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from Eq. (10a) by using the same v but 4,, C,, and Q,.
We find that C, is negligible and that 4,~0.194(y=7),
A, ~0.271(y=3%=). The resulting branching ratios are
also listed in Table I. It is evident that a sizeable sup-
pression of the n— 3w mode can be obtained in this
way. On the other hand, assuming the usual form of the
electromagnetic interaction, it is very difficult to obtain
the required suppression without a final-state interac-
tion. If we set y=0 then Eq. (10a) goes to®

I,(000)/Ty(+—0)=3/[1+1e,(30.*].  (16)

It can be seen from Eq. (16) that a large suppression
would require a gross distortion of the spectrum. A
form of the 9-decay matrix element similar to ours has
been proposed on phenomenological grounds by Foster
et al®

Next let us briefly consider the branching ratios
obtained by using Eq. (12) for §(¢). Taking r=%M,, a
value which does not give any final-state effects for
K — 37, we calculate from Egs. (10a) and (13) the
value of I',(000)/T,(+—0) to be 1.08, 1.26, 1.33, and
1.39, respectively, for ¢=90° 60°, 45°, and 30°.

18 K. Wali, Phys. Rev. Letters 9, 120 (1962).
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Thus, we have shown how the current-algebra
approach of Hara and Nambu can be simply modified
to take account of final-state interactions in K — 3=
and n— 37 decays. Because the Q value for K — 37
is so low, we expect little change of the previous results
in this case. However, if the low energy I=0 =
scattering is sufficiently strong, this mechanism may
help to explain the anomalously low n — 37°%/5 — wta—n®
branching ratio. If it is definitely established that &
is too small in the low-energy region and the experi-
mental branching ratio remains low, alternative
and possibly radical explanations will have to be
entertained.

We would like to thank Professor Y. Nambu for
helpful discussions and encouragement. One of us
(Y.T.C) would like to thank Professor S. P. Rosen for

discussions.

14 Since the first version of our manuscript, unpublished reports
on this problem have appeared by T. Das, M. Grynberg, and K.
Kikkawa (Rochester); R. H. Graham, L. O’Raifeartaigh, and
S. Pakvasa (Syracuse); L. Clavelli (Chicago); J. Pasupathy and
A. Vaidya (Rochester); S. L. Adler (Princeton).
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The Bjorken limit is applied to obtain sum rules for the lifetime of x* and for the vector-meson coupling
constants. In particular we obtain predictions that gpur?/4mr=0.534:0.1 and 7,0~<(0.84:0.83) X107 sec.
The latter is in good agreement with the experimental value (0.89-:0.18)X 1076 sec. From our knowledge
of the approximate value of gyur, we conclude that the high-energy behavior of the 7%y vertex function
is not important to the pion lifetime. The results of this calculation constitute a consistency condition on

the plausibility of the Bjorken limit.

IN a recent paper Bjorken! has used the chiral
U(6)QU(6) algebra to obtain a high-energy be-
havior for the Fourier transform of the time-ordered
product matrix element of two current densities:

My=i | d*% e* (4| T{j,*(x),7°0)}|B), (1)

where k is an arbitrary four-vector. Bjorken shows that
if the matrix element can be truncated, then, when
| Bo| — oo for Imke>0,

1
Mou— "k / d*x e (A |[5,2(0,%),7,5(0)]| B). (2)

* Work supported by the National Science Foundation.

1J. D. Bjorken, Phys. Rev. 148, 1467 (1966). This application of
the Bjorken limit arises out of private communications between
Professor J. D. Bjorken and Professor D. A. Geffen.

We shall sketch briefly the derivation of (2). By insert-
ing a complete set of states into the commutator of Eq.
(1), we may write

Mm=7: diy etk Z {g(xo)ei(PA—Pn) I

X (A ju2(0) [r)(n| j,#(0) | B)4-6(—wx0)
X e Pn=Pn-=(4 ] j,50) |n)(n | ju*(0)| B)} »

1
=_/d3x e—ik~xz {___—__
n (kotPao—Pno

7,2(0,x .vﬂ T 5
X130 )l 20| B) =

X (4] 5,50) |n)(n) ju2(0,)| B) .



1616

If the matrix element can be truncated, we get Eq. (2).

We shall apply Eq. (2) to the electromagnetic current
density and take matrix element between the vacuum
and a 70 state to obtain a relation between the coupling
constants of the vector-meson—vector-meson-pion in-
teraction and the vector-meson-pion—photon interac-
tion. The requirement of the 1/ko behavior of the matrix
element also enables us to obtain a sum rule for the
decay width of 70— 2v.

We let j,e=J,, j=J,, |4)=0), and | B)=|=°g),
where J, is the electromagnetic current density of
hadrons. Follow Ref. 1, we assume a quark structure
for J,, then,

[ 4(0,%),7,(0) J= — 2ie2e,n. £ 157(0)84(x)
+grad. term, (3)

where £=(1,0,0,0), e, is the complete antisymmetric
tensor of the Minkowski space, and €ns3=1, and the
gradient term is the so-called Schwinger term which will
be neglected in the following consideration.? The opera-
tor fs. is defined as

j5v= (2/9)A ¢X0+ (1/3)A u'T0+ (1/3V3)A P

where 4,%, 1= X0, 7%, 1, is the axial-vector current which
has the same SU(3) transformation properties as the
particle 7.

If we substitute (3) into (2), we have

My — (2i/3k*)€ € s (RoE) 0| A" | 7,9)+O(1/ke?) .

The evaluation of the above matrix element is standard;
we obtain
(0] 4, |x*,g)=1Cxoq.,

where Coo=MyF4/gnnr, Fa=1.18, gyn2/4m==14.6,
and M y is the mass of the nucleon. Then

22 1 ‘
M;w_‘) _—cr(’*euv)\r(k()g))\q7+0(1/k02) . (4)
3 ke
On the other hand, Eq. (2) can be evaluated directly
by inserting a complete set of states in the commutator.
It can be shown, however, that the result depends on
the value of k. This is because, as has been noted by
Furlan et al.,® an expression like the one on the right-
hand side of Eq. (2) is noncovariant. Consequently, the
result of the limiting process of |ko| — « depends on
the frame of reference of ko. We shall follow a covariant
procedure to calculate (2) by calculating (1) in a dis-
persion relation and letting | ko] — .3

We may write
)‘k/ T

M = euir F(R%E'?), ()

M
where &'=g—k. The quantity F(k%k’?) defined in the

?F. Buccella, G. Veneziano, R. Gatto, and S. Okubo, Phys.
Rev. 149, 1268 (1966).

3 G. Furlan, F. Lanny, C. Rossetti, and G. Segrg, Nuovo Cimento
40, 597 (1965).
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above expression is an invariant function in 42 and £'?,
and is symmetric in the interchange of these two vari-

ables, i.e.,
F(k2E'?)=F(k'%k?).

The above equality follows Egs. (1) and (5). We note
that k2 and %’2 can be viewed as the masses of the virtual
photons at the 7%y vertex, and F(0,0) is related to the
decay width of #° — 2y by the formula

|F(0,0)]?
202y =m0 (6)
64w

To evaluate the form factor F(k2,k’%) we shall assume
a once-subtracted dispersion relation*:

k2 /‘ AF(k2x)dx
x(x—E'?)

F(k*%Ek'Y)=F(k%,0)+
s
where

AFx(k2,x)=")‘pfp#“/(k2)5(x_'mp2)+7r>\wfwrv(k2)
X 5(95—'mw2)+7r)‘¢fw~/(k2)5(x_m¢2)
+R(k%x)0(x—Ae%). (8)

In Eq. (8) we write explicitly the single-particle con-
tribution from the vector mesons and include all the
high-mass contributions in the function R(k%x)
XO0(x—Ao%), where A¢Z>m,% The quantities Ay,
V=p° w, ¢, stand for the V—v coupling constants of
dimension (mass)?. The function fy.,(k?) is defined
through the following expression:

<V’ Q“‘k» EIJM(O) ]7"0) 9>= _S#V)\Tevk)\qf
Mx0

1

frav(&%), (9)

and fy.,(0) is the dimensionless phenomenological

coupling constant of the radiative decay V — w%+.
By (8), Eq. (7) becomes

) }\va,,7(k2)
FkAED)=FF0)+E? Y ————
V=p,u,¢ mvz(mVL—k/z)

E? [ R(E%A2)

— ———————dA2,

(10)
T Ja A2(A2—F'2)

The evaluation of F(%2,0) is similar to that of Eq. (7).
The result is

)\VfVM(O)
FE%0)=F0,00+%* 2 —————
V=p,w,¢mV2(mV2—k2)
k2 @0 S(AZ)

——dAZ%, (11)
7 J 52 A2(A2—E2)

where S(A?) represents the high-mass contribution to
the absorptive part of F(k%0) and Z:>m,>

4 An unsubtracted dispersion relation does not predict correctly
the 70 lifetime. Nevertheless, we shall show later that the unsub-
tracted dispersion relation gives a rather close prediction -to the
experimental value of the =0 lifetime. The.difference is fixed up by
the Bjorken limit. See also Egs. (16) and (24).
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To calculate fy.,(k?) we apply again a once-sub-
tracted dispersion relation.® Using Eq. (9) to obtain the
absorptive part of fy.,(k?% and separating the contribu-
tions of the vector mesons from those of the high masses,
we find

oy (BD) = fyry(0)+ k2
Jray(®?) = fr=,(0)+ V'Ew,wmvlz(mwz“kz)
B 1A%
— ————dA?

A2, (12)
™ anAZ(AZ._kZ)

Ay gvvia(my?)

)\vaﬂ/ k? | k'?

F(RLED=F(0,0+ X
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T
V=p,0.0 Mmy? \mv2—k2 mvz—k'
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where gyy . (my.2) is the “phenomenological” coupling
constant of the V-V’-r interaction with all the three
particles on the mass shell and gyy - (mv:2) = gy v (my?).
Again the function Ty(A?) represents the high-mass
contributions and Qy=>m,%

The form factor F(k%k'?) can now be obtained by
substituting Egs. (11) and (12) into (10) and symmetriz-
ing in k2 and %’%. Abbreviating fy.,(0) and gyy+.(my?)
by fv=yand gyv:., we obtain the expression for the form
factor:

AvAvgyviak?k'

V.V'=p,0,0 szmV/2(mV2—k2) (mV'Z—klz)

L ®  [RIRGEAY BRAGEY 1 = S & Iz
R )
o Jae LA2A—E) A2(A2—p2) ] 2r Jse AT \A2—p2 A2_pn2
1 Mot TyAYr JO oI
+— —_— dA2 -+ :l (13)
22 Lonp—k)(02—E2)  (my?— ) (A2—E2)

21 V=p,0,0 mv2 Qy?

The asymptotic form of F(k2%'%) can now be easily de-
rived. It reads

lim F(k2 (g—k))=F(0,0)—2 3 —fvey
|ko| > V=p,0,0 My
AvAyr 1
+ gVV'w—B"—“{Z > AvSfvey
V,.V'=pw,¢ ngmVI2 k02 V=p,w,¢

- 2

V. V'=p,w,¢

1 1
)\V)\V'gVV'w(——"‘l" 2>+mp23/}
my:

my?

+0(1/k?).
To obtain Eq. (14) we have used the identity
1 1 « . x? 1

(14)

T
x=y ¥y ¥ ya—y
to expand the denominators of the various integrals in
Eq. (13) and assumed that the resultant integrals so
obtained are convergent. The quantities B and B’ are
defined as follows:

1 pr® dA?
—[R(w A)+R(A%, )]

21 J g2
1 = dA? 1 Ay
[ Ssan—- ¥ =
T J 52 A? T V=p,0,0 My?

< dA?
X f Eroay,
Qp? A2

5 Here we also take a subtracted dispersion relation because an
unsubtracted dispersion relation will give at low energies the

1 r> 1 dA?
my?B'=— [ dA*[R(,A*)+R(A%,0)]+— [ —
T J At 2w Jpp2 A2
d 1 =
X'd—[:R(l/tiA2)+R(A271/t)]t=0+_ dAZS(A2)
t m™J 22

1 * 1 1
S / dA2<———+—>TV(A2).
™ V=p,0,¢ Qy? my? A2

We shall show later that our knowledge on the coupling
constant enables us to conclude that B and B’ are small.
Comparing Eqs. (4) and (14), we obtain two sum rules:

Avfvey

F0,00—2 3
Ve=p,0.0 My>
AvAV v vin
——FF  F—B=0, (15)
V.,V'=p,u,¢ (mV2mvr2)
Av)\vf
2 2 Mfve/mt— X gvvin
V=p,0,0¢ V.Vi=p,w,¢ mp2
1 1 2¢?
X(—--}— >+B'=~ Cpo. (16)
mv? my* 3m,?

To extract useful information from Egs. (15) and (16),
we must know the various vector-meson coupling con-
stants. At the present time the vector coupling con-

result, for example, fory=—(e/3v,)gour, Where goor is the pom
coupling constant. We want to avoid such a result. Also we are
aware of the situation that f,», may be zero [see A. Donnachie
and Graham Shaw, Ann. Phys. (N. Y.) 37, 333 (1966)]; then the
above result will reduce to g,.r=0, which makes the decay w — 3=
hard to understand theoretically.
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stants cannot all be evaluated phenomenologically; we
must resort to models to evaluate some of them. We
apply current algebra, taking symmetry-breaking effects
to the first order, to obtain relations among the vector-
meson coupling constants.® Incorporating those rela-
tions with the generally accepted information that?-8

Sor™20, gppr0, sinf~1/V3,
where 6 is the w-¢ mixing angle, we have
No=—em,?*/37,, No=V2em,?/3v,,

Sory= ""?lifwﬂ )

where v,~v,.» is the prm coupling constant. Since
m,2~m,,?, Egs. (15) and (16) are reduced to

No=em,?/v,,

4e 2¢?
F(0,0)+~—fory———8pr—B=0, (17)
37, 3792
2e 2¢? e?C o (18)
— fory——8pur— —B'=0. 18
3v, ! 3'sz ’ 3m,?

From Egs. (18) and (17) we can eliminate g,,. and

obtain
e*C

2e 0
F(0,0)=— (wa”-i_ 2+B'—B> . (19)

Yo 3m,

Using the recent data of the decay width o — x4y
and p — 27,° we obtain that

Furs?/Am>0.15(120.2)a,
v, 4r2.7 .

Then (19) gives the prediction
F(0,0)—5g0( fary/v,) (4.620.4) X 10— B,
Jory/ (Y ogun=)>0
50 (fury/7,)(342£0.4) X 10-3— B,
Jorr/ (Vo8 52)<0.
Since B'— B~B for A2, Z¢%, Qy=>m, % we have dropped

the term B in the above expression. Comparing the pre-
dicted values in (20) with the experimental one

| Foxp(0,0) | ~(3.3220.4) X 1073,

which is obtained by taking 7,~2(0.8940.18)X 10716
sec? and applying Eq. (6), we can solve for the values of

(20)

6 Bing-lin Young, Ph.D. thesis, University of Minnesota, 1966
(unpublished).

7 Phenomenologically we find g,,+2/4m>a? This is negligibly
small in comparison with unity, which we expect to be the order of
magnitude of strong-interaction coupling constants. Since fry is
of the order of (¢/v,)gper, then fory2/4m>~a? which is also negligibly
small in comparison with «, the strength characterizing the first-
order electromagnetic interaction.

8 The value of the w-o mixing angle is supported by the mass
formula and the current-algebra calculations.

9 A. H. Rosenfeld ef al., Rev. Mod. Phys. 39, 1 (1967).
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B': For fury/(v,gnn2)>0, we obtain
B'~—sgn(fury/7,)1.2X107%,
sgnF (0,0)= —sgn(furs/75) 1)
—5gN(fury/7,)8X 1073,
sgnF(0,0)=sgn(furv/7s)
and for fury/(v,gnn-)<0, we get
B'~0. (22)

From Egs. (18) and (21) which correspond to the
case with appreciable contributions from the high-mass
states, the following predictions on the sign and magni-
tude of g,.r result:

(i): For B'~—sgn(fury/7,)1.2X1073,

Goor?/ 4014,  sgngour=5g0(furv/7,).

For B'~~—sgn(fury/v,)8X1073,

g,,w,r2/47r§.0.08, SgNLpwr = _Sgn(fwﬁ'v/'yp) .

From Egs. (18) and (22) which correspond to the case
of negligible high-mass contributions, we have

(i) :

(if)

Spor= Sgn(fwvr*r/')’p)
X{|¥oforv/€| 72| Cao| /2m,2}
Zowr?/4m>20.53-0.11.

(23)

If we ignore completely the contribution of the high-
mass states, i.e.,, B’=0, we also have

wr\2 @l
F(0,0)= sgn(f 7)— ‘
Vo /370" 4w
which gives a 7° mean life 7,~(0.842-0.18) X106 sec.
The solutions (i) and (ii) of g,»r, which are very small,
do not agree with our knowledge of the approximate
value of g,.-.1° The solution (iii) is, however, in agree-
ment with what we know about the value of g,ur. A
comparison of the values of g,..%/4r and F(0,0) of the
solution (iii) with those obtained from other methods is
shown in Table I.!! An interesting feature of the present
method is that it predicts also the relative signs of gyun,

Yofary

[

Vo’ l Cro I

2m,

| o

10 Because of the approximate validity of the vector-meson-
dominance model, we expect gy.r2/4n to be the order of (v,2/4mra)
X (fury?/4w), which is about 0.4. The small values of g,.-2/4r as
obtained in solutions (i) and (ii) also make the decay w — 3 hard
to understand theoretically.

11 Because of the restriction on the mass values of w, p, and =°,
Zoun, which is defined for all three particle being on the mass shell
in the present model, cannot be determined phenomenologically.
The value determined from the single-vector-meson-dominance
model is g,.~(0) while the value determined from the decay & — 3«
by means of the model of M. Gell-Mann, D. Sharp, and W. G.
Wagner [Phys. Rev. Letters 8, 261 (1962)] is an average of the
values of gour(k2) range from goor (742) t0 gowrn((Mmw—mx)?). In con-
tradiction to the general expectations that g,.-(k?) should be a
smooth function of k% and the difference between these three values
is small, the present calculation indicates that g,.r(k?) may not be
a slow varying function of k2. This gives a possible explanation
of the difference between the values of g,ur obtained from the
Gell-Mann, Sharp, and Wagner model and the single-vector-
meson-dominance model.
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TaBLE I. Values of gur?/4r and |F(0,0)| calculated in different models. The experimental value of |F(0,0)] is (3.340.4)X1073.

Sign of
Zowr® /4 |F(0,0)] Jory/ (Vopar) Models
0.45-£0.08 e Gell-Mann, Sharp, and Wagner model®
0.414-0.08 (4.04:0.4) X103 + Single-vector-meson-dominance model,
= y+plw, w—al+tp
Y Ny
0.64£0.11 Two-vector-meson-dominance model of the decay
70— p04w— 2y
0.32 cen Gasiorowicz and Geffen’s Adler-Weisberger type sum rule®
oo (5.4£0.3) X 1073 [770>2(0.34240.3) X 10716 sec] e Lautrup and Olesen’s two-baryon modele
0.544-0.11 (3.4+0.4) X1073[7,022(0.844-0.18) X 10716 sec ] + The present model

a The formula of the decay width of w—3x in the model of M. Gell-Mann, D. Sharp, and W. G. Wagner [Phys. Rev. Letters 8, 26 (1962)] has been
reconsidered in Ref. 6 by using the currently accepted mass values of p and w.

b S. Gasiorowicz and D. A, Geffen, Phys. Letters 22, 344 (1966).
° B. Lautrup and P. Olesen, Phys. Letters 22, 342 (1966).

Sorv/v0, and gy . These relative signs may provide an
alternative way of checking the present model if the
experiments to carry out such sign measurements are
feasible.

The indication that B~0 and B'~0 give good pre-
dictions seems to suggest the following feature for
high-mass contributions to the sum rules (17) and (18):
The dynamics are oriented in such a way that the high-
mass contributions from various individual terms that
contribute to (17) and (18) cancel each other and the
total effect of the high-mass contributions is negligible.
This does not imply that the high-mass contribution of
each individual term is also small. Let us consider the
wm%y vertex function defined by Eq. (9) as an example.
If we apply the Bjorken limit to this vertex function and
use the hypothesis of partially conserved axial-vector
current (PCAC) in the infinite-momentum limit of =?,
we obtain the following sum rules:

>\p Tw A2)
fw'rr'y('— °°)=fw7r—y—‘_gpm.-—/dA2 ’
m,’ A2

T.(A?)
2 =0,
m,?

Ao

—4f pw1r+ / dA

M p*
where the first and the second sum rules are obtained,
respectively, from the zeroth- and first-order expan-
sions of the inverse square of the 7% energy. Note that
the Bjorken limit is zero. These expressions indicate that

the high-mass contribution 7,(A% may not be small.
As shown in Egs. (23) and (24), and Table I, the

present model is close to the single-vector-meson model.
The difference between the two is attributed to the
Bjorken limit which may be considered as a high-
energy correction to the low-energy vector-meson con-
tributions. Because of the smallness of the Bjorken
limit, the difference between these two models is also
small. Therefore we may conclude that the single-vector-
meson-dominance model might be expected to work
reasonably well at low energies as well as high energies,
although it does not give perfect predictions.

Finally we should like to remark that since there are
ambiguities in defining the coupling constant g,.,'* we
shall not consider the present calculation as a strict test
of the validity of the Bjorken limit. Instead, we consider
it as a consistency condition on the plausibility of the
Bjorken limit. A test of this limit has been considered by
the author in connection with model studies of the decay
process n— ut+u—.12 It has been indicated that de-
tailed experimental information is required in this con-
nection, e.g., the decay width »— u+<4u—, the lepton
pair distribution in the Dalitz pair decay of 7, fur,%/4,
Zowr/4m, the width of n— 2v, as well as the sign of
fw‘lrv/(')’pgpwﬂ)-

The author is grateful to Professor D. A. Geffen for
very helpful communications which greatly influenced
the final form of this work. He also wishes to thank
Professor D. B. Lichtenberg for suggestions, encourage-
ment, and reading the manuscript.

12 Reference 6; Bing-lin Young, this issue, Phys. Rev. 161, 1620
(1967). Applications of the Bjorken limit in these two articles

arise also out of private communications between Professor D. A.
Geffen and Professor J. D. Bjorken.



