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The properties of a classical many-particle system interacting through a scalar Geld (a scalar plasma) are
studied. A relativistic Hartree approximation is applied to equilibrium to evaluate thermodynamic charac-
teristics such as the energy, entropy, and equation of state. A gas-liquid phase transition appears at moderate
densities. There is no collapse for an attractive interaction: The system can accomodate any density. Sta-
bility against small perturbation and the behavior of collective excitations are analyzed through the linear-
response function.

I. INTRODUCTION

RKI.ATIVISTIC many-particle system of identical

~
g g.I particles, in an energy state suKciently high to

eliminate all bound states composed of a small number
of particles, and interacting through a scalar Geld, will
be termed in the presen. t paper as a scalar plasma
Such a system can be regarded as a crude model for a
neutron gas, ' arid it will reAect some properties of the
nuclear matter. 2 The primary purpose of the present
paper is, however, to explore the properties of such a
system, relegating to Sec. V the question of applicability
of the model to real physical systems.

The peculiarities of a scalar plasma, as contrasted
with those of an electromagnetic plasma, stem (a) from
the special behavior of the equation of motion'4 relative
to a particle in a scalar field and of the scalar Geld

equation under relativistic conditions; (b) from the
short-range character of the interaction; and (c) from
the fact that like particles are supposed to attract
rather than repel each other.

In this paper the system will be treated classically, '

the essential features brought about by the character-
istics (a), (b), and (c) are expected to be well described
by a classical approach. In a subsequent paper we will

provide a more complete treatment by analyzing the
Green's function of the system, and we will also con-
sider the consequence of the replacement of the scalar
interaction by a pseudoscalar one.

The approximation to be used throughout this paper
is based on representing the interparticle interaction
by an average field. In equilibrium this amounts to a

Hartree approximation, which in its nonrelativistic, or
in an inconsistent relativistic form, 2' has extensively
been used to determine properties of a neutron gas or of
nuclear matter. In nonequilibrium situations the method
is tantamount to using the Vlasov equation to evaluate
a response function or transport properties.

In Sec. II we review the basic equation pertaining to
the motion in a scalar field; we demonstrate an energy-
conservation theorem and evaluate the potential energy
which is highly dependent on velocity. In Sec. III we
consider the equilibrium state and calculate the value
of the constant average potential as a function of
density and temperature, we derive expressions for the
characteristic thermodynamic quantities, and we
demonstrate the existence of a gas-liquid phase tran-
sition in the system. Section IV is devoted to the de-
termination of the frequency and wavelength-dependent
linear-response function, and the behavior of the col-
lective excitations is analyzed; we concentrate in par-
ticular on the evaluation of stability criteria. Quite
independently of its physical implications, the model
has some interesting features from the purely statistical-
mechanical viewpoint. Both the gas-liquid phase tran-
sition and the behavior of the system in the entire
density range before and after the phase transition can
be described in terms of a simple analytic interaction;
the conditions leading to the phase transition can be
studied both by following the equilibrium character-
istics of the system and by analyzing the behavior of
the linear-response function.

II. GENERAL RELATIONS

The equation of motion of a partic1e of free rest
mass m, and of coupling constant g in a scalar field
characterized by its invariant potential C is'

p„= -gBC/rlx„,

p„=Mi„, —

M=—nt+gC (x) .

~ P. Gombas, Fortschr. Phys. 5, 159 (195"1).
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In three-dimensional notation this takes the form6 The energy conservation is related to the 44-component
of T„„:

The energy

dp /dt=f„,

f„= g-(1 {-)2)'/284/8x„,

p„=—LM/(1 —2)2) '/272) .

M/(1 2)2) 1/2 (p2+M2) )/2

(2)

T44 (1/——42r) 22/{lt2+12+/(24, 2}

E„=——8C/8x„,

l.=84'/—N,

and can be expressed as

(g) (1/42r) —2')/ dx(E2+L2+/(24')

is a constant of the motion, provided that C is explicitly
time-independent D84/8t) =07. E, moreover, has the
property that E(p, x) can be regarded as the three-
dimensional Hamiltonian function generating the equa-
tions of motion (2) as canonical equations. It follows
from (1) that M may become negative if C)(0 and

~
gC ~)2N. It follows, on the other hand, from the

constancy of E that this should have no bearing on the
positiveness of E, even for negative mass states. Thus
E=~ M

~
(and not X=M) should be understood when

0.
4'(x) is determined from the field equation

~C (x) =—4~&g.(*),

2)2+gC (x('))
, .„„,=const. (9)

The first term in this expression can be transformed
with the aid of (4) and (5) into a potential and a
radiation energy. '

((/4w)-,'g f dx(E'+1'+r'%).

exeat i 4~ -', g dx I.2—aX, at &

=-', Q V("—))W,~,

6(x) =8'/8x„8x„—/(2. I/'{4) = I/I(x(e) (1 2)(4)2) &/2

2/=+1 stands for repulsive field, 2/= —1 for attractive W (8~)—( dx{L2 (81/8()2}
Geld. For a system composed of E particles

p(x) =g d2 B(x x«(~7)—

=g (1—2)(o2) '/28 (x—x{'){ t7) .

Our main concern in this paper is the behavior of a
system interacting through a physically realistic at-
tractive Geld. ' Nevertheless, some features of a system
with repulsive interaction will be pointed out, mainly
to facilitate comparison with electromagnetic plasmas.

We consider now the total energy 8"of a many-body
system interacting through a scalar Geld. The energy-
momentum tensor of the free Geld

r„,= (1/4~) -',
& {t .24 + (84/8x. ) (84/8x. ) 78„,

—2 (84/8x„) (84/8x, ) } (6)

satisGes the conservation equation4

dx(dT„./dx„) =P„(2)—P„(1).

' The notation employed in this paper is: Greek subscripts run
from 1 to 4, Latin ones from 1 to 3; no metric is introduced,
x4=ict, c= j. (except where it is useful to include c explicitly).

'The repulsive scalar field can actually be ruled out on the
basis that the Geld energy is not positive deGnite.

Thus the conserved quantity that can be associated
with the energy of the system is

W =Wpgp4+ Wpgg~

W 4
—Q(g(i) 2 p'(4))

A more symmetric expression for TV~ & can be derived:

O
I

(1 2){i)2)1/2

—v(')'v(

(1 {)(i)2)1/2(] {)(i)2)1/2

with (t;; representing the velocity-independent part of
the potential

6;P;; =8(x x "ft7) .
' —

A three-dimensional Hamiltonian for the total system
can be constructed on the basis of (9) and (2):
B=g{p*"+fm+g Q C), exp(Qr x"')7'}''

k

+ (~/8~) g {(.2+F2) 4,4,+e,e,}, (14)

where Ck and 4' k are the Geld coordinates and their
conjugate momenta.
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C (x, t) = —42rqg dp dx' dt' A '(xt; x't')

m+4 (x't')

I 2+Lm+C (x't') j'I'I'

IIL EQUILIBRIUM

The equilibrium properties of the system in the
Hartree —Vlasov approximation will be considered in
this section. In virtue of the approximation stated,
the canonical distribution function is decomposed into
one-particle equilibrium distributions over single-parti-
cle energies

F(p) =(4 /I' )s-'(P) -pL —PE(p)3,

E(p) = (P'+M')",
M =m+gc',

where C is the average potential reigning over the
system, and 3II is the effective rest mass.

s(P) is determined from the normalization conditions

s(p) = (4~) ' dp~ 'E,

dEE(E' M') 'ape &s—

d&p (p2 1)1/2a —«

= (a'/p') K2(a)

We summarize the symbols used here or to be used in
the sequel:

a=P/M/,

b =Pm

&=[M I/M,

8 J. L. Synge, The Relativistic Gus (North-Holland Publishing
Company, Amsterdam, 1957).

The Hartree —Vlasov approximation amounts to the
neglect of correlation effects and to the characterization
of the system in terms of one-particle distribution
functions. Such a one-particle distribution function
F(xp; t) obeys the Vlasov equation, which in view of
the fact that a three-dimensional description of the
system can be formulated in terms of Hamiltonian
dynamics, assumes its customary form

BF/Bt+v BF/Bx„+f„BF/Bp„=0,

2„=P /E,

f„= g(M/E) —ae/ax„.

(15)

C in (15) represents the average potential calculated
from

K„(a) is the modified Bessel function of order 2t;

G (a)= dip~ (p' —1)~&2/—« dpp($' —1) '12/ —«

(4n) 2gpg 3f
s '(P) dp —F(p),

K jV
(2o)

e being the density of the system, which can be related
to the plasma frequency

Mp =42lg B/m (21)

and to the dimensionless density

S =coo K ~ (22)

Equation (20) implies that C or M as a function of a
given density (s) and temperature (b) can be inferred
from the implicit relation

s = q(tj, a/b—) Gp '—(a), (23)

which allows for the possibility of a negative effective
mass. We now comment on this result.

The character of the solution of (23) depends on
the sign. ature of 2t and p. A glance at (23) shows,
however, that no solution with g= —1 p, = —1 exists.
The remaining three solutions can be characterized as
follows (see Fig. 1).

(i) For rt= —1 (attractive interaction), as was just
pointed out, 3f is always positive. This is in contra-
diction to the naive picture based on a single-particle
model' which suggests that M becomes negative if

(~ gC/m ~) (g222/mk2) s).1. What actually happens
is that as the potential well deepens, particles acquire
higher velocities; and this, through the (1—p2)'~2 factor
in the field equation, softens the interaction in such a
way that the M=O limit is never attained. Neverthe-
less, M(m, (a(b) always, and M is a monotonically
decreasing function of the density, as expected. The
temperature dependence of the effective mass is differ-
ent in the small density (s(1) and in the large density
(s)1) regions. If s(1, then for b~~ also a~m and
M—&m(1 —s); while if s) 1, then a~a, which is the
solution of

s=Gp '(a ), (24)

and M—&0. In the very high temperature limit (b~0)
M~m, independently of s, which again rejects the
softening of the interaction.

(ii) In the event of a, repulsive interaction (q =+1),
a normal (p=+1) and anomalous (p= —1) solution
can be distinguished. There is no surprising element in
the normal solution; it is characterized by M&m
(a) b), M—+~ as s~ pp and again. by the weakening of
the interaction as b—&0.

Go(a) =K~(a)/K2(a).

The distribution function depends implicitly on the
value of the potential C, which, in turn, is determined
from the equilibrium variant of (16):
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FIG. 1. The ratio of the effective rest mass cV=m+@ to the
noninteracting rest mass nz versus the dimensionless density
s=4n-g'n/K'c'm. The parameter is the dimensionless inverse
temperature 5 =Pm. (a) Attractive interaction. Note that M is 6-
nite for any density. (b) Repulsive interaction, normal solution.
(c) Repulsive interaction, anomalous solution. 3I is negative,
double valued if the density exceeds a certain limit.
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(iii) The anomalous solution is confined to a region
s&so) 1. The elucidation of the somewhat bizarre re-
result that the repulsive potential can lead to negative-
mass state can be sought in the fact that a change of
sign in p, actually entails a change of sign of the inter-
action (because of the M/E factor); thus in a ii= —1,
g=+1 state the potential is negative. Moreover, if
the density is su%ciently high, such a negative potential
can sustain in a self-consistent fashion the negative
effective mass.

In the remainder of this section we consider case (i)
only. The thermodynamic quantities of interest which
we are going to evaluate are the internal energy U,
the entropy S, the free energy A, and the pressure I'.

The total intern, al energy (per particle) is the sum of
the averages of the kinetic and potential energy, as

defined in (11):
~=«)-l(I )

The former is calculated to yield

«)=(1/~) I3+ G.( ) I

This is formally identical to the energy expression for
the noninteracting relativistic gas'—but it should be
kept in mind that a =a(s, b) is obtained from (23) . For
the latter one finds

«)=+(1/W ( -»G.(.)
= —msGo'(~) .

and thus
~= (1/0) I 3+-'(&+&)Go() I.

This is depicted in Fig. 2.
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action, the existence of a second stable phase at higher
densities is a peculiar feature of the scalar field.

The boundaries of the equilibrium regions in the
temperature-density plane (defined by the metastable
points where BP/Bs=0) are determined by the rel

(i) In the small temperature (bazoo), small density
(s((1) limit the customary perfect gas behavior is

recovered:
u' +(—5/3b) c'

-',
C
3ba(b, s) —sbg=1

ation
(ii) In the small temperature, high density limit

(3g) (b—+~, s)&1) one obtains

in conjunction with (23). The critical temperature
(b,s '), the critical density (s,s), and the maximum
density (s s) (beyond which no phase transition occurs)
can be derived, with some algebra, from (38): (see also
Fig. 4)

bco '=0.210,

S,0=0.760,

s 0=2.252. (39)

-I
bco

0.2

O.l
I

The zero subscripts refer to the equilibrium calcu-
lation from which these quantities originate; similar
critical values will be derived from the evaluation of
the response function.

In addition to the equation of state, a quantity of
interest that can be derived from equilibrium consider-
ations is the "velocity of sound. "The quotation marks
refer to the fact that within the Hartree approximation
where collisions are inherently ignored, no sound ve-
locity can be defined in a consistent way. In order,
however, to compare the behavior of the present model
with results pertaining to other model calculations, ' we
consider the sound velocity

N=dE/d(~U) is.

The reasoning behind this approach is that collisions
are sufficiently frequent to maintain local thermo-
dynamic equilibrium, but they affect negligibly the
Hartree equation of state. We quote only the interesting
limiting results.

S ~3C (42)

which is a result characteristic to a gas of massless
particles.

(iii) Essentially the same result

I~gC (43)

emerges for the high temperature (b—+0) region. These
results are not surprising in view of the already dis-

cussed perfect gas behavior in the high density and
high temperature limits. Since there is no repulsive
field here, there is no anomalous behavior, (u—+c) like
the one demonstrated in Zel'dovich's' model.

where f is the contribution originating from the
system itself, while f' is due to external sources. Thus
the linearized Vlasov equation (15) assumes the form

BF'/Bt+u 'BF'/Bx +f 'Bps/BP =0. (44)

The explicit expression for the coefficients is

IV. LINEAR RESPONSE

The effect of a small perturbation on the system is
characterized by its linear-response function. This fre-
quency- and wavenumber-dependent response function
(its analog in electromagnetic theory is the dielectric
tensor) will now be calculated within the framework
of the Vlasov-theory, and the behavior of the collective
excitations of the system will be inferred from the zeros
of the response function on the complex frequency
plane.

In order to contemplate the effect of a linear pertur-
bation, we split all the relevant quantities into equi-
librium and perturbed parts, such as

p —ps+ p~

m m m)

m m my

v„'=p /F. ,

f„'= —(M/P) BC '/Bx, (45)

sco

FIG. 4. The critical curve in the dimensionless density s =
47rg'n/~2c~m and dimensionless temperature b '= (Pm) ' plane,
as calculated from equilibrium considerations.

~ Va. B. Zel'dovich, Zh. Eksperim. i Teor. Fiz. 41, 1609 (T961)
LEnglish trsnsl. : Soviet Phys. —JETP 14, 1143 (1962)j.

where E and M refer to the equilibrium values. Hence,
after Fourier transformation,

—i((v —k p„/Z) '(Fk r, po)

—ik (M/8) 4'(ko)) BF'(p)/Bp =0 (46)

is obtained.
4' is now determined from the linearized field equa-
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tion (16):

6(kM) 4'(kM) = —42rqg —F'(p) dp&" (kM)

The origin of the first term in the right-hand side of
(49) is in the 3II/E factor in the in.tegral, and will be
shown to result in the renormalization of the free
shieMing constant I~.".The second term may be expressed
with the aid of which related Ii' to C':

F'=)co (k p)—/E]—'(M/E)k (BF/Bp)4 ' (48.)

The definition of the linear-response function is pro-
vided by the relation

(49)

Substituting (48) into (47) and separating out terms
containing C' and C' one finds the following expression

»(kM) = 1+$7/Mp b/(M k K )]
X I (1/a) Ãp(~) —G-.(~)]—G-i(~) —I'(2, ~) } (50)

The notation we have employed is the following:

I (s C2) = —22 e "t 22 —(»' —1)/«'] '
%(Ci)

The following two features of (54) are noteworthy:

(a) K'(K' for repulsive interaction (q =+1)—smce
Gp —G &&0; in this event k' can eventually be zero or
negative, leading to an instability of the system;

(b) for attractive interaction (g= —1) K2) K', and
even if K'—+0, K' remains finite —K2—+-', (Mppb) .

Now we are prepared to obtain a general view of the
modes M=M(k) represented by the dispersion relation
(55). If k=0, then s~cc) and the excitations are
"dressed mesons"

(56)

the dressing effect being described by (54) .
To find the behavior of M(k) for finite values of k,

the asymptotic development of Y(s) can be employed.
In view of the defining Eq. (51),

V(s, a) F'(~, a) —(1/22) G 4(a)/a. (57)

This expansion is valid as long as s&&1 or, in case a&1,
if the contribution of the integral in the neighborhood
of the point 2=(»' —1)/»2 is small (i.e., sc is much
larger than the mean thermal velocity) .

The a dependence of the second term in (57) can be
incorporated in a renormalized plasma frequency:

Mp2 Mp2(b/——a) G 4(a),

which is again temperature- and density-dependent. Et
is characterized by ~p~0 as s~~. The dispersion
relation

de

»2(»2 1) 4/2'

M K k ='gMp 6k /M

is readily solved:

(59)

s =M/kc. (51)
0 ~ ~The contour of integration in the vicinity of the

singularity is to be taken by adding a small positive
ima inar part to s: s—+s+ic) as usual. Note that in
the nonrelativistic limit F(s)—+(2b) sZL(2 ) s],
where Z is the customary plasma dispersion function. '

The collective excitations of the system will now be
analyzed with the aid of the dispersion relation

M' =-'
I (K'+k') & ( ()c'+k') ' —4gMp'k2]'12} . (60)

The general behavior of this solution (for g= —1) is
plotted in Fig. 5. The dispersion curve consists of two
disjoint modes. The upper "meson" mode is the ex-
tension of the "dressed meson" solution (56) approach-

«(kM) =0. (52)

This may conveniently be reformulated on noting that

(53)

i2(S2)
N;2(s, )—

Sl

and by adopting a renormalized shielding coefficient k':

K2(s, b) = K'I 1 7/S(b/CJ) LGp(a) —G—
2(C2) ]} (54)

to receive

M2 k' K2=i)Mp2bI V—(s —a) —Y(M) a) I. (55)

"B.D. Fried and S. D. Conte, The P/asm@ Dispersion Function
{Academic Press Inc. , New York, 1961).

2

FIG. 5. The solution of the dispersion relation in the k/co~o
limit {schematic). M, meson branch; P, plasma branch, . which

bl thin this approximation. In the shaded region the
approximation employed is not valid. The parameter is e im
sionless density s, s2&s&.
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ing co'=&o02+R'+k2 as k~ ~. The lower "plasma" mode
represents a fully unstable excitation. The rate of
instability (Imco) for k—+0 is (BA:)'i' (s=coo'/2) while
it evolves toward the constant ~0 value as k—&~.

The physical origin of the instability is obviously the
mutual attraction between the constituents of the
system (manifested by —~P replacing ~P in the dis-
persion relation). Should relation (60) be exact, the
system would be completely unstable and no linear
theory would apply. Its validity, however, hinges on
the fulfillment of the relation sc))thermal velocity,
or on the more stringent condition s))1. If this con-
dition is not satisfied, the expansion leading to (60) is
not permissible, and, in particular, Landau-damping
effects seriously affect the character of the solution.
Thus, without going into the detailed investigation of
the exact solution, which would necessitate the evalu-
ation of the relativistic dispersion function F(s), it
can be asserted on physical grounds that the instability
will be suppressed completely for 5 & 1 and will show up
-in a limited region for 0(k& k for g) 1. g as a function
of the density (s) and temperature (fi) can be evalu-
ated by virtue of the defining relations (54) and (57)
and on referring to (23),

=1+v[x'/(&'+~') 3

y' is the Debye wave number

=GOO b)

while y' is its renormalized value

(63)

x'=x'{G i(a) —(1/a) [Gp(a) —G ..2(a) jI. (65)

The static potential surrounding a perturbation of the
invariant density v(k) and corresponding to (63) is

unstable modes —to determine stability criteria. " The
static-response function will be discussed below; before
that, however, a word on the characteristic inodes of a
repulsive system might. be in order. Ie that case both
the "meson" and "plasma" modes are absolutely stable
for &&1. For g) 1 the two might merge, giving rise to
a peculiar type of instability.

Turning now to the static-response function, it is
evaluated from (50), by setting co=0. This zero-fre-
quency limit determines the static effective potential
around a particle at rest in the system. "
g(lrQ) =1+g[X2/(P+g2) j{G i(a)

—(1/a) [Go(a) —G 2(a) j}

B=sG 4(a[s, b$)/{1—sG ~(a[s, bj) I. (61)
@(Ir Q) 4~q (P2+ g2+gg2) ly (lr) (66)

s~s/(1 —s)

sG, (a„[sj)
1—sG 2(a [s])

for s(1

for s&1, (62)

Instead of discussing, however, the stability problem
on the basis of the dynamical behavior of the excit-
ations, it is more practical to analyze the static-response
function which itself contains enough information—
'equivalent, essentially, to that to be inferred from the
.limiting conditions pertaining to the dynamics of the

Ol

04lx
I

Although the behavior of this function is rather difficult
to visualize, some reAection shows that it is a mono-
tonically increasing function of b, asymptotically ap-
proaching the value

It is obvious that for p = —1 the Debye wave number
represents an antishielding effect and is compensated
for by the finite value of I~.

" only. There are two im-

portant features to be noted:

(a) x'/x' decreases with increasing density; if the
temperature does not exceed a certain limit (b) b,),
it starts with its normal positive value and switches
over to an anomalous negative value for s&s, . If,
however, b(b„ then x' is always negative and the
effective potential is repulsive for any value of s (see
Fig. 6). The physical origin of the strange behavior is
that the Debye shielding (i.e., antishielding) effect
stems from two competitive sources. The first is the
customary plasma behavior, which is represented by
the G i term in (65) and is always positive. The second
effect, which is responsible for A:, is the modification
of the (1—v') "' factor in the field equation because of
the external perturbation, as manifested by the first
term in the right-hand side of (47) and by the (Go—G 2)

contribution in (65): It can be viewed as an accumu-
lation of particles entailing a deepening of the potential
well and hence an increase of particle velocities —which,

Fzc. 6. The variation of the eRective shielding range K —X'
versus the dimensionless density (schematic). The parameter is
the dimensionless inverse temperature b; b2(bI. The dip below
'0 represents unstable behavior. Note that high density results in
.enhanced screening instead of leading to antiscreening.

~' N. P. Mermin, Ann. Phys. (N.Y.) 18, 42j. (1962)."It would be tempting to go a step further and to establish
the form of the static pair correlation function, evoking the Quc-
tuation-dissipation theorem. Actually, a Quctuation-dissipation
theorem can be derived without great difhculty; it, however re-
lates ~(k, 0) to vl, v I, where vI, =Z;(1—g&') ) exp (—jk x&'&)

is the invariant density —thus it is not immediately amenable
to predictions on the pair correlation function.
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Fic'. 7. The critical curve in the dimensionless density s=
4s.gsn/sscsza and dimensionless temperature b '= (pza) ' plane,
as calculated from the static linear-response function.

bc ' ——0.210,

s, =0.760,

s =2.254. (68)

The interpretation of the occurrence of ~'—x'&0 as
either an instability or a phase transition follows from
rather obvious considerations. In simple physical terms,
if a static poten. tial C (k), with real k/0 can develop,
this should be regarded as the heralding of the spon-
taneous breakup of the homogeneous system into
chunks of finite size which, in turn, can be regarded as
a process of phase transition, provided that the new
density within the droplets can be such that stability
ensues. Mathematically speaking, the existence of a
real k for co =0 as the solution of the dispersion relation
is the indication of a more general solution ~(k) = iy(k),
having the property that p(k)~0 as k~0; this can be
inferred from the analytic behavior" of e(kg) for ss-+0:

while

lime(k, iy(k) ) =lime(k0),
MO

lime(k, e) (k) )Nlime(k0) .

(69)

(70)

in turn, tends to decrease the total potential and thus
leads to a genuine shielding.

(b) Whether the total shielding constant K' —xs is
ultimately increased, decreased, or eventually becomes
negative is determined by the interplay of these factors.
The critical limit ~'—y'=0 is attained if

G-t(~L~, &3)- (1/~L~, &))

X{Gs(a(s, b]—G s(at s, bj) I =1/sb. (67)

The general behavior of the b(s) curve separating stable
and unstable regions (see Fig. 7) determined from (68)
is such that it defines a critical temperature (b, ') a
critical density (s,) and a maximum density (s ) .

The two critical curves Fig. 4 and Fig. 6 are not
identical. " This should not be surprising: they ought
to coincide in an exact theory only. Although both the
equilibrium Hartree approximation and the Vlasov
approximation for the calculation of the linear-response
function correspond to the same order of the pertur-
bation theory (order g'zz), an equation of state, if it
were based on the linear-response function, would con-
tain a higher-order contribution also (order g'zz). Thus
the equilibrium criteria and those based on the linear-
response function pertain to two diGerent levels of
approximation. That the two results are not quali-
tatively different and order-of-magnitude-wise provide
the same critical constants is rather comforting and
seems to indicate that the refinement of the pertur-
bation calculation would not modify too much the
equilibrium results obtained.

V. CONCLUSIONS

How much relevance do the calculations presented
in this paper have to the behavior of actual physical
systems? Not very much, probably. The most serious
question, of course, is whether a system of strongly
interacting particles could be described in terms of
such a simple dynamical picture as particles interacting
through a field. '4 Even admitting that this can be done,
the interaction is much more intricate than the simple
scalar-field model adopted in this paper. Moreover, the
model of the pure neutron gas is not very tenable,
since competing creation and annihilation processes
play a significant role. ' " But putting aside these
difhculties, which are common to many calculations
pertaining to the behavior of superdense rnatter, "''
there remains this question: To what extent can the
neglect of quantum mechanics and of collisional effects
be justified? Quantum mechanics is expected to intei. -
vene in two different ways: (a) when degeneracy is
relevant, i.e., when. pzz '"(A,, this leading to the con-
dition b '((s/uzi') "~s, with 1(lt(2 and y being the
coupling constant (y=g'/Izc), and zz the baryon-meson
mass ratio (zi =zzzc/5); and (b) when. pair-creation
effects that modify the effective interaction become
appreciable; this happens whenever P ')zzzc' or fi~s)
mc': the corresponding conditions are b ') 1 and s& p,'.
In order to fix ideas about orders of magnitude, let us
adopt y=15, p=7, and I(. '=2)&10 " cm; then s=1
will correspond to 0, 5&(10"cm ' and s =p' to 2, 5)& 10'
cm '. Degeneracy enters, of course, at much lower
densities and it changes the picture significantly. Al-
though the temperature dependence of the present

The agreement, actually, is surprisingly good: for b ')0.1,
the relative deviation between the b values calculated through
equilibrium and linear-response function considerations is less
than 10 '.

'4 J. N. Sahcall and R. A. %ol6', Phys. Rev. Letters 14, 343
(1965).

'~ B. M. Barker, M, S. Bhatia, G. Szamosi, Phys. Rev. 158,
1498 (1967).
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results should give some indication of the role the
Fermi energy plays in that case, classical calculations
can not replace a proper quantum treatment. On the
other hand, there are collisions to restrict the Hartree
approximation through the requirement that either the
density should be limited by the ~ 'm& 1, or if it exceeds
this value, y 'e&1 should hold, guaranteeing that
collisions are rare. This can be formulated as b '&y'
p, 's. The domain so determined is well above the
degeneracy limit, showing that the justi6cation of the
Hartree approximation for a classical system is much
easier than for a degenerate one. This is in contrast
to the situation prevailing in electron plasmas, which
can be regarded as weakly interacting almost always if
they are degenerate; the difference stems from the
big difference in the coupling constants.

The main interest of this paper is, however, not in
the applicability of the results to actual physical
systems, but in the elucidation of the consequences of
the transformation properties of the 6eld and in the
systematic relativistic handling of the Hartree approxi-
mation. From this point of view the results for a system

characterized. by attractive interaction can be sumrna-

rized as follows:

(1) The system is thermodynamically stable for any
value of the density and for any interaction range;

(2) the "relativistic hard core," predictable from a
one-particle model, never shows up, and the effective
mass is always positive;

(3) for not very high temperatures two phases exist:
at a maximum density s(b) the attractive interaction
leads to the instability of the "gaseous" phase; for
densities higher than s ( 2), however, the system is
stable for any density or temperature.
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It is shown that the Langevin forces needed to convert expectation-value equations into operator equations
for a two-level system cannot be Gaussian, and arguments are presented for extending this result to other
nonlinear systems. In order to satisfy quantum-mechanical requirements, a generalization to higher-order
moments of a procedure used for specifying second-order moments of the Langevin forces is proposed.

t lHE Langevin procedure of introducing, in a pheno-..menological manner, random process (Langevin)
forces is well known in the classical theory of Brownian
motion. ' The force is described by its statistical proper-
ties, and being Gaussian, only its 6rst- and second-order
moment functions need be specified. The Langevin
equation for a damped quantum-mechanical harmonic
oscillator was derived some time ago,2' and it was
shown that the expectation-value equation can be
converted into an operator equation through the
introduction of a (quantum-mechanical) Lang evin
force. The force was shown to be Gaussian, so that here,
too, complete specihcation of the force is obtained from
the 6rst two moment functions. Recently, several
authors have applied the Langevin procedure to a

~ See, for instance, Ming Chen Wang and G. E. Uhlenbeck,
Rev. Mod. Phys. 1'7, 393 (1945).' I. R. Senitzky, Phys. Rev. 119, 670 (1960); 124, 642 (1961).' J. Schwinger, J.Math. Phys. 2, 40'lt (1961).

general quantum-mechanical system, introducing
Langevin forces in order to convert expectation-value
equations into operator equations. Haken and Weidlich4
introduce forces described by a Gaussian Markov
process, and specify its properties completely with the
erst two moment functions. Lax' does not require the
force to be Gaussian, and, by discussing only the first
two moment functions, leaves the description of the
Langevin force incomplete. In the present note, a two-
level system will be considered, and it will be shown
that, firstly, the Langevin force carrot be Gaussian,
and secondly, a general procedure is available for
specifying the higher-moment functions of the Langevin
force.

In order to bring out the essential aspects of the
present argument, we consider the simplest possible

H. Haken and W. Weidlich, Z. Physik 189, 1 (1966).' M. Lax, Phys. Rev. 145, 110 (1966).


