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exists. Taking this limit, we have

SO

X dt f(t)e™b=P
e=0

Qfgh(X) and XQf=QXf T.his establishes the lemma.
Since X is also the closure of XjS and X) is analytic

with respect to the connected group R(g), it follows

s~
' immediately that Q reduces R(g). This is the theorem

stated in the Introduction.
On using the spectral decomposition of M', this
becomes

or

e f&'&()t)

X f() )dZ()t)b= g dZ(Z)b„
s!s=0

eo f&'(rrt')
XQb=Q 2 bs=Qbo=QXb.

e=o St

(26)

(27)

Now let f be any vector in h(X). Since, from lemma 2,
X is the closure of I/8, there exists a sequence b„g(B
such that b„-+ f, Xb„—+Xf, and hence, since Q is
bounded, Qb ~ Qf, XQb„=QXb -+ QXf Th. us
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A continuation of the Froissart-Gribov definition of the partial-wave amplitude to the left of the poles
in the l plane is obtained under the assumption of power-law behaviors of the Mandelstam weight functions
at high energy. Discrete and continuous powers in these weight functions are seen to yield, respectively, poles
and cuts in the continued partial-wave amplitude. This continuation is then used to prove that in the
presence of cuts a generalized form of the Mandelstam symmetry relation for the partial-wave amplitudes
about t = —$ for the half-odd-integral values of t holds at energies where there are no Regge poles passing
through half-odd integers. The discontinuity across the cut at a half-odd integer is always equal to dis-
continuity across the cut at the half odd integer obtained by reflection about I= —q. The case of Regge
poles passing through half-odd integers is considered in detail, and the results derived by Mandelstam
for potential scattering are shown to follow from our continuation in a straightforward manner. The
continued partial-wave amplitude has the desirable feature that every term in it has the correct threshold
behavior, (q') '.

I. INTRODUCTION

S INCE the time Froissart' and Gribov' independently
proposed the formula for the partial-wave ampli-

tude for complex angular momentum / valid to the
right of the leading Regge pole o, in the complex / plane,
there have been several attempts' to obtain continua-
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tions to the left of the line Ref=Rem. However, to the
author's knowledge, most of these have been conhned
to cases of nonrelativistic potential scattering. One
interesting result of such investigations is that a sym-
metry relation for the partial-wave amplitudes about
1=—

~ for the half-odd-integral values of l, proposed
by Mandelstam, is true for a large class of potentials.
We examine here (Sec. II) the problem in the rela-
tivistic case under the assumption that the high-energy
behavior of the Mandelstam weight functions in a
fixed-t dispersion relation (t is the Regge-pole channel)
consists of powers of s and N. Discrete and continuous
powers yield, respectively, poles and cuts in the / plane,
and these are explicitly exhibited in our formula for the
partial-wave amplitude. We find that the continuation



we obtain satisfies in the presence of cuts a generalized
form of the Mandelstam symmetry relation, at energies
~here there are no Regge poles passing through half-
odd integers. We also And that the discontinuity across
the cut at a half odd integer is always equal to the dis-
continuity across the cut at the half-odd integer ob-
tained by reQection about l= —~. In Sec. III we study
the formula for the Regge residue with particular
attention to the case of Regge poles passing through
half-odd integers. It follows in a straightforward manner
that the results proved by Mandelstam for potential
scattering' are true in this case also. Thus, at energies
where a Regge pole passes through a half-odd integer,
either the residue of the Regge pole must vanish or
there must exist another Regge pole of equal residue at
the half odd integer obtained by reQection about I= —~.
In Sec. IV we show that the continued partial-wave
amplitude is a good threshold representation in the

sense that every term in it has the correct threshold
behavior, (q')'. This is to be contrasted with an analo-
gous representation guessed by Gribov and Pomeran-
chuk, 4 in which the Regge-pole terms do not have this
threshold behavior.

II. ANALYTIC CONTIHUATIO5' OF THE PARTIAL-
WAVE AMPLITUDE TO THE LEFT OF

THE LEADING SINGULARITIES IN
THE COMPLEX l PLANE

I,et the invariant scattering amplitude for the process
pi+ps ~ ps+p4 of scattering of spinless particles of
masses m&, m2, m3, and m4 be assumed to satisfy a
fixed-t dispersion relation with weight functions A, (t,s )
and A (t,u'), where we have defined s= —(Pi+Ps)',
t= —(p,—p,)', u= —(p, —p4)'. In the t channel, the
signatured Froissart-Gribov partial-wave amplitudes
are given by

where

a+(t, t) =
2~q»(t) q, 4(t)

ds'A, (t,s')Q (s (t,s'))+ du'A„(t, u')Q (—s (t,u'))
'tt O

(2.I)

s + st s(ml +m—2 +ms +m4 )+ (ml ms ) (—m2 —m4 )/2t
si(t, s') =

29» (t)Vs4 (t)

u'+-', t——,
' (mt'+ms'+m, '+m, ') —(mt' ms') (m—,' m4')/-2—t

s, (t,u') = ——
2V (t)C (t)

(2.2)

(2.3)

and q»(t) and qs4(t) denote the magnitudes of the t-channel center-of-mass momenta of the two pairs of particles.
q»(t)qs4(t) has a simple pole at t=0, if mrWms and msAm4. The weight functions A, (t,s') and A (t,u') are analytic
at 5=0. We assume that we can write

2(&)

A, (t,s') =P c, t'&(t)/sr(t, s')$ '*'t'&+ dn' g, (t,n') Lsr(t, s') j"+3,'&(t,s'), (2 4)

A„(t,u')=Q c &'&(t)L—ss(t, u')j ""t'&+
+ 2(&)

dn' g (t,n')L —ss(t,u')]"+A '(t,u'), (2.5)

where

where L is a real number satisfying

A,s(t,s') =0((s') i), s' —+~,

2„'(t,u') =0'((u')-~), u' —+~,

Ren(t) & —I.,

(2.6)

(2 't)

(2.8)

Ren(t) being the largest real part of the powers appearing in Eqs. (2.4) and (2.5). The integrals over n' in (2.4)
and (2.5) are, in general, line integrals in the complex n plane. The essential assumption embodied in Eqs. (2.4)—
(2.8) is that the high-energy behavior of the Mandelstam weight functions consists of discrete and continuous
powers of s' and I' down to a certain power —L.

For the sake of clarity, we may mention that although such asymptotic behaviors result when the partial-wave
amplitude is assumed to be analytic except for poles and branch points in the / plane and to have asymptotic be-
havior in the / plane suitable for making a Mandelstam-Sommerfeld-Watson transformation with background
integral at Re/= I., we are not making such—a priori hypotheses for the partial-wave amplitude. The assumptions
(2.4)—(2.8) will be regarded as fundmental (riot derived) assumptions in relativistic theory analogous to assump-
tions about classes of potentials in nonrelativistic theory, and consequences for the partial~wave amplitude will
then be derived.

4V. N. Gribov and l. Va. Pomeranchuk, Phys. Rev. t,etters 9, 238 (1962},Eq. (4}.
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For —L(Rel(Ren(t), the divergence of the Froissart-Gribov integrals (2.1) comes entirely from the terms un-
der the summation and integral signs in (2.4) and (2.5); however, the point is that analytic expressions can be
found for the integrals of these terms for Rel) Ren(t), and these expressions can then be continued down to Rel
= —L. Our assumptions yield

a+ (l, t) =
2z.qis(t) qs4(t)

ds' A, '(t, s')Q (s (t,s'))+ du'A '(t,u')Q~( —» (t,u'))
240

+-Z Lc."'(t)I(l, ."'(t),(» )o)+c-"'(t)I(l, -"'(t),(—» )o)j
x' i

&s1(&)

dn' g, (t,n')I(l, n', (si)p) & dn' g„(t,n') I(l,n', (—ss)p), Rel)—I-, (2.9)
„1(t)

I(l n xp) = dx x Q~(x), Rel) Ren. (2.10)
30

Expressing the Legendre function in Eq. (2.10) as a
hypergeometric function' we can perform the integral
to obtain

( )
I(l,n, xp)= (gz.)2 ' '

I'(1+ pl)1'(»+ el)
" I' 1+'l+r I' '+ '-l+r-x-p ~ ' '( ~ )(. ~ )()

2.11
I'(l+-', +r)I'(r+1) (l—n+2r)

Equation (2.11) gives the continuation of the function
defined in (2.10) to Rel(Ren. The series in (2.11) is
seen to be absolutely convergent for xo'&1 by noting
that without the denominator (l—n+2r) we would
obtain a hypergeometric series which is absolutely
convergent, and the denominator only improves the
convergence. Thus, at least for values of t such that
(si)p' and (—ss)p' are greater than unity, Eq. (2.9)
together with (2.11) yields a continuation of the
partial-wave amplitude to the left half l plane down to
Re/= —L, where L is the largest number for which our
assumptions (2.4)—(2.8) are valid. This continuation
exhibits the singularities of a+(l, t) in the l plane down
to Rel= I.. The terms in (2.9)—involving A,P and A '
are analytic in the half-plane Rel& —L except possibly
at the negative integers where the Q~ functions have
poles. It is enough to consider the integrals over n' in
Eqs. (2.4), (2.5), and (2.9) to run over finite regions
(Ren'& I.), and since th—e sums (2.11) are clearly
uniformly convergent with respect to n' for all such
values of n', the integration over n' in (2.9) and the
summation over r resulting after the substitution of
(2.11) in (2.9) can be interchanged if both the results
exist. It then follows that each term in the sum over r

~ Batemae Manuscript I'roj ect, Higher Transcendental Functions,
edited by A. Erdelyi {McGraw-Hill Book Company, Inc. , New
York, 1953), Vol. 1, p. 134, (41)

where (si)p and (—ss)p are the values of si and —ss
de6ned by (2.2) and (2.3) at s'=sp and u'=up, re-
spectively, and we have denoted

contributes Axed poles in the / plane at the negative
integers l= —1, —2, moving poles at n, &'&(t) 2r, —
n &" (t) —2r, and cuts in the l plane from n„(t)—2r to
n, s(t) —2r and from n„i(t) —2r to n s(t) —2r to the
partial-wave amplitude in (2.9). Not all of these singu-
larities need actually occur in a+(l, t). From (2.9) and
(2.11) the relations between the c,&'& (t), n, &" (t), g, (t,n'),
n„(t), n„(t) and the c„~o(t), n„l'&(t), g.(t,n'), n.,(t),
n„s(t) in order that certain Regge poles or cuts occur
only in certain signature amplitudes can be easily found.
It has been shown' that the residues of the 6xed poles
in a+(l, t) at the negative integers cannot vanish in a
relativistic theory with a third double-spectral function
(except for negative integers of the correct signature
for identical particle scattering) and that such fixed
poles for / on one side of the cut are consistent with
unitarity~ in the presence of cuts in the l plane.

We shall now use (2.9) and (2.11) to prove that in
the presence of cuts a generalized form of the Mandel-
stam-symmetry relation for the partial-wave amplitudes
about /= ——', for the half-odd-integral values of 1 holds
at values of t where there are no discrete powers n, &"(t),
n„&'&(t) passing through half-odd integers. For a given
pair of half-odd integers l, and (—l—1) the symmetry
relation will still hold if the half-odd-integer powers are
less than both l and (—l—1).

For proof, we examine first Eq. (2.11) at half-odd-
integral values of l, 1=2n, and l= ——,'e—1, where e is
a positive odd integer. We assume that if n is a half-odd
integer, it is less than -,'n and (—zn —1), so that the
denominators (l—n+2r) in Eq. (2.11) never vanish.
We then obtain

I (—-', n)I(——',n —1, n, xp) = (gs.)2"I'
I (-,' —-', n)1 (——,'n)

" I'(-,' ——,'n+r)I'( —sn+r) (xp) ~+1"+' "
xP . (2.12)~ I'(—zrn+z+r)1'(r+1) (2r n ~an 1)—— —

V. N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2, 239
(1962).' C. Edward Jones and Vigdor L. Teplitz, Phys. Rev. 159,
1271 {1967);Stanley Mandelstam and Ling-Lie Wang, iNd. 160,
1490 (1967),
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We notice that the 6rst few terms of the summation
on the right-hand side corresponding to r&(n —1)/2
vanish on account of the I' function I'(—pn+ip+r) in
the denominator. The remaining terms can be written
by translating the summation index (r~ r+-,'n+p)
into the form

I"(—pn)I(—-', n —1, u, xp) = (ger) 2""
I"(-',—-', n) r (—-', n)

- 1(1+-,'n+r)1 (-;+ -,'n+r) (x,).—:"-'"

1(rg1)1(ry-,'n+-,') (-', n —u+ 2r)

The coefficient in front of the summation symbol in
Eq. (2.13) can be proved to be equal to the coe%cient
in front of the summation symbol in Eq. (2.11) with
l=~a, by using elementary properties of I' functions.
The terms inside the summation in (2.13) are the same
as those in (2.11) with I= ipn. We thus obtain

I(l,u, xp) =I(—l—1, u, xp), /=half odd integer, (2.14)

a+(/, t) =ag+(l, t)+ac+(/, t), (2.16)

where ac+(/, t) denotes the terms involving integrals
over n' and hence containing the cuts in the l plane,
and aii+(/, t) denotes the remaining terms, then (2.14)
and (2.15) show that

ai(+(/, t) =a)i+(—l—1, t), /=half-odd integer, (2.17)

provided that discrete half-odd-integer powers, if any,
in Eqs. (2.4) and (2.5) are smaller than l and (—I—1).
The term a&+(/, t) could be shown to satisfy a relation
similar to (2.17) by direct use of (2.14) if the cuts were
not along the real axis. For the case where the cuts are
along the real axis, we obtain for values of l just above
the cut

with the previously stated restriction on n. We also
know that'

Qi(z)=Q i i(z), /=half-odd integer. (2.15)

If we write Eq. (2.9) in the form

P ~"(') I(r,l) P ~"'(') I(r,l)
ac+(/+ie, t)=Q — du'g, (t,u') (zi)p

'—'—'"+— du'g„(t, u') (—z,)p
' ' '"

y($) (l u +2'r) 7I ~ y(f) (l u +2f)

where we have denoted

i P—I(r, /)Lg, (t, l+2r)e(u, i(t), l+2r, u, 2(t))+g„(t, /+2r)9(u„i(t), l+2r, u„p(t))j, (2.18)
r=o

I'(1+,'/+r)I'( ,'+ ,'-l+r)--I'(l+1)
I(r,/)=(+7r)2 ' '

I'(I+-,'/)I'(-', +-,'/) r (/+-,'+ )I'( +1)
(2.»)

and

8(a,b,c)=1, if a&b&c,
=—0, otherwise.

(2.20)

a+(l+i e, t) =a+(—l—1+ie, t),

I=half-odd integer, (2.22)

Rel) I., Re(—/ —1))—I. , —

In the terms involving principal-value integrations
in (2.18) the denominators (l—u'+2r) never vanish,
and hence (2.14) shows that they are the same for
l=-,'n and l= —pin —1. The remaining terms in (2.18)
are also shown to be equal for l=-,'n and l= —-', n —1 by
noting that the denominator I'(/+pP+r) in (2.19) be-
comes inhnite for r& —l——,

' when / is a negative half-
odd integer, and using a procedure identical to that
used in deriving (2.14). We thus have

ac+(/+ie, t) =ac+( l 1+i—e, t)—,
l =half-odd integer. (2.21)

An analogous relation below the cut (ie + —ie) is ob-—
tained exactly similarly. Hence, by subtracting from
(2.21) the analogous relation below the cut we conclude
the discontinuity across the cut at a half-odd integer
is always equal to the discontinuity across the cut at
the half-odd integer obtained by reflection about /= ——', .
Combining (2.16), (2.17), and (2.21) we finally have

' Reference S, p. 14G (9).

provided that discrete half-odd-integer powers, if any,
in Eqs. (2.4) and (2.5) are smaller than l and ( l 1). ——
The ie instruction in (2.22) is relevant only when there
are cuts in the / plane along the real axis. The analog
of (2.22) below the cut is also valid. Equation (2.22)
for the case of no cuts is the symmetry relation pro-
posed by Mandelstam. ' He showed that when this rela-
tion is true, the high-energy behavior of the total scat-
tering amplitude is dominated by Regge-pole terms
even when the background integral is shifted to Rel

I. (assuming meromorp—hy in the l plane down to
Re/= I.).Since Regge-pole do—minance at high energies
leads to discrete powers in the asymptotic behavior of
A, (t,s'), A„(t,u') for high s', I', and hence satisfies our
assumptions (2.4)—(2.8) (which postulate discrete and
continuous powers in the asymptotic behavior), our
result will not be considered surprising. It is of interest,
however, to compare the assumptions about the poten-
tial in Mandelstam's derivation of (2.22) for potential
scattering with the assumptions in the present deriva-
tion. The dt:tailed discussion in the following section of
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the case of discrete powers passing through half-odd integers reveals further analogies with potential scatter-
ing results.

III. REGGE POLES PASSING THROUGH HALF-ODD INTEGERS AND NEGATIVE INTEGERS

We have seen that possible poles in the partial-wave amplitude arise from discrete powers in the asymptotic
behavior of the Mandelstam weight functions. The partial-wave amplitude a+(t, t) can have a pole at t=u(t) if
there are powers u, &'&(t), u &'&(t) in Eqs. (2.4) and (2.5) such that u(t)=u&'&(t) —2r&'&, where r&'& is equal to
zero or a positive integer. The residue at such a pole is given by (Reu) L), —

1
P+(u(t) t)= lim Lt u(t)7a+($ t) = Lg c (i)(t)7(y(i) u (i)(t) 2y(i))~g c (i&(t)7(y(i) u (i (t) 2y(i))7 (3 1)

where the first sum runs over those u, &" (t), r "& for which u, ('& (t)—2r &'& =u(t), and. the second sum runs over those
u (') (t), r(') for which u ("(t)—2r(') =u(t), and 7(r('), u(') —2r('&) defined as in (2.19) is given by

I(r('& u&'& —2r&')) = lim (t—u ' +2r('))I(l,u(') x )

p(u(i) 2y(i)+ 1)p(1+iu(i))p(1+iu(i))—(g~) 2 a(')+2r(—i)—I (3 2)
F(1+—'u &'& —r(') )F(—'+ iu(') —r('))1'(u(')+ 3 —r('))F (r &'&+ 1)

We shall first study (3.2) at a fixed half-odd-integral
value of u&'& (t). Equation (3.2) shows that if u(" & —(~),
I(r&'& u&'& —2r&'&) vanishes for all r&" because r&'& is
constrained to be zero or a positive integer and then
the I' function in the denominator with argument
(u&'&+2 —r"') becomes infinite. If u(')) —(—',), 7(r&'&

u("—2r('&) is nonzero and finite for r(')(u("+» i.e.,
for 0,"'—2r(')=o. (') 0.("—2, —o.("—1. We notice
that whenever 7(l,u(",xo) has a pole with nonvanishing
residue at a half-odd integer l=o.("—2r"', it also has a
pole with nonvanishing residue at the half-odd integer
t= —(u&'& —2r&'&) —1, obtained by reflection about l
= —~. Further it is a simple matter to prove, using
(3.2) and elementary relations between 1' functions,
that the residues at these poles are in fact equal. Now,
any half-odd-integer power u, &'& (t) or u„('& (t) con-
tributes at most one term to the Regge residue at t =u(t)
given by (3.1). The result obtained above implies
that every power that makes a nonzero contribution
to P+(u(t), t) makes an equal contribution to P+

X(—u(t) —1, t) Thus, when. ever a+(t, t) has a pole in
the l plane with nonvanishing residue at a half-odd
integer, it also has a pole with equal residue at the half-
odd integer obtained by reAection about 1=—~. As
noted by Mandelstam, ' this fact ensures the finiteness
of the contributions of these Regge poles to the
Mandelstam-Sommerfeld-Watson formula for the total
amplitude.

Consider next the case where the residue of the pole
at the half-odd integer /=u —2r in I(t,u, xo) vanishes,
i.e., u+3~ —r(0. Such a value of l is necessarily a nega-
tive half-odd integer. A procedure similar to that used
in deriving (2.14) now shows that there is an extra term
on the right-hand side of (2.13), because, of the first
few terms in (2.12) which have an exploding 1' function
in the denominator, the term in which the summation
index in (2.12) equals the value r above also has a

vanishing denominator. Thus the relation (2.14) is not
satisfied at a negative half-odd-integer value of / at a
value of t where a pole of 7(l,u, tp) passes through / with
vanishing residue. Hence, in general, the partial-wave
amplitude will not satisfy the symmetry relation (2.22)
at negative half-odd-integral values of / at values of t
where there are Regge poles passing through / with
vanishing residue. This result and the result of the
preceding paragraph are in agreement with the poten-
tial scattering results of Mandelstam. '

We note now some further simple consequences of
the residue formula (3.1). At a certain value of t, let
u(t) be a discrete power occurring in Eqs. (2.4) and
(2.5) with nonvanishing coefficients c, (t) and c„(t),
respectively, such that Reu(t) is greater than the real
part of other discrete powers, if any, which are separated
by even integers from it. Then a+(t, t) has a pole at
l =u(t) with residue given by

r(u(t)+1)
p'( (t),t)= 2 '" ' tc (t)+c-(t)7 (33)

v' ( ()+l)
A pure signatured pole results if c,(t)=Ac„(t). At a
value of t where u(t) passes through a negative half-odd
integer &—2, with no half-odd-integer powers larger
than u(t) in (2.4) and (2.5), the residue vanishes since
c,(t) and c„(t) are in general finite at such a point.
Further, if c,(t) and c„(t) are nonzero at a value of t

where the trajectory u(t) goes through a negative in-

teger, the residue will have a pole as a function of t at
the value in question.

IV. THRESHOLD REPRESENTATION OF THE
CONTINUED PARTIAL-WAVE AMPLITUDE

The continuation provided by (2.9) and (2.11) is
particularly convenient for a threshold representation
of the partial-wave amplitude because, when t is close
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to tp, the threshold value, (zi)p and (—z2)p are very
large and the series (2.11) converges rapidly for large
sp. We shall assume that the threshold behaviors of
the coefficients c,("(t) and c„("(t) in (2.4) and (2.5) are

qts(t)q24(t)]ar
' (t)+2r ' and Lqis(t)q24(t)]am&') (t)+2r ('

respectively, where r, &'~ and r„&'& are positive integers

or zero. This corresponds to the usual assumption about
the threshold behavior of the Regge residue. We shall
also assume that the quantities g, (t,n') and g (t,n')
have the threshold behavior L(q,s(t)q24(t)) '. Substitut-
ing (2.11)and the hypergeometric series for the I.egendre
function in Ref. 5 into Eq. (2.9), we obtain

00 P +f (t)]ar(4) (t)—l—2r

a+(t t) =Q —I(r t)L2qis(t) q24(t)]'+" d, (l r t) +d (t r t)+Q c,"'(t)[2q»(t) q24(t)]'""'
t—n, ("(t)+2r

L~+f (t)7 """"' '"
~~-"'(t)L2q»(t)q24(t))'"-"

l n"' (—t)+2r
+h, (t,r, t) +h„(t,r,t), (4.1)

g (t,n') = g (t,n')L2qis(t)q24(t)]",

g-(t,n')=g. (t,n')L2q (t)q (t))",
(4 4)

(4.5)

fi(t) = —,'t ——,'(m, '+ms'+m, '+m, ')
+ (mi' —mp') (m2' —m4')/2t, (4.6)

fs(t) =-', t—-', (mr2+m22+ms2+m42)
—(mls —mp') (m2' —m4')/2t, (4.7)

d, (t,r, t) = ds' A, '(t,s')Ls'+ fi(t)) ('+'+'") (4.8)

d„(t,r, t) = dl' A„'(t I')L24'+ f,(t)) "+'+'") (4.9)

h, (t,r, t) =

and

&e2 (t)
, Lso+f (t))" ' '"

dn' g, (t,n'), (4.10)
(t n'+2r)—

h„(t,r, t) =
ass(t) LN +f (t))a'—l—2r

dn' g„(t,n')
(1 n'+2r)— (4.11)

It is seen that the dominant threshold behavior corre-
sponding to each type of term in (4.1) is I q»(t)q24(t)]'.
This formula should be contrasted with the form guessed
by Gribov and Pomeranchuk. 4 Apart from the fact that
our formula exhibits the contribution of cuts in the l
plane, there is the important diRerence that in their
formula the Regge-pole terms have the threshold be-
havior Lq)2(t)q24(t)) "( '. This difference has interesting
consequences for the discussion of the unitarity condi-

where we have denoted

c, (') (t) = c,("(t) L2qis(t) q24(t)] "(')+'"'*' (4 2)

c."(t)= c-"(t)Pq»(t)q24(t)] " '"+'"" (43)

tion continued below Rel= —2, and will be considered
in detail elsewhere. For the present we mention that in
the presence of cuts in the / plane the threshold behavior
of a+(t, t) will be Lq»(t)q24(t)]' at least on one side of
the cut, because the discontinuity across the cut has
this threshold behavior.

One drawback of the continuation provided by (2.9)
and (2.11) is that they are not suited for a direct study
of the behavior of a+(l, t) at t=0 in the unequal-mass
case. This is so because power behaviors of A, (t,s'),
A (t,24') at large s', I' are not conveniently expressed
by the power behaviors in z, (t,s') and —z2(t, 24') for
small values of t. Thus, the sum of finite numbers of
discrete powers exhibited in (2.4) and (2.5) contain in
the coefFicients of powers of s' and I' lower than the
powers of zl and (—z2) occurring in the sums, singu-
larities at t=0 which are not present in A, (t,s'), A (t,24').
One needs, instead of (2.4) and (2.5), rearranged series
involving the powers of s' and I' directly. The result
of using such a series is to find that the partial-wave
amplitude has the behavior at 1=0 found by Freedman
and Wang' for all values of l to which such a continua-
tion of the Froissart-Gribov formula is possible. The
procedure is similar to that in Ref. 9 and will not be
repeated here.

Added vote. An earlier version of this paper had an
error on account of using formula (26) t gateman Manu
script Project, edited by A. Erdelyi (McGraw-Hill Book
Company, Inc. , New York, 1953), Vol. 2, p. 325),
which is in error.
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