m. to be the order of unity, phenomenologically we find
g,„,'/47r n' Since we a.lso expect f„„(e/p,)g,„ then f„,~'/47r~, but theoretically we expect f„,~s/47r to be of the order of o

15 Relations (IV7) agree with what were used by Y. S. Kim
et at. )Phys. Rev. 135, 81076 (1965)j but do not agree vffth those
obtained by taking into account the mass-breaking effect. See for
example Ref. 5.

~'M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1962)..

"A. H. Rosenfeld et al , Rev. Mod. Phys. 3. 7, 633 (1965).".A calculation of all the radiative decay rates of the vector
mesons by means of (IV8) and (IV9) has been carried out. in
Ref. 12. The results are consistent with the existing experimental
data

f- = (1/~~)—f-. , f-,;(1/3—~~)f-„
f„„, (2&&/—343)f..., g„(—1/V3) g,„,
g-;=(1/3v3) g.-, g-.;(2/v3)g, -, (IVS)

8& tItfi

where y, is the pox coupling constant and is calculated
from the decay p~27r. The constant f„7 can be
calculated from &o

—+ s+y, and g,„ from"
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Lf-, '/4n j"'
L„=I"„(0,0)+sgn(f„r/y, ) 19.3X 10 '

I's(0,0)—1.38X10 '.

3.The High-Energy Function —CutoQ Function

Hp

X (1+0.11H&/H 0.25Hq/H &) sgn(g~ )

CCo~~ /4rr
X6.2X&0 'Since there is no reliable theory for treating the high-

energy function, the best we can do is to construct a
reasonable model for it. We may imagine that at high
energies each of the qVV couplings is mediated by some
high-mass intermediate states. The simplest picture is
that each single pVV vertex is replaced by a triangular
graph. If we look at this type of process in perturbation
theory, considering only Fermi coupling, we are led to
a high-energy function of the following form":

(IV14)

X (1+0.1Hrr/H „0.14H—so/H„„),

CnL= sgn(gatv )1.3X10 'nt, '.
Recall H, =H(nt„s, 0), H»=H(nt, ',nt, '), etc. Combining
the above equations with (IV3), we have

i.e., I'„(0,0)= I' o(0,0)/v3. Taking r ~1.78X10 's and (III4), we obtain
sec,"we get

H„L„/nt„' sgn(g~~ )1.3X10-'. (IV15)

p(A)dA= 1. (IV11)

H(kts kss) = dA p(A), (IV10)
(A—its) (A.—kss)

where A, )~4M'tv (jrltr is the nucleon mass). Here p(A)
is the so-called spectral function, and represents 311 the
high-mass contributions to the gVV, pe, and gyp
vertices. By (IV1) p(A) satisfies the normalization
condition:

Since with a reasonable choice of p(A), H„etc. are
aQ of order unity, (IV14) shows that L„ is dominated
by the term proportional to f„„and its sign is deter-
mined by the sign of f„~/7, Beca.use of the relatively
small value of CnL it is easy to see that (IV15) can be
satisfied only when

~
H„/nt„~(s1. For the baryon

model, we have H„/m„'~ 17.6. Hence —the Bjorken
limit cannot be satisfied.

An immediate generalization of (IV12) is

In the nucleon intermediate-state approximation,
p(A) has the form

p(A) = (A,/A')8(A —A,), (IV12)

where Xz——4M
If we take this approximation seriously we have to

include the contribution of all the other members of the
baryon octet. Furthermore, if we argue that all members
of the baryon octet contribute with equal probability
and that only their average contribution is relevant"
then the spectral function is still in the form of (IV12),
but A& has to be replaced by the average mass of the
baryon octet: Ai ——4X (1150)' MeV'. We shall call this
model of the spectral function the baryon model.

We shall show in Appendix 8 that the Bjorken limit
(III3) and the normalization condition (IV11) require
the spectral function to possess the following asymptotic
behavior:

lim p(A) ~ const/A'. (IV13)

n See Ref. 17. Recently /Proceedings of the XIIIth International
Conference on High Energy Physic-s (University of California Press,
Berkeley, California, 1967)g a smaller value for the s lifetime is
reported.

0 For details we refer to Ref. 12.
"G.Barton and B. G. Smith, Nuovo Cimento 36, 436 (1965).

Incidentally p(A) defined by (IV12) has the correct
asymptotic form; however, as we shall point out later,
it does not possess the correct coeKcient.

By inserting all the known numerical factors in (IV6)

p(A) = Z ~
8(A—A,).

A.2
(IV16)

This model is suggested by the consideration that at
high energies, in addition to the baryon octet, there are
other groups of particles, each with an effective mass
A "/2, which contribute to the rtVV vertices as the
baryon octet does. The importance of the contribution
of each of the groups of particles is measured by the
dimensionless quantities P;, i=0, 1, n which satisfy
the relations

Q P,=1 H„/m '= —Q P A./nt '. (IV17)

For n=1, if Ao and Ai are known, Ps and Pi are deter-
mined by means of (IV15) and (IV17). In general
there are tt —1 parameters in the model (IV16) even if
all the masses are given.

In the numerical calculations we shall use the
following four models for p(A):

baryon model p(A) = (A.i/A. ')8(A —Ai),
8-function model p(A) =8(A—Ai),
single-pole model p(A) = L(Ai+C)/(A+C)s)8(A —A,),
dipole model p(A) = (pAo/A')8(A Ae)—

+L(1—P)Ai/A'j8(A —Ai),
where Ai ——4X (1150)' MeV'

We should like to remark that the baryon model and
the 5-function model do not satisfy the Bjorken limit,
while the simple-pole model and the dipole model do.
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Their predictions on the direct decay branching ratios
will enable us to investigate the plausibility of the
3jorken limit.

The parameters P and C in the above spectral func-
tions are determined by substituting the corresponding
spectral function into (IV10) and solving Eq. (IV15).
Because of the smallness of the Bjorken limit, I(i and C
are not sensitive to the variation of the vector coupling
constants and F„(0,0). However, they vary consider-
ably with respect to changes in A~. For example, the
average values of P are 2.8, 1.6, 1.1, and 1.02 for Ai/sn„'
= 27.6, 46.9, 311,and 761, respectively, and the average
values of C are —17.3, —46, —187, and —1173 for
Ai/nz„'=17. 6, 46.9, 188, and 1174, respectively. The
result that C —A~ again reflects the smallness of the
3jorken limit.

V. CALCVLATION

We can now calculate rDp, drDp/dx, and r& by using
the form factor derived in the last section. Because of
the uncertainties in the experimental information, we
have used the following input data:

F„(0,0)~1.38X10 ' and 1.80X10 ',
f„,'/kn~0. 186cr and 0.14n,

g, /4rr~0. 5 and 0.3.
The difference in the values of f„~'/4rr and g,„'/4n.
listed above correspond to a 30% modification in the
over-all effects of the vector-meson contributions. The
V-y couplings we used in (IV8) introduce a violation of
the U-spin conservation. " The values of F„(0,0)
listed above also give a 30% violation in the U-spin
conservation.

A. The Dalitz-Pair Decays

TABLE I.Average values oi a, as function of I'„(0,0) and f ~s/4n. .

r„(0,0) 1.38X10 ' 1.80X10 '

f„,„'/4n 0.186a 0.14a . 0.186a 0.14na„1.45 —1.42 1.26 —1.24 1.11 —1.09 0.97 —0.93

l4 ——

0 I&

Since the spectral function gives a very small contribu-
tion to a„, the sign of a,= —sgn(f /Ly, F„(0,0)]).
The above expression indicates that u, is a function of
the model of p(A), F,(0,0), and the vector-meson
coupling constants. However, for given values of F„(0,0)
and f„,r /4', ~a„~ is insensitive to the other informa-
tion. Table I lists the value of u„as function of F„(0,0)
and f„r'/41r but averaged over the four models.

A, measurement of the distribution of those lepton
pairs whose three-momentum vectors make small
angles, i.e., for small x, enables us to determine the
sign and the magnitude of f r/fy, F„(0,0)j, and hence
provides us an estimate of the size of F„(0,0). Because
a„ is not sensitive to the model of p(A) and f„„/
t rpgp j, no information on these aspects can be
obtained.

Figures 3 to 5 show the total branching ratios of the
Dalitz-pair decays and the lepton pair distributions as
functions of a„. In making these curves the full expres-
sion of F„(O,m„'x) has been used. Experimentally,
nothing has been known about a„.

With appropriate changes of the vector coupling
constants and the spectral function, (IV6) and (IV10)
are applicable to the case of s . Now we have (q —k)'

The form factor of the Dalitz-pair decay modes is
obtained by putting one of the arguments of F„(krs,kss)

at zero, i.e., F„(0, (q —k)'), where q
—k is the sum of

the four-momenta of the lepton pair. Let us write

(q—k)s= (Pi+Ps)s= mssx, since 0& (q—k)s~&rl s, 4mP/
m„'&~x&~1, we can expand F„(O,nz„'x) in powers of x.
For small x we can write

F„(o,~,sx)=F„(0,0) (1+G„x) .

From the work of the last section, we have

(f-~'/4~)"'
a„=—sgn(f„~/Ly pF„(0,0)j)5X10-'

a, iF„(O,O) i

1.2

gC

+~

1.0

G9;

0.3—

0.2-

0tI—

19—O

k
cu 18—
t

17—

a& &0

0.1H, 0.14H,'l
Xi 1+ — i+a. dA p(A)nz, '/A.

"This is in the sense that if we use vector-meson-dominance
model to calculate the decay widths of q —+ 2p and ~0~ 2p by
taking the U-y couplings as defined in (IV8), we do not get the
relation that F,(0,0) = (1/A)F o(0,0), which is predicted by U-spin
conservation.

o cp
I t t

09 10 I I I 2 1,3 14~jo [

FIG. 3. Predicted branching ratio P„~l+1 y/P, ~ 2y as a
function of a„, a parameter which is defined in the text. A measure-
ment of the t l eR'ective-mass distribution will give a measure-
ment of a„.
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B.Direct Decays

In order to obtain a prediction for direct decays we
must evaluate the integral (II8). First we transform
the integral (II8) by Feynman's technique. Then, since
in all of our models of p(A. ) we have A )~At)~4M)v' we
can use R'= /t/m„' as an expansion parameter to approx-
imate integral (II8). We keep only the terms propor-
tional to 1nRts, constant, 1nRts/Rss, and 1/Rt in the
expansion, where Rts= At/))s„s. The leading term in rn
is proportional to (1nR(s)s. The branching ratios for the
e-pair process, ranging from 3)&10 ' to 5&10 '," are
not interesting to us.

The branching ratio of the p-pair process, which we
shall denote by r», depends more strongly on the cutoff

FIG. 4. Predicted p,-pair eRective-mass distribution in the
Dalitz-pair decay. x= (pq+ps)'/m, ', where p& and ps are the four-
momenta of the muons.

=m sx, 4',s/m '(~a~(1. For small x, we can write

I' o(O, m 'x)=i' o(0,0)(1+a ox).

Also, the sign of a = —sgn(f„„/Ly, i" (0,0)]). Using
I' (0,0)=2.4X10 ', (7, 1.78X10 "sec), and f„„s/
4~ 0.186n, for the various models and relative sign
combinations, we obtain a o &0.06 which is close to
those obtained before. '" The average experimental
value of a o is —0.25&0.15," which predicts that
f„~/I p, l" ~(0,0)])0. There is a discrepancy between
the experimental value and the theoretically calculated
one, but in view of the large experimental error, we do
not yet regard this as disturbing. A more accurate
measurement of a o is clearly called for. '4

9
O

8

Ol y

+
4l 4
t

cEs

.80

FIG. 5. Predicted e-pair eRective-mass distribution in the
Dalitz-pair decay. x=(p&+p2)'jm„', where p& and p2 are the
four-momenta of the positron and the electron.

ss N. Samios, Phys. Rev. 121, 275 (1961); H. Kobrak, Nuovo
Cimento 20, 115 (1961).

~ In the models discussed here one may try to make up this
possible disprepancy with the experimental result by choosing a
model such that H, &1. Since [ia o[(~1/H~, this increases ~o o(.
This can be achieved-in the dipole model; however, such a con-
dition imposed upon p(A) cannot satisfy the Bjorken limit.
Moreover, it introduces a very strong cutoR dependence to rD,
which is hard t'o justify. A model like (IV16), in which there are
e—1 free parameters, may be tried to reproduce the experimental
value of u o and at the same time to give a weak dependence of rD
on the cuto6 mass.

CASE I(b)

P„(O,O)=(8O (O' Ir(O,O)=(~sea

l3—

t5—

I .~ ~ ~' ~

+~i
CASE I(a)

re(0,0)™L80s(0 r„(OP)-L38s(O

a~&p,f~~y/y &P
P

I I
I

&Per
I
I~

r~' i-

1 ( I & I ( I

2 4 6 2 4 6~ gn(A. , /m~ )

Fto. 6. Predicted branching ratio p~„+„+/pg Qy averaged over
the. information of f„~p/47r and g~ '/kr. The "error bars"
indicate the variation of this branching ratio under the change
of f ~'/4x and g~ '/47r: The solid line is for the baryon model,
the dashed line is for the b-function model, and the dot-dashed line
is for the dipole model.

mass than the corresponding cases of the e-pair process.
A feature common to both the p- and e-pair processes
is that the rD of the single-pole model in all the cases are
very close to those of the 8-function model. Similarly
the branching ratio of the dipole model of the two signs
of f„r/fy, g)v)v ] are also close to one another. The
significance of this similarity of rD in these cases will be
discussed in the next section.

We plot in Figs. 6 and 7 the values of rD„obtained
for the baryon model, the 5-function model, and the
dipole model as a function of the various parameters.
Figure 6 shows the values of rn„ for f„~/)y, g,„])0.
For a given value of I'„(0,0) and given sign of a„, we
average over the information of f„v and g,„.The
"error bars" associated with each curve represent the
variation of rn„as the values of f„~ and g,„are
changed. The upper ends of the "error bars" are at those
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CASE II(b)

1&IOO)™IBOxlO ~I&IOP)-1.38xlO r

a &O,.fa]vy/y

40—

O
x PO

N

I I I I I. I I I

CASF. II(O)

r„lOOI=I.BOxlO
'

~ r„IOOI=I.SBxlO-'

a~&0,

fruity/y

RO—

IO—

=gn(h) /m~ )

Fro. 7. Predicted branching ratio I'~„+„-/I'~x„.See
explanation under I'ig. 6.

then
rD&10 ', for the y-pair process

rD&10 ' for the e-pair process.

Since the leading term in rD is proportional to (inRr')',
one may expect a strong dependence of r» on the cutoG
mass A~. This is true for some of the sign combinations
of a„and f„r/$y, g,„,).But rD„ is rather insensitive to
A for some other sign combinations, as can be readily
seen from Figs. 6 and 7.

I

VL DESCUSSlON

Ke shall discuss erst what inforination we can obtain
about the high-energy behavior of I'„(kp,k2x) from the
direct-decay branching ratios calculated in the last
section (Figs. 6 and 7). Second, we shall discuss what
can test the models presented in this paper. %e shall
restrict ourselves to the p,-pair process. Its branching
ratio will be denoted as rD„.

rD„ for which f„r'/4~ 0 186n—, g„.„'/4Ir~0. 3, and the
lower ends of the "error bars" are at f„r'/4Ir' '0 14n, .
g,„ /kr 0.5. Similarly in Fig. 7 we plot ro„ for f„~/
Ly,g,„)&0. In this graph the upper ends of the
"error bars" are at those rn„ for which f„,' /4 7—'r ~0186 n,

g, /4m~0. 5, and the lower ends of the "error bars"
are at f„~'/4rr' 0.14n, g, '/4' —0.3.

It can be shown that 3'

Im(3A+ (1 4)P)B}= (~—/2) (1—4$P) in jP—
12$P .

This is independent of the model of strong interactions
at the gyp vertex; therefore we can set a lower bound
for the direct branching ratios:

VVe separate ro„according to the signs of a„and
f„,~/fy, g,„)(see Figs. 6 and 7). Since all four models
give approximately the same magnitude of a, for a
given sign of a„, they all have the same low-energy
behavior as expected. An examination of Figs. 6 and 7
shows that the high-energy behavior of the form factor
is diferent in each of the four models, except that the
6-function and the single-pole models give similar
results. Also, the form factor depends on the sign of
a„and f„~/$y, g,„).Therefore an understanding of
the structure of I'„(kP,422) in terms of our models
depends on resolving the sign a,mbiguities of a, and
f„,~/(y, g,„)as well as their magnitude.

Presently both signs can be determined by means of
theoretical models. The sign of a, is predicted to be
negative if we accept the validity of U-spin conserva-
tion, and assume-that the experimental measurement of
the sign of a, o is correct. (The experiment says that a o

is negative, 2' but the error is large enough so that the
result is not conclusive. ) The sign of f„~/Ity, g,„)is
positive if we use the vector-meson-dominance model
to relate the cozy coupling to the pcoz coupling through
the p-y transition, i.e., f„,~/$y, g,„)= e/y, ') 0

However there are reasons that these predictions
have to be checked experimentally. For instance, both
the too-small theoretical prediction of c o and the
too-large theoretical prediction of I' o(0,0) by the
vector-meson-dominance model raise doubts as to the
validity of this simple model and makes the conclusion
that u„(0 questionable. Also in a gauge-invariant
theory of the V-7 coupling, f„~ and g, 7 may not be
related at all. For example, in the present work f„~ is
the subtracted term of the cozy vertex function, chosen
to be the phenomenological coupling constant of the
ole.y interaction (all the particles are on the mass shell),
whereas gp occurs in the coefficient of the p-meson
pole contribution. Hence f„,r and g,„~ are independent.

From Sec. V and Figs. 6 and 7, we can make the
following observations:

(1) The decay branching ratios rr&„ in Fig. 6 (f„~/
Ly, g, „))0) are less sensitive to the cutoff masses
than those in Fig. 7 (f„,~/fy, g,„,)&0). Hence the
high-energy behavior is less crucial in the former cases
than in those of the later cases.

(2) In case I(a) of Fig. 6, rD„ is surprisingly in-
sensitive to the cutoff mass for all the models. This is
the case that -f„~/I y,g,„))0 and a„)0 $f„~/
(y,g,„,') &0). The other extreme happens in case II(b),
Fig. 7, for which f 7/fy, g,„)&0 and a„&0.

(3) The spectral functions of the single-pole model
and the 6-function model have the same threshold
behavior. They possess, however, diQerent asymptotic
behavior, going like 1/kIIx and 1/kII', respectively. The
approxima, te equality of rD„ for all the cases in these
two models (as mentioned 'in the last section) indicates
that the asymptotic behavior is not crucial, at least in
these two models.



(4) The relative sign of f „/y, and the Bjorken
limit (i.e., the sign of f ~/[y, g~~, )) is not important.
This is indicated by the fact that in the dipole model
both signs of f„,/$y, gv~, ) give almost identical rD„,
as has been mentioned in Sec. V.

(5) The imposition of the Bjorken limit reduces, in
general, both the values of rD„and the overlapping
between the various cases of rD„.

A. Test of the Theoretical Models

As one may expect, a test of the theoretical models
constructed in the present work needs detailed exper-
imental information. At the present time only f„,~'/4v:,
F o(0,0), and p, '/4v. are reliably mea, sured to some
extent. Other experimental data, e.g., f„~/ltd, g,„),
a„, etc. , either do not exist or possess such great uncer-
tainties that they are essentially open questions. In
the following we shall point out the experiments that
are expected to be carried out and the information that
is obtainable from them. Before going on we should
like to mention that since rD„&10 ', the direct decays
can be easily distinguished from the background contri-
bution of the Dalitz-pair decays occurring with soft-
photon emission.

(a) Measurements of a„and a o and the Test of SU(3)

The measurements of a, and a o will not only separate
case I(a) from case I(b), and case II(a) from II(b),
but also test SU(3) invariance and the a&-y mixing
theory (see Figs. 6 and 7).

(b) 3IIeasurement of f„~/fy, g~„)
A measurement of the sign of f„~/(y, g,„)'will

distinguish between Figs. 6 and 7, and together with
the information of (a), will determine which case applies.
As f„~'/41r and y, '/4' are known, this also provides an
estimate of g,„'/4 Tvhen a prediction of the magnitude
of rD„can be made. However, it is doubtful that the
measurement of the sign of f„~/$y, g,„)can be carried
out in the near future. Hence one can only check the
consistency of rD„with some choice of this sign. Again
theory expects the sign to be positive.

(c) Test of the High Energy Behavior -of F„(kP,kg)

If the above information becomes available, we may
determine the high-energy behavior of F„(kP,k22) in
terms of the models we have constructed. In addition,
if we know the values of r», then, by restricting our-
selves to a certain model of the spectral function (e.g. ,
the dipole model), we can determine the cutoff mass.
Therefore both the low-energy and the high-energy
functions of F„(kg,k2') are determined.

(d) Test of the Asymptotic Behavior of F„(kP,k22)

and the BjorkerI, Limit

The 1/k02 behavior of F„(k~, (q —k)') is hard to test.
The observation (c) seems to suggest that we have to

take this behavior as an assuniption, or at least what
has been considered in the present work. does not
provide a way to check this asymptotic behavior.

The consistency of the assumption of the Bjorken
limit can be checked only in a very special situation
and with a special model of the spectral function. To
illustrate this, let us consider the following example.
Suppose that the spectral function can be described by
either the baryon model which does not satisfy the
Bjorken limit or the dipole model which satisfies the
Bjorken limit. Then a test of the plausibility of the
Bjorken limit is to find out which model is suitable. This
is possible only when we know the signs of a„and
f„~/(y, g,„),and the values of F„(0,0), f„7'/4v. , and
g, '/4v-. In addition we have to assume that the SU(3)
assumption in deriving the.- low-energy function L is
correct. For example, suppose we know rD„ is in case
I(b) and F„(0,0)~1.8X10 ', f„7'/47r~0 186m, g. ,„'/47r

0.3. Then if rD„3.5&(10 ' we know that the dipole
model is more reasonable, and this makes it plausible
that the Bjorken limit is satisfied. Otherwise, no
conclusion can be made. This test is not likely to be
performed in the near future.

B. Predictions of the Models

Because we are lacking most of the experimental
information, we should like to ask. . what the models can
predict, and what, are the minimum amount of exper-
imental data required in this connection. To answer
this question, we want to show in the following example
that if we know a, and rD„, a number of predictions can
be made. Among the various experiments needed to be
performed, experiments to obtain a„and rD„are most
likely to be carried out.

To be specific, let us take the dipole model as an
example. Suppose that a measurement of a„gives the
result, for instance, ~a+1.2, then we may conclude
that we are in case I(a) (see Fig. '6) or case II(a) (see
Fig. 7). In addition, we can infer from Table I that the
information of F„(0,0) and f ~'/4n are either F„(0,0)

1.8X10 ~ and f„2/47r 0.186a, or F„(0,0) 1.38
X10 ' and f„~~/kr 0.14n Hence if fur.ther we know
the value of I', (0,0), we know f„,„'/4' or vice versa.
Therefore this enables us to get more information about
the vector coupling. If a measurement of rD„gives the
result that rD„~1.5&(10 ' we see that we are in case
I(a) or I(b) (see Fig. 6), or more specificially, in case
I(a) which implies f„7/fy, g,„,)&0 However, it d. oes
not predict the magnitude of g, '/4v. (nor the sign of
f 7/(y, g~~ )). If rD„&3X10-' then we are in case
II(a). and the sign of f„~/$y, g,„)is negative.

On the other hand, if a measurement of i, is, for
example, —1.4, then f„~/fy, F„(0,0))&0 From Table.
I we obtain F„(0,0) 1.38X10 ' and f„~m/4v 0 186n.
If a measurement of rD„has the value 4)&10 ' or less,
then we are in case I(b) (see Fig. 6).If a measurement of
rD„has the value 10 4 or more, we are in case II(b).
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The 6rst term on the right-hand side of the above
expression comes from the vector-meson contributions.
The second term represents all the high-mass contribu-
tions. If again we take

B(ki' ks ) = dA. p(A)A'/L(A —kts)(A —k ')j
under certain conditions on the vector couplings this
form can be reduced to what we have constructed. If
we also take

then
p(A) = g;(P;A~/A')B(A A;)—

Q, P,A;/m„s= Csz, .
Because of the smallness of the Bjorken limit, as before
the high-energy function will not make a very important
contribution to the branching ratio rD„.

In summary, we may conclude that the vector mesons
play an important role in the direct-decay process
rj -+ p++p . Therefore a measurement of the branching
ratio rD„ for this process would not provide at present
an unambiguous determination of the high-mass
properties of the gyp form factor. This, however, does
not make the value of rD„uninteresting, especially in

If in particular the value of rD„ falls between 4)&10 '
and 10 4, it can be explained by a higher cutoff mass of
Ai in case I(b).

Similar discussions can be given to other models.
Nevertheless, the situation is more complicated because
of the overlapping between the various cases. Definite
prediction by measuring a„and r» is not feasible
unless we can nail down the values of I"„(0,0), f ~'/47r,
and g,„s/4r.

The above examples show very positive predictions.
However, this needs very accurate measurement of rD„,
which is rather diNcult.

To end our discussion we make the following remarks:
(a) If rn„~10 ', i.e., its minimum value, the

imaginary part domi. nates the decay amplitude.
Unless the very unlikely situation occurs in which the
virtual photons always stay approximately on their
mass shell, there are high-mass intermediate states
operating at the gyes vertex, and their contributions to
the real part must cancel each other. Our models
indicate that case I(a) has to be taken.

(b) If rD„~10 4, which indicates a rather large value,
we can hardly draw a useful conclusion unless more
accurate information about the vector couplings is
given. This indicates also that we have to probe a high
value of the cutoQ' mass A~.

(c) There are other possible models that have not
been considered in this work. For example, we can take
the following form for I'„(kis,kss):

&VI~V~gVIV2
I„(kis k s) 2 +fl(k12 k22)

Fy Ys (yg 2 k12) (~ kss)

the case of large rD„, i.e. rD„&10 '."In this eventuality
its full usefulness will require more extensive experi-
ments on the other decay modes of g and m'. Once the
unknown parameters such as I'„(0,0), a o, a„, etc. , are
well determined and the validity of SU(3) invariance
on the vector couplings checked, a more detailed
analysis of the model dependence of the theory should
be undertaken.
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APPENDIX A

Following Ref. 7 we shall assume that the matrix
element of (II4) can be truncated and that the com-
mutator of the two components of the electromagnetic
current can be evaluated. in the quark model. Then
we have

1
I'„„(k,g

—k) '- —— d'x e '" *
lkpl~~, k finite

0

X(0I CJ„(0,x),J„(0)]I q)+O(1/k, ') .
Using a quark structure for the electromagnetic
current J„=fy„QQ, where P is the quark field, and
Q= Ts+-,'F, we get

p'„(O,x),J„(0)j= 2iese„—,z,t'j s (0)8(x)+grad term, .
where 1 = (1,0,0,0), e„.i, is the complete antisymmetric
tensor of the Minkowski space so~~3= 1, and the gradient
term is the so-called Schwinger term which will be
ignored here. r The current fs' is defined by

js'= (2/9)4'vA'V+ (1/3)it'Vsv'9P

The expression for Q enables us to write

js'= (2/9)A, x'+ (1/3)A."+(1/3v3)A. &,

where A', i=x', z', q, are the axial vector currents
which transform under SU(3) like the particle i Now.
we may write

I'„„(k,q
—k) —(2ies/ks') es.xr (kof')"

l&pl~~

X(0Ij 'I q)+O(1/k. ').
By SU(3) invariance, it is clear that only the term
A & in j5, contributes if the mixing effect between X'
and p is negligible. ' By PCAC and in the limit of

sa In this circumstance, case l(a) of Fig. 6 will be excluded.
If a„&0 this would require a large value of A..' The X'-g mixing angle is small. General theoretical estimations
are about 10' (D. A. Geffen, private communication). Because of
the uncertainties in the vector coupling constants and the error in
identifying C„=C„o in using exact SV(3} symmetry, the &mission
of the X'-q mixing is reasonable.
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exact symmetry,

(Of a. fq)=iC.oq. ,

where C. =~sr&A/gNN J"A 1 ~ 1S givN /4~14. 6.
We get therefore

1„„(k,q —k):—(e2/kp) e„„„(k,f.)"
f&pl~'o

Xq'(2C o/3&3)+0 (1/ko') .

FIG. 8. The contour of integration
of (a2).

Keeping only the leading term of the 1/ko expansion in
I'„„,we obtain (II3).

Before going on, we state the following two restric-
tions on the spectral function, which are easy to prove:

(a) The normalization condition requires that p(A)
has to decrease faster than 1/A. This can be proved from
the normalization condition.

(b) The spectral function p(A) must decrease no
faster than 1/A'. Otherwise J'dA A'p(A) converges and
it is easy to show that lim~i,

~

„H(k', (q—k)') 1/ko'
which contradicts the asymptotic condition (IVS). It
can also be shown that if p(A) —+ 1/h', the asymptotic
condition is also violated.

We must have

where 1&X&3.We want to show that X=2.
Suppose 1&X&2. Let us consider an auxiliary

function

then

f (z) =f(0)+— dx x'p(x)/t x(x—s)j,

&(k, (q—k)') - — lim (fi(k') —fi((q —k)')) .
t7gp]~oo 2 p (7gp(

—+oo
g0 0

Hence we need

lim t fi(k') —fi((q —k)')j~ const/ko. (B1)
/ leap j

—+co

When s is very large we can use the asymptotic form
of p(A.):

s "dx x'(Co/x")
fi(z)=fi(o)+-

(x(x—z)j

APPENDIX 3
We want to show that the asymptotic condition

(IVS) and the normalization condition (IV11) imply
that

lim p (A) —+ const/A. '.

Aj to 0. The extra contribution to the integral from 0
to Ai is taken care of by changing fi(0) to fi'(0). The
integrand has a singularity at @=0; since X—1&1,
this singularity does not cause trouble.

Let us consider the following function:

q (z) = 1/z"-'.

By Cauchy's integral formula, we have

p(z) =
27ri

dx q (x)

(x—s)
(B2)

where C is the contour shown in Fig. 8. Since 0&X—1&1,we can write

1
v(z)=

27ri

27ri

"+"dx q(x) 1 ™dxy(x)

(x—s) 2iri ;, (x—s)
~ dx (1/xX—1 e

—2+i(i—ii/xX —i)

(x-s)

We obtain therefore

dx tze' &" '&/sin(X —1)zj
x'—' x—s ~X-1

Then we obtain

C ~gjm(x —1)

fi(z) =fi'(o)+ .
sin P.—1)z.z"-'

"dx x'p (x)

(x—s)

Coze*' &"—"2(X—1)q,f (k') —f ((q—k)')
sin(X —1)z. k»-'

which contradicts the asymptotic condition (B1).
For 2&X&3, we can consider another auxiliary

function

00C0S dg ~ ~

=f '(0)+ By a similar procedure we can show that the asymptoticf& 4 condition (IVS) cannot be satisfied either.
It is now an easy matter to check that for X=2 the

where fi'(0) is another constant. In the above expression high-energy function does satisfy the asymptotic
we have extended the lower limit of integration from condition (IVS).


