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from Kq. (10a) by using the same p but A „,C„, and Q„.
We find that C, is negligible and that A-„0.194(y=sr),
2~0.271(y= ssr). The resulting branching ratios are
also listed in Table I. It is evident that a sizeable sup-
pression of the q —+3xp mode can be obtained in this
way. On the other hand, assuming the Islul form of the
electromagnetic interaction, it is very dificult to obtain
the required suppression without a final-state interac-
tion. If we set y= 0 then Eq. (10a) goes to's

I'„(000)/P„(+—0) =—'/I I+—tt„'(—Q„)sj. (16)

It can be seen from Eq. (16) that a large suppression
would require a gross distortion of the spectrum. A
form of the q-decay matrix element similar to ours has
been proposed on phenomenological grounds by Foster
et ul. '

Next let us brieQy consider the branching ratios
obtained by using Eq. (12) for 8o(t). Taking r = oM, a
value which does not give any Anal-state sects for
E-+3tr, we calculate from Kqs. (10a) and (13) the
value of F„(000)/I'„(+—0) to be 1.08, 1.26, 1.33, and
1.39, respectively, for @=90', 60', 45', and 30'.

"K.Wali, Phys. Rev. Letters 9, 120 (1962).

Thus, we have shown how the current-algebra
approach of Hara and Nambu can be simply modified
to take account of Anal-state interactions in K —+ 3x
and rt ~ 37r decays. Because the Q value for E~ 3 sr

is so low, we expect little change of the previous results
in this case. However, if the low energy I=O m-7t-

scattering is suKciently strong, this mechanism may
help to explain the anomalously low st

—+ 3rro/r, ~ sr+sr sro

branching ratio. If it is de6nitely established that 5p

is too small in the low-energy region and the experi-

mental branching ratio remains low, alternative"
and possibly radical explanations will have to be
entertained.

Ke would like to thank Professor Y. Nambu for
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(Y.T.C) would like to thank Professor S. P. Rosen for

dhscusskons.

14 Since the 6rst version of our manuscript, unpublished reports
on this problem have appeared by T. Das, M. Grynberg, and K.
Kikkawa (Rochester); R. H. Graham, L. O'Raifeartaigh, and

S. Pakvasa (Syracuse); L. Clavelli (Chicago); J. Pasupathy and
A. Vaidya (Rochester); S. L. Adler (Princeton).
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The Bjorken limit is applied to obtain sum rules for the lifetime of ~ and for the vector-meson coupling

constants. In particular we obtain predictions that g,„'/4 0e.53&0.1 and r o—(0.84&0.83) X10 " sec.
The latter is in good agreement with the experimental value (0.89&0.18)X10 "sec. From our knowledge

of the approximate value of g,„,we conclude that the high-energy behavior of the 7l-0' vertex function

is not important to the pion lifetime. The results of this calculation constitute a consistency condition on

the plausibility of the Bjorken limit.

' 'N a recent paper Bjorken has used the chiral We shall sketch briefly the derivation of (2). By insert-

U(6) U(6) algebra to obtain a high-energy be- ing a complete set of states into the commutator of Kq.
havior for the Fourier transform of the time-ordered (1), we may write

product matrix element of two current densities:
dex eik e Q {g(x )ei(PA—Pnl e

M„„=s d x o'" (2 I Tf j„(x'),g„o(0)) IB), (1)

where k is an arbitrary four-vector. Bjorken shows that
if the matrix element can be truncated, then, when

I ko I
~oo for Imko) 0,

1
Mo ~—d'x e "*(~ILJo (o «),j'(0)PIB) (2)

ko

*Work supported by the National Science Foundation.
J. D. Bjorken, Phys. Rev. 148, 1467 (1966).This application of

the Bjorken limit arises out of private communications between
Professor J. D. Bjorken and Professor D. A. Ge6en.
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2e
M„„~ C 0

—e„„y,(kp$) "q'+0(1/ko') .
3 kp'

(4)

On the other hand, Eq. (2) can be evaluated directly
by inserting a complete set of states in the commutator.
It can be shown, however, that the result depends on
the value of k. This is because, as has been noted by
Furlan ef, al. ,' an expression like the one on the right-
hand side of Eq. (2) is noncovariant. Consequently, the
result of the limiting process of

~
ko~ ~ ~ depends on

the frame of reference of kp. We shall follow a covariant
procedure to calculate (2) by calculating (1) in a dis-
persion relation and letting

t ko~ —+ &e.'
We may write

k"k"
M„.=e„,)„F(k',k"),

where k'=q —k. The quantity F(k', k") dined in the

'F. Buccella, G. Veneziano, R. Gatto, and S. Okubo, Phys.
Rev. 149, 1268 (1966).

3 G. Furlan, F.Lanny, C. Rossetti, and G. Segre, Nuovo Cimento
40, 597 (T965).

If the matrix element can be truncated, we get Eq. (2).
We shall apply Eq. (2) to the electromagnetic current

density and take matrix element between the vacuum
and a x' state to obtain a relation between the coupling
constants of the vector-meson —vector-meson —pion in-
teraction and the vector-meson —pion —photon interac-
tion. The requirement of the 1/ko behavior of the matrix
element also enables us to obtain a sum rule for the
decay width of ~P —+ 2y.

We 1«j;=~„j'=J., ]~&= )0&, and )B&= ~~', q&,

where J„ is the electromagnetic current density of
hadrons. Follow Ref. 1, we assume a quark structure
for J„, then,

P„(o,x),J„(0)J= —2ie'e„„g,Pjs'(0) 84(x)

+grad. term, (3)

where P= (1,0,0,0), e„„~,is the complete antisymmetric
tensor of the Minkowski space, and ep]F3=1 and the
gradient term is the so-called Schwinger term which will
be neglected in the following consideration. ' The opera-
tor j5 is de6ned as

j,.= (2/9) A.x'+ (1/3)A."+(1/3&3)A.&,

where A, ', i =X,~, q, is the axial-vector current which
has the same 5U(3) transformation properties as the
particle i.

If we substitute (3) into (2), we have

M„„-+(2i/3ko')e'e g (kog)"(0~ 2"'[s',q&+0(i/ko')

The evaluation of the above matrix element is standard;
we obtain

(ota, -') ',q&=ic. q„
where C o=M~F~/g~~, F~=1.18, g~~ '/4s 14.6,
and M~ is the mass of the nucleon. Then

above expression is an invariant function in k' and k",
and is symmetric in the interchange of these two vari-
ables, i.e.,

F(k',k")=F(k",k') .

The above equality follows Eqs. (1) and {5).We note
that k' and k" can be viewed as the masses of the virtual
photons at the ~'yy vertex, and F(0,0) is related to the
decay width of ~ ~ 2p by the formula

To evaluate the form factor F(k',k") we shall assume
a once-subtracted dispersion relation4:

where

~F.(k', x)dx
F(k',k")=F(k',0)+—

x(x—k")
(7)

SF,,(k2,x) =~X,f„,(k2) &(x—~,')+~X.f„.,(k2)

Xh(x —nz ')+~K,f„.,(k') h(x —m, ')
+Z(k', x)0(x—X,2). (8)

In Eq. (8) we write explicitly the single-particle con-
tribution from the vector mesons and include all the
high-mass contributions in the function E(k',x)
&(e(x—A02), where h.o'))m, '. The quantities 'Av,

V= p, (o, y, stand for the V—y coupling constants of
dimension (mass)'. The function fv ~(k') is de6ned
through the following expression:

1
(&, q

—k, ~l&,(0) I
~', q) = —&,.),.~"k"q' fv „(k'), (&)

The evaluation of F(k',0) is similar to that of Eq. (7).
The result is

~vfr v(0)
F(k' 0) =F(0,0)+k'

r-~, ~, v mv (mv' —k')

k' " 5(A')+- dh, ' (11), X'(X'—k)
where 5(h. ') represents the high-mass contribution to
the absorptive part of F(k',0) and Zo'))m '

' An unsubtracted dispersion relation does not predict correctly
the 7|.0 lifetime. Nevertheless, we shall. show later that the unsub-
tracted dispersion relation gives a rather close prediction to the
experimental value of the 7f' lifetime. The, difference is Gxed up by
the Bjorken limit. See also Eqs. (16) and (24}.

and f~ ~(0) is the dimensionless phenomenological
coupling constant of the radiative decay V —& 7r'+y.

By (8), Eq. (7) becomes
Xvfv.,(k')

F(k' k")=F(k' 0)+k"
&-l,~, s mv'(mv' —k")

k" " E(k',A.')+- dA'. (10)
vr g, ~ h'(A' —k")
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~ t'on with all tire tbconstant of tbe,
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be obtained byks k)z) can nowTb.e form factor ( )

1p and symmetriz-and (12) into
2

substitut»g Eq ' .
(p) and gvv'~(mv'Abbrevi
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facto~:

16
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(p2q we apply again
t acted dispersion
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'
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,2
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f (k')=fv (o)+k

(')
dh, (12)

he(hs —k')Qy

2 12~v~v gvv+, i+'—k mv—

1
+— dhs

ho~

k"R(ks,h') k'R(h', k") 1

h' h' —k") h'(h' —k') 2)r

S(hs)( k'

4s—k' h' —k")

1 Xv+-
2K v=p ~.q mv g&'
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dA2

42k" 42k"

'—k2'—k") (mv' —k")(h' —kh' (mv' —k') h. — . (»)

rm of F(ks k") can now be ea
'

yeasil de-The asymptotic form of
rived. It reads

Pv' =J'(0,0)—2 2 fv. ,lim Il(ks, (g—k)')=
[kp)~m

1
28 ——mp

hp~

1 "dA2
dhs/Z(~ hs)+ R(hs, ~)]+

1
X—, ', — dh. '5(h. ')X—LR(1/~, hs)+R(hs, 1/I) j, .+-

dt
——2 P Xvfv,+ —gvv ~—&——

2 .2
0v v'=p ~ v mv mv»

7l v=p)&) p

/1 1
hsl +—Tv(h. ) .

&mv' h'

v v~=p, ~,~
~v~v gvv ~

mv mv' r that our knowledge on the coupling
h 8 d8 llconstant enables us to conclude t a a

E s. 4 and(14, weo btain two sum ruComparing Eqs.

o o . j 4~ we have used the identityTo obtain Eq. ~14 we av

1 x x2 1
F(0,0)—2

Xvkv gvv.

enominators of the various integrals in

r ent. The quanti iesobtained are convergen .
defined as follows: V~p) hl ) p

2,2v, v'=), ~, ) (mv mv

A, vXv
-gvv.

LR(~ h')+R(h. ' ~))
2x ho~ A2

xi -+-(
kmv' mv'

2e
C,o. (16)

3mp

1 "dA2
S(h') ——

h.' 7i v=p)~) p mv7r go'

dh2
Tv(h. '),

Ov' ~2

dis ersion relation ecause ant s tr cte p
Hunsubtracted dispersion re a ion

information from Eqs. 15 and (16),To extract useful in orm
the various vector-meso

COIl-

we must know
me the vector coupling cstants. At the present time e v

where g, is the peon
h lt. Also we areWe want to avoid such a

roa be zero [seeh t tron that f„„y
and Gra a aw, . 3,

result will reduce to g,„=
d theoretically.hard to understan
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stants cannot all be evaluated phenomenologically; we
must resort to models to evaluate some of them. %e
apply current algebra, taking symmetry-breaking eQects
to the first order, to obtain relations among the vector-
meson coupling constants. ' Incoi'porating those rela-
tions with the generally accepted information that~ 8

f„., 0, gpp ~0, sing~1/K3,

where 0 is the ~-q mixing angle, we have

B': For f„7/(ypg~~. ))0, we obtain

B' —sgn(f„.,/yp)1. 2X10 ',
sgnF(0, 0)= s—gn(f„~/yp)

—sgn(f„ /y, )8X10 ',
sgnP(0, 0) =sgn(f„ /y, ),

and for f„~/(ypgN~„)(0, we get

8'~0.

(21)

(22)

Ap ='em, '/7„, )I,„= em—ps/3y„), „=v2em p'/3y p,

pal + 3 et)%+ p

4e 2e'
F(0,0)+ f,—gp„— B=0,—

3+p 3+p

e2C 0—8'= 0.
2e22e

frappe gpMp

3+p 3+p 31gp

where 7, yp is the pew coupling constant. Since
mp'~m„', Eqs. (15) and (16) are reduced to

From Eqs. (18) and (21) which correspond to the
case with appreciable contributions from the high-mass
states, the following predictions on the sign and magni-
tude of g,„result:

(i): For B' sgn(f„—,~/y, ) 1.2X10 ',

gp '/4m 0.14, sgng p„——sgn( f„„/yp) .
(ii): For B'~ sgn(f„, ~—/yp) 8X10 ',

gp '/4 —7r 0 08 Sgnf p
= Sgn(f r/"/p) ~

From Eqs. (18) and (22) which correspond to the case
of negligible high-mass contributions, we have

/ 2e esC, o

F(o,o) = —
I y...+ +B'—B I.k3„-' 3m, s ) (19)

From Eqs. (18) and (17) we can eliminate gp„and
(111):

obtain
gp~~= g (f~pvl&p)

X(Ivpg-"/eI+~p'IC. I/2m. '), (23)

g,„.'/4s ~0.53&0.11.

If we ignore completely the contribution of the high-
Using the recent data of the decay width r» —+s+y mass states, e B~ 0
and p~ 2m. ,

9 we obtain that

f,'/4n 0.15(1+0.2)rr,

~,s/4 =2.7.

/flaw y

F(0,0) = sgnI
3 y, s/4s 2fÃ p

(24)

Then (19) gives the prediction

F(0,0) —sgn(f„~/yp)(4. 6~0.4)X10 '—B',
far pr/(y pgNN p) +

20—sgn(f„, /yp)(3. 4~0.4)X10-'—B',
fry p7/('y pgNiv p) (0 ~

Since &'—&~& for A.o', Zo, ~v'&&esp', we have dropped
the term 8 in the above expression. Comparing the pre-
dicted values in (20) with the experimental one

I P. ,(0,0) I
—(3 3&0.4)X 10 ',

which is obtained by taking r p (0.89&0.18)X10 "
sec ' and applying Eq. (6), we can solve for the values of

Bing-lin Young, Ph.D. thesis, University of Minnesota, 1966
(unpublished).

r Phenomenologically we 6nd gp„'/4s —n'. This is negligibly
small in comparison with unity, which we expect to be the order of
magnitude of strong-interaction coupling constants. Since f„~ is
of the order of (e/pp) gpss then f„~'/4m-~n' which is also negligibly
small in comparison with o,, the strength characterizing the 6rst-
order electromagnetic interaction.

The value of the or-p mixing angle is supported by the mass
formula and the current-algebra calculations. .

P A. H. Rosenfeld et a/. , Rev. Mod. Phys. 39, 1 (1967).

which gives a s-' mean life r,~(0.84&0.18)X10 "sec.
The solutions (i) and (ii) of gp„, which are very small,

do not agree with our knowledge of the approximate
value of gp„.m The solution (iii) is, however, in agree-
ment with what we know about the value of g,„.A
comparison of the values of gp„'/4s. and F(0,0) of the
solution (iii) with those obtained from other methods is
shown in Table I."An interesting feature of the present
method is that it predicts also the relative signs of g,

"Because of the approximate vaHdity of the vector-meson-
dominance model, we expect gp„'/4s- to be the order of (yp'/4~a)
X(f „'/kn), which is about 0.4. The small values of g, '/kr as
obtained in solutions (i) and {ii) also make the decay ou ~ 3m. hard
to understand theoretically."Because of the restriction on the mass values of co, p, and w',

g, „which is de6ned for all three particle being on the mass shell
in the present model, cannot be determined phenomenologically.
The value determined from the single-vector-meson-dominance
model is g, (0) while the value determined from the decay m —+ 3m.

by means of the model. of M. Gell-Mann, D. Sharp, and W. G.
Wagner [Phys. Rev. Letters 8, 261 (1962)g is an average of the
values of gp, (k') range from gp„(m ') to gp„,((m„—m )'). In con-
tradiction to the general expectations that g,„(k'} should be a
smooth function of k' and the difference between these three values
is small, the present calculation indicates that g, (k') may not be
a slow varying function of O'. This gives a possible explanation
of the difference between the values of g,„obtained from the
Gell-Mann, Sharp, . and Wagner model and the single-vector-
meson-dominance model.
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TABLE I. Values of g,„,'/4s. and
~
P(0,0)

~
calculated in diiIerent models. The experimental value of ( P(0,0)

~
is (3.3+0 4) X10

gl « /41r

0.4S~0.08
0.41~0.08

0.64&0.11

0.32
~ ~ ~

0.54~0.11

IP(0,0) I

(4.0&0.4) X10 '

~ ~ ~

(5.4+0.3) X10 'Lr o~(0.34&0 3) X10 "sec)
(3.4+0.4) X10 'jT 0~(0.84+0.18)X10 "sec(

Sign of
f«v/(&I fn«) Models

Gell-Mann, Sharp, and Wagner model'
Single-vector-meson-dominance model,

7t' ~ )r+p )C0 ) CiO ~ Ã +p
4v Nv

Two-vector-meson-dominance model of the decay
m'~ p'+co —+ 2y

Gasiorowicz and Germen's Adler-Weisberger type sum rule
Lautrup and Olesen's two-baryon model'
The present model

ss The formula of the decay width of co~3~ in the model of M. Gell-Mann, D. Sharp, and W. G. Wagner t Phys. Rev. Letters 8, 26 (1962)) has been
reconsidered in Ref. 6 by using the currently accepted mass values of p and u.

b S. Gasiorowicz and D. A. Germen, Phys. Letters 22, 344 (1966).
e B.Lautrup and P. Olesen, Phys. Letters 22, 342 (19663.

Xpf-.( )=f-. —
mp

2'

T„(As)
/prow+

mp mp 2

Z'„(As)

where the first and the second sum rules are obtained,
respectively, from the zeroth- and first-order expan-
sions of the inverse square of the ~' energy. Note that
the Bjorken limit is zero. These expressions indicate that
the high-mass contribution T„(A') may not be small.

As shown in Eqs. (23) and (24), and Table I, the

f„r/y„and grrrr . These relative signs may provide an
alternative way of checking the present model if the
experiments to carry out such sign measurements are
feasible.

The indication that 8~0 and 8'~0 give goodpre-
dictions seems to suggest the following feature for
high-mass contributions to the sum rules (17) and (18):
The dynamics are oriented in such a way that the high-
mass contributions from various individual terms that
contribute to (17) and (18) cancel each other and the
total effect of the high-mass contributions is negligible.
This does not imply that the high-mass contribution of
each individual term is also small. Let us consider the
err'p vertex function defined by Eq. (9) as an example.
If we apply the Bjorken limit to this vertex function and
use the hypothesis of partially conserved axial-vector
current (PCAC) in the infinite-momentum limit of ~',
we obtain the following sum rules:

present model is close to the single-vector-meson model.
The difference between the two is attributed to the
Bjorken limit which may be considered as a high-
energy correction to the low-energy vector-meson con-
tributions. Because of the smallness of the Bjorken
limit, the difference between these two models is also
small. Therefore we may conclude that the single-vector-
meson-dominance model might be expected to work
reasonably well at low energies as well as high energies,
although it does not give perfect predictions.

Finally we should like to remark that since there are
ambiguities in defining the coupling constant g, ,"we
shall not consider the present calculation as a strict test
of the validity of the Bjorken limit. Instead, we consider
it as a consistency condition on the plausibility of the
8jorken limit. A test of this limit has been considered by
the author in connection with model studies of the decay
process rl —+ii++ii ." It has been indicated that de-
tailed experimental information is required in this con-
nection, e.g. , the decay width ri —+ ii++ii—,the lepton
pair distribution in the Dalitz pair decay of rl, f ~ /47r,

g,„'/47r, the width of ri~ 2y, as well as the sign of
f-./(v. a.-)

The author is grateful to Professor D. A. Geffen for
very helpful communications which greatly influenced
the final form of this work. He also wishes to thank
Professor D. B.Lichtenberg for suggestions, encourage-
ment, and reading the manuscript.

"Reference 6; Bing-lin Young, this issue, Phys. Rev. 161,1620
(1967). Applications of the Bjorken limit in these two articles
arise also out of private communications between Professor D. A.
GeAen and Professor J. D. Bjorken.


