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The positive- and negative-parity baryon mass shifts are investigated under the assumption that these
particles belong, respectively, to the representations (56,1) and (70,3) of the group SU(6) XO(3), which are
dynamically realizable from a 3-quark model with totally symmetric (S) functions, as found earlier by one
of the authors. Two diRerent types of SU(2)-invariant central forces V(') and V( ), each of which is shown
to be in conformity with the usual mass relations for the 56 states, are employed. One of these forces (V&s&)

is, however, found to violate the Gell-Mann-Okubo formula for certain negative-parity octets. It is also
found that appreciable mixtures of both V('& and V&') are necessary even for a qualitative representation
of the experimental masses. The eRect of an SU(2)-invariant spin-orbit force of the type ci-g2 of modest
strength ( 25 MeV) is found to be very helpful in producing a reasonably good Gt to the actual masses of
the negative-parity baryons. Such a force has, however, no first-order eRect on the 56 masses, on the assump-
tion of orbital S functions, which can be constructed only with 5-wave (7-(7 pairs. The significance oi this
result is briefly discussed in connection with the question of quark statistics.

1. INTRODUCTI05'

M NE of the earliest concerns of the various sym-
metry groups (dynamical or otherwise) that have

been proposed in recent years' has been the pattern of
mass splittings in successive orders of hierarchy in
symmetry breaking (strong, medium, and electro-
magnetic). Within SU(3), the spectacular success of
the Gell-Mann —Okubo (GMO) formula' for the mesons
and baryons has given it the status of a convenient
reference point with respect to which the mass formulas
of the symmetry groups (at the appropriate stage of
symmetry breaking) should be calibrated before their
more detailed predictions come in for further scrutiny.
These approaches may be broadly classified under two
heads: (a) those based directly on general symmetry-
breaking effects on a bigger symmetry group like
SU(6) ' or fJ(12),4 and (b) more detailed dynamical
models, of which the quark model' ' has received the

*Present address: Department of Physics and Astrophysics,
University of Delhi, Delhi, India.' For an exhaustive list of references on symmetry groups, see
A. Pais, Rev. Mod. Phys. 38, 215 (1966).

s M. Gell-Mann, Phys. Rev. 125, 1067 (1962); S. Oitubo, Progr.
Theoret. Phys. (Kyoto) 27, 949 (1962).' M. A. B.Beg and V. Singh, Phys. Rev. Letters 13, 418 (1964);
13, 509 (1964); K. Kawarabayashi, ibid. 14, 86 (1965).' D. J. Williams, Nuovo Cimento 44, 330 (1966).

5 G. Morpurgo, Physics 2, 93 (1965).' R. H. Dalitz, in Proceedings of the Oxford International Con
ference on Elementary particles, 1965 (Rutherford High Energy
Laboratory, Harwell, England, 1966).' R. H. Dalitz, in Proceedings of the Intergatiogal Conference og
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greatest attention. The quark model, with its non-
relativistic features, seems to be capable of yielding in
a very simple way a rich variety of results, many of
which are in surprisingly good accord with experiment.
In particular, it gives a number of interesting mass
relations between hadrons, going far beyond the Gell-
Mann —Okubo formula. For example, the simple assump-
tion of two-body isospin-invariant Q-Q and Q-Q forces
leads to the Schwinger mass formula' for the mesons;
the equal mass difference between the pseudoscalar
and vector mesons of P=o and 1, exemplified by
E~2—p =E —x', and a corresponding result for the
octet and decuplet of baryons. "Inclusion of electro-
magnetic eGects in the Q-Q potentials leads in a similar
way to the Coleman-Glashow formula" and other
interesting results. "

Most of these investigations have so far been confined
to the 56 of baryons and the nonets of mesons (vector
and pseudoscalar). Since, on the other hand, the results
seem to provide a good deal of confidence in the pre-
dictions of the quark model (as distinct from the
existence of the quarks), we feel that it is not too early
to extend such investigations to the higher-mass
baryons as well. This may be particularly interesting

High Energy Physics, Berke-ley, California, 1966 (Vniversity of
California Press, Berkeley, California, 1967).

A. N. Tavkhelidze, in Proceedzngs of the Seminar on High
Energy Physics and Elementary Particles, Trieste, 1965 (Inter-
national Atomic Energy Agency, Vienna, 1967).' J. Schwinger, Phys. Rev. Letters 12, 237 (1964).

re S. Coleman and G. Glashow, Phys. Rev. Letters 6, 423 (1960).
n H. R. Rubinstein, Phys. Rev. Letters 17, 41 (1966).
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for the negative-parity baryons, of which a good
number have already been identified and their spins
determined.

While the SU(3) classification of these resonances
still leaves much to be desired, it is perhaps a good
working hypothesis to assume the Dalitz classification
of these states, ' 7 which have been recognized either in
terms of phase-shift analyses, or through direct ob-
servation of peaks in the appropriate mass distributions.
The group appropriate to this classification is, of course,
SU(6)XO(3), with the representation (561) for the
usual octet and decuplet" and (?0,3) for the negative-
parity baryons. While a few (as yet missing) particles
could still prove a hindrance to the classification ac-
cording to this group and in particular according to
the representation (70,3), the latter representation
appears to us as one of the most economical, predicting
considerably fewer unobserved particles than, e.g.,
higher representations like 1134 of SU(6), proposed
by some authors. "Further evidence for the qualitative
validity of (70,3) for the negative-parity baryons is
provided by a recent exhaustive calculation of the
strong decay widths of these resonances'4 into pseudo-
scalar mesons plus positive-parity baryons, which gave
a pattern in rather good accord with the available data.
Finally, the group SU(6) XO(3) seems to have a simple
dynamical appeal"" based on an extension of the
Wigner supermultiplet potential" applied to Q-Q forces
and analyzed into individual partial waves of low l
values.

For these reasons we shall take the SU(6)XO(3)
model for the low-lying baryon states quite seriously
for the purpose of this investigation of their mass shifts
due to SU(3)-breaking Q-Q forces. As we shall not be
interested in the electromagnetic mass shifts, " these
forces will be taken as isospin-invariant. Nor shall we
consider the effect of direct three-body forces on the
mass formulas.

One of our main concerns will be to examine in some-
what greater detail the types or combinations of Q-Q
forces which give rise to the GMO and allied formulas
in the 56 of baryons, and the extent to which the latter
may be satisfied for the negative-parity baryons. In a
somewhat more quantitative way, we shall try to see
if suitable combinations of such forces can be con-
structed so as to produce a mass pattern which is at
least roughly in accord with the experimental levels for
the negative-parity baryons.

In Sec. 2 we consider two independent sets of central
potentials, termed V&'& and V&2), each of which is
capable of reproducing the SU(6) results for the 56 of

"K. T. Mahanthappa and E. C. G. Sudarshan, Phys. Rev.
Letters 14, 163 (1965)."J.J. Coyne, S. Meshkov, and G. B.Yodh, Phys. Rev. Letters
17, 666 (1966).

'4 A. N. Mitra and M. H. Ross, Phys. Rev. 158, 1630 (1967).
'5 A. N. Mitra, Phys. Rev. 151, 1168 (1966).
'6 A. N. Mitra, Ann. Phys. (¹Y.) 43, 126 (1967).
rr K. P. Wigner, Phys. Rev. 51, 106 (1937).

baryons. In Sec. 3, the general mass pattern produced
by each of V('& and V&'& on the negative parity baryons
is investigated, along with the effect of a spin-orbit
force operative in the p states of Q-Q pairs. Section 4 is
concerned with a semiquantitative fit to the actual
masses of the negative-parity baryons to the extent
that their J~ and SU(3) assignments have been identi-
fied. The main features of the results are summarized,
with particular emphasis on the essential roles played
by both the potentials V&'~ and V&') in producing the
negative-parity masses. The role of the spin-orbit force
is also discussed in connection with the question of
Fermi statistics for the 56 of the baryons.

+its)=4' & 4 (2.1)

+is& =P(&'4 '+&"4'")/~ (2 2)

where f, X, and p are, respectively, the spatial, spin,
and SU(3) wave functions of the 3Q system, and the
various superscripts stand for symmetric and Inixed
symmetric states, in conformity with Verde's notation
and phase convention. " For further details, we refer
to PDBR. The SU(6) symmetry for the 56 of baryons
necessarily implies the same spatial wave function ps
for both the 10 and 8 states.

The symmetry-breaking force between a pair (ij)

"O.W. Greenberg, Phys. Rev. Letters 13, 598 (1964).
"A. N. Mitra and R. Majurndar, Phys. Rev. 150, 1194 (1966).' The transition from a symmetric wave function to an anti-

symmetric one is effected by the following replacements in the
symmetry structure of the orbital part of the wave function:
S —+A, M" ~M', M' —+ —M", A —+S. See also Ref. 14.

"However, a spin-orbit Q-Q force aGects A and S functions
diBerently. This point is discussed in further detail below.

"M. Verde, in FIandbuch der I'/sysik, edited by S. Flugge
(Springer-Verlag, Berlin, 1957), Vol. 39, p. 170; y~ is a quartet
spin function. n10.2o.3 for J =~+. (x',y") are the doublet spin
functions, which for J =-'+ are

x'= (~2PI ~3P2)~~/~,x"=—(eg er)x'/v5;

similar results held for p~, p', and p".

2. SYMMETRY-BREAKIHG EFFECTS AND
THE 56 MASS RELATIO5S

The 3Q structures of the positive- and negative-
parity baryons were given in a recent paper" by one
of us (to be referred to as PDBR) on the basis of
symmetric (S) wave functions which are consistent
with parastatistics. " The reasons for the choice of
symmetric functions rather than the antisymmetric
(&) ones demanded by Fermi statistics are discussed
in PDBR and elsewhere"; it is probably sufhcient to
mention here that the mass relations to be derived are
to a large extent independent of this assumption"" as
long as the radial integrals are parametrized as such,
rather than evaluated with the help of further dy-
namical assumptions. " For the sake of convenience,
we reproduce the structure of the relevant wave func-
tions. For the 56 of baryons which we discuss in this
section, these functions are
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of quarks may be written as

V;,= V;&&i&+V;&&s&+V;&(L S), (2.3)

ALE I. Mass shifts among the 56 particles due to the
potentials V(') and V(')

Particle
where the first two terms represent the central forces
and the last a spin-orbit force. We write"

'"'=(/~)(o' )( "'+ "')+
+ (g/v3) ('As&'&yks& '&), (2.4)

V,,&s&=a(&r,"&r,)(e; ~,)+b(&r,"&r,))&s&'&As&&&

+e(~,"~;)+fXs&'&As&&'&, (2.5)

—jC—4+kg
—G—d3——G —d
2g+d

C+d+ g

c+dt —2

——c+d—-g

Sa——,'b —e+-,'f
3~+b+Be—kf
3a—-'b —e—-'f

-",b

u+-3b+e+ 3f
,'a ', b-+ ,'—e—,'f-—-

0
ah+sf

where the X's are the usual Gell-Mann matrices for each
quark. '4 This apparently arbitrary division of the central
forces into two distinct sets is based on the a posferiori
observation that each of these two sets is separately
capable of reproducing the Gell-Mann —Okubo formulas
for the 56 of baryons. The terms represented by V&'&

were indeed used previously by other authors' " to
obtain the conventional mass formulas, but the struc-
ture of V(') does not seem to have been investigated
earlier. As the simplest assumption, we take the
parameters multiplying the various terms in the po-
tentials as constants (therefore independent of the ij
labels as well). The calculation of the energy shifts due
to the symmetry-breaking terms, which we do per-
turbatively, therefore involves essentially a normaliza-
tion integral in &Ps which we specify according to

(2.6)

The mass formulas so derived for the 56 of baryons
are given in Table I, separately for the two schemes
V(» and V(».

As for the spin-orbit term V(L S) in (2.3), our
assumption that the radial wave function is lt s, rather
than the conventional &P" implies no contribution from
the former, at least in a perturbation theory. The
reason is simply that the structure &ps of 1.~=0+ is
built entirely out of s-wave Q-Q pairs (see PDBR) on
which a spin-orbit force cannot possibly have a first-
order effect. The result is in principle different from
that of Fermi statistics, where the structure of the
antisymmetric wave function &P" of I"=0+ requires
at least two p-wave pairs, " which in turn could be
affected by the spin-orbit force as well. This distinction
bet.ween Ps and &P" is clearly of a dynamical nature,
and its eGect on the mass formulas may in principle
provide an additional means" for probing into the

3
sa s; s;= p && &'&&& &&'&, which is the SU(2)-invariant product

a 1

of two Gell-Mann matrices, covers merely the erst three com-
ponents of each.

"M. Gell-Mann, in The Esghkfold Way, edited by M. Gell-Mann
and Y. Ne'eman (W. A. Benjamin, Inc. , New York, 1964)."It seems that the physically observable e8ects distinguishing
between symmetric (S) and antisymmetric (A) orbital functions
are not too many. For example, the sum rules for important
processes like meson-baryon scattering and production LG.C.

c=56.2, d=121.0, 3g= —177.0. (2 9)

In the four-parameter V(') scheme, the combination
-', (b+f) plays the same role as A, viz. , that this quantity
by itself gives the equal-spacing rule. We may therefore
again omit d with the understanding that its effect is
already incorporated in this scheme.

Joshi, V. S.Bhasin, and A, N. Mitra, Phys. Rev. 156, 1572 (1967)g,
photoproduction [S. Das Gupta and A. N. Mitra, Phys. Rev.
156, 1581 (1967)j or strong-decay widths of negative-parity
baryons (see Ref. 14) do not depend on such distinctions. Qn the
other hand, the structure of electromagnetic form factors (see
Refs. 7 and 19) is perhaps one of the few cases which could throw
light on this important question, apart from dynamical preferences
for S rather than A functions (see Ref. 15).

"We use the notation (Ã,Z,h., ) for diBerent members of the
SU(3) octet, and (E*,Z*, *,0) for those of the decuplet. An
identical notation will be used for the SU{3) structure of the
negative-parity baryons, except for the additional notation F"
for the SU(3) singlets that would appear in this case.

validity of Fermi statistics for quarks. The sensitivity
of this probe is of course dependent on the strength of
the spin-orbit force required to Qt the negative-parity
masses, and this strength turns out to be moderately
small ( 25 MeV). We shall come back. to this question
in Sec. 4.

To come back to the 56 mass formulas with pure
central forces, we note from Table I that in the V(')

scheme, the combination ——,'(c+g) of its parameters
plays exactly the same role as the mass difference 6
between the singlet and doublet quarks. Since each
gives the equal-spacing rule for the decuplet, one may
avoid duplication by merely noting that the effect of
6 couM be alternatively simulated by the combination
—s(c+g) of the coefficients. With this understanding,
the 6 parameter may be dropped, so that we have
effectively 3 independent parameters in the V")
scheme. This scheme yields, without any extra assump-
tions, the GMO formula for the octet and the equal-
spacing rule for the decuplet. The more specific SU(6)
results obtainable in this scheme are"

(2.7)

Z —A+-' (j&Ir—~)= -'(iV*—Z*) . (2.8)

A good fit to the various masses of the 56 representation
is obtained with the following values (in MeV):
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As V"& has an extra parameter over V"', it. gives
merely the broader SU(3) result

TAnLz II. Structure of the (70,3) wave functions. (For notation,
see text and PDBR.) Only the spin-orbital structure of the type
(2,1) is shown under the 8 representation.

0—Ne=3( e—Ze) (2.10) I. S J (10)

rather than the GMO and the equal-spacing rule. It
also gives the SU(6) relations (2.7) and (2.8) connecting
the members of the octet and the decuplet. "One now
requires the additional assumption

1 2 2

1 2 2

2 2

2 2

~Is Xv +4'» XIs

0
'40'v +'4 0'v

0
0

0p'XI "+0p"xp'
4~'x~~

4'~ ~f +4 0'r

4'+1 Xen

4p'xp" —4'p"xp'
0

0
0

a+e= 3(b—+f) (2.11)

to obtain the (stronger) SU(3) results symbolized by
the GMO and the equal-spacing rule. We also record
the values (in MeV):

a= —171, b= —151, e= —141, f= 261, (2.12)

while for the spin functions we have

1.
2

f e

Xp = Zo yp+

x„"=—(W3)
—'(i ,o„+e„i„osioi„)x'; (3.2)

which, in accordance with (2.11), give a good inde-
pendent fit to the actual 56 masses.

We have thus found two independent but essentially
equivalent schemes for fitting the masses of the 56
representation. One could also consider any arbitrary
mixture of the potentials V&" and V(2& to give an equally
satisfactory representation of the 56 masses. The more
interesting question now concerns the mass pattern
which these schemes, singly or in combination, produce
for the negative-parity baryons.

3. MASSES OF NEGATIVE-PARITY BARYONS

The experimentally established negative-parity
baryons, with all quantum numbers properly identi-
fied, are indeed very few. However, as mentioned in
the Introduction, we shall assume the (70,3) represen-
tation of the group SU(6))&0(3), and this will specify
uniquely the SU(3) assignments of these particles.
The only source of ambiguity is in the duplication of
the octet states of J =

~ and of J =—', . To start with,
we specify these states in terms of their spin con-
figurations, doublet and quartet (denoted by 8" and
8', respectively), a classification which is broadly in
agreement with Dalitz's general analysis of these states. '
Table II gives the wave functions of the various 1.~= 1
SU(3) multiplets in the (ISJ) scheme. Here (P„',f„")
are the vector orbital functions of mixed symmetry
which are contracted with appropriate spin and SU(3)
functions by Gerjuoy-Schwinger techniques, " as ex-
plained in PDBR" and another recent paper" by one
of us (ANM). The normalization used for the orbital
functions is

d&= sbr»' (3.1)

~7 P. Federman, H. R. Rubinstein and I. Talmi t Phys. Letters
22, 208 (1966)g have also obtained the relations (2.7), (2.8), and
(2.10) on the basis of SU(2) invariance and two-body forces."G. Gerjuoy and J. Schwinger, Phys. Rev. 61, 138 (1942).

20 A. N. Mitra, Phys. Rev. 150, 839 (1966).

J——'

o „'=-',v3 (~s„—~s„),
~is+ s (rrss+rrss) ~

o's =0iy+ (Tsp'+ rrss ~
S

(3 3)

The latter operators operate on Xg2 =at'y~~o. '3.

The calculation of the mass levels is straightforward
and follows essentially on the lines of Sec. 2. Here
again, the assumed constancy of the parameters in the
two potentials V(" and V&'& makes the results inde-
pendent of the details of the orbital functions, since
only the total normalization, governed by Eq. (3.1),
is involved. ' There is, however, an important point of
difference from the 56 case, where the first-order
perturbation treatment was enough to remove the mass
degeneracy between different SU(2) multiplets of the
octet and decuplet states. In contrast, the mass de-
generacy between SU(2) multiplets of the classifi-
cation in Table II necessitates recourse to degenerate-
perturbation methods. Thus the quartet states of
J =-', , ~, and ~ show one common mass for each
SU(2) multiplet type. While these masses are distinct
from the corresponding masses of the doublet states of
1, 8, and 10, the latter are badly degenerate among them-
selves. To remove the latter degeneracy, it is necessary
to diagonalize the relevant parts of the first-order
Hamiltonian expressed in terms of the matrix elements
of V&'& and/or V&'&. For the N , N* , and 0-ty-pe-
(doublet) states of a given J~ value, it is clear from

~0Actually, it is of greater interest to consider the eGect of
p-wave central forces on the negative-parity masses. Such forces
make the potentials V;; dependent on the labels i, j. However,
for centra/ forces, in either of the two schemes, the expectation
values (V;,), which are independent of the labels i, j, depend only
on one radial integral for each of the terms c, fg, g in V&') or a, b,
e, j in V&'&. Thus the number of independent parameters is still
three in each scheme, though the relation of the parameters to
the potentials (from the evaluation of the radial integrals) depends
on the detailed structure of the wave functions. It is with this
understanding that we may formally use the same notation for
the parameters of the potentials and those appearing explicitly
in the mass formulas. This freedom of inclusion of a spatial
structure in the potential V(') or V(') separately will be of use in
a consistent interpretation of the results of mass 6ts to the
negative-parity baryons in addition to the positive-parity ones.
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8
t x p ), (')), (J)

a~1
(3.5)

of which the first three are merely SU(2)-invariant
interactions, and the last an SU(3)-invariant one. The
last one, which was indeed considered in PDBR,"was
found to produce certain geometrical-looking mixtures
between the quartet and doublet states. However, its
capacity to remove degeneracy among various masses
seems to be rather limited. While its presence is by no
means ruled out, it would be interesting also to con-
sider the other types listed in (3.5), as they are likely

TABLE III. Mass shifts among the various (70,3) states due to
the potentials I'('& and l ('&. (For notation, see text. )

Table II that the matrix size is simply 1X1 while for
the states of the (or *),. h. (or F*), and Z (or Z*)
type, one must handle 2X2 matrices.

Unfortunately, the mixing of the above states caused

by the diagonalization process is appreciable, being as
much as 50:50 for all the 2X2 matrices considered.
One must therefore work with doublet states like

cV= (v2)
—'(A+V*), A"= (v2) '(h.—F*) (3.4)

for I=O and corresponding states for I=~~ and 1,
respectively, where the phase conventions for the
mixtures represented by the superscripts I and II are
uniformly defined by Eq. (3.4). The algebraic mass
formulas obtained in this manner are listed in Table
III, separately for the V(') and V(" schemes.

The central forces V(" and V(" still leave degenerate
the states of different J~ values (ts, ss for doublets,
and st, ss, ss for quartets), and one must invoke
noncentral forces to remove this degeneracy. The
simplest type is a spin-orbit force represented by the
last term of (2.3) which, though found ineffective for
the 56 states, is now expected to play a more important
role on the vector orbital functions f„char acterize d

by p-wave configurations.
One could consider the following charge-hypercharge

structures for the spin-orbit force:

to yield more structure in the masses (being merely
SU (2)-invariant].

An estimate of the strength of the spin-orbit force
can readily be obtained from a comparison of the mass
differences between like SU(2) multiplets. Thus, the
mass difference between the quartet f)f states Ne(1688)
and 1V*(1540),of Jp= ss and s, resPectively, Provides
a reliable estimate of the spin-orbit strength. Indeed,
on the basis of such comparisons, the strength of this
force was estimated to be about 25—30 MeV, which is
appreciably less than the mass differences between
SU(2) multiplets of different hypercharges (100—150
MeV).

Assuming, therefore. that the spin-orbit force is
weaker than the central force, it is reasonable to ignore
the coupling between the various states while esti-
mating its effect in a perturbative manner. Since in
this case it is not possible to ignore the spatial structure
of the force, the mass shifts for the various states would
be proportional to radial integrals which in general
would depend on the spatial structure of the f„'s. As
such a mechanism in this case would involve a number
of independent radial integrals, " this would amount
to as many parameters being used to estimate the effect
of the spin-orbit force. To avoid bringing in so many
parameters just for the sake of a small effect, one must
make some additional assumptions. For this purpose
we make the same assumption as in Ref. 15 or PDBR,
viz. , that the spatial part of the spin-orbit force has a
p-wave separable structure of the form

(p I Vial p')= s)(ia(pXp') ((r,+(r;)()(p)t)(p'), (3.6)

where the shape factor t&(p) is the same as used for the
(much stronger) central p-wave force required to
generate the central mass of the (70,3) multiplet. " In
other words, we use the same calculational technique
for the SU(2)-invariant spin-orbit interaction as was
done in PDBR for the corresponding SU(3)-invariant
force. This procedure would result in a modification
of the strength parameters of the kernels of the relevant
spectator functions for the various SU(2) states with
the replacement

XP ~ XP+e(ia) La, (3.7)

Particle

N5/2 =N3/2' =Nl/2'
h.5,2 =A3/2~ =Al/P

~5/2 ~3/2 ~l/2

e-(5/2 e-i3/2 ~l/2

N3/2 =Nl/2"

N3/2* =Nl/2*

~3/2 Al/2

~3/2' =~1/2'
~3/2I~ =~1/2~~

~3/2 ~1/2
+3/2II ——gl/2~~

~w 3/2
—

~m 1/2

H 3/2 & 1/2

V(') scheme

2C+ 2g

d
d ——,c——,g

2 2

C+2g
-d —-'c+-'g
—a+ac —-', g—((t+ 3C

—((g—-C3—fg+-,'c
—a+3C

—8+pc —-g
—8—-g

V(2)

a+ ,'b e+ ',f- -—-
a ', b e srf- ————

$a 'b+ pe 'f—-—-
0

a s'b e+ ,'f- —-
a &r(b+e+ g�-—

'fab+�—
a+ xeh e xef 2(a—xs—b)— —
a+ ', b e sf+2 (a -',b—)— —-

—-'~+-'b+-'e —-'f—-'(~+b)
—-'a+-'b+-'e —-'f+-'(a+b)

+gb

where Xo is the strength of the central interaction and
is essentially a geometrical factor depending on the
spin, charge, and hypercharge quantum numbers of
the SU(2) states. Since Xia«hp, one inay then proceed
as in PDBR" to deduce mass shifts of the form

~mr. S=«I.S, (3.8)

where e is a constant independent of the spin-SU(3)
assignments. This result is so simple, depending as it

"The situation for spin-orbit forces is different from the case of
central forces where the number of independent parameters in
the mass formulas happens to be equal to the corresponding
number in the potentials (see Ref. 30). Indeed, the noncentral
structure of the spin-orbit force yields a much richer variety of
radial integrals.
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does on a single free parameter, as to make the ad-
vantages of a simple dynamical assumption like (3.6),
made on a relatively small effect (like the spin-orbit
force), very strong in comparison with the disad-
vantages that would be caused by the presence of
several free parameters (in the form of radial integrals)
in the mass formulas. Moreover, it may be noted that
the assumption (3.6) hardly amounts to any detailed
model, but is merely a convenient expression for a
(short-range) spin-orbit force in an "effective-range"
spirit.

The values of xI,B determined for the various SU(2)
states before the Inixing of the 8~ and 10 or 1 states are
shown in Table IV for the scheme e; ~, of (3.5), which
is fairly close to the predictions of the SU(3)-invariant
interaction" (except for involving less degeneracy). "
The corresponding calculations for the different SU(3)
mixtures I and II of the doublet states of 8, 10, and 1
are easily performed by merely adding the contri-

butions of the spin-orbit effect to the relevant 2)&2
matrices mentioned, earlier in this section. The results
of this spin-orbit modification for these mixed states,
including terms of order e'/V&'& or e'/V"& are shown
in the second part of this table.

Before concluding this section, we mention certain
general features of the mass relations predicted by the
Vo) and V(2) potentials for the negative-parity states.
With V('), GMO and the equal-spacing rule are trivially
satisfied for the individual octets and, decuplets, re-
spectively, in the absence of coupling between the 8",
1, and 10 states. However, the coupling between the
8", 1, and 10 states brought about by V&'& results
merely in the more general GMO relations, separately
for the superscripts I and. II, for each J value; but
the equal-spacing rule for the 10 states is lost. This is
easily verified from an inspection of Table III. For
V&, together with condition (2.11), GMO is satisfied
for each of the 8 states of J~=-,', ss, ss which do not
mix with the 8", 1, or 10 states in the absence of spin-
orbit forces. However, even with the neglect of coupling
between the 8", 1, and 10 states, V&'& together with
(2.11) does not yield GMO for the 8" states, or the
equal-spacing rule for the 10 states. This last feature
of the V(2) scheme is particularly interesting in the
context of certain conjectures" that GMO may not,
after all, be valid, for the negative-parity baryons. We
have actually found a potential which, while yielding
conventional results for the 56 of baryons, has a dis-
tinctly different role to play for the negative-parity
baryons.

An SU(6) mass formula for the negative-parity
baryon masses, when both V(') and V(2' are present
and the corresponding mixing of the Sd, 1, and 10
states is taken into account, is'

TmLE IV. Spin-orbit parameters xgg with a e1 e2-type force
for the various negative-parity states.

JPJP—~&— JP—3-
2Particle

9/4
3/2—1/8
0

—15/4—5/2
5/24
0—3—2
1/6
0
1
1/3
0
0—1

—3/2—1
1/12
0
3/2
1—1/12
0—1/2—1/6
0
0
1/2

E~
A~

ge
Ve
gd
ii~
gd
Mg

M$

0
p'Q

V(2)

1 62
1

192 (a+b)
1 6

46+
192 (o+b)

1

1 6
61

192 c
1

6+
192 c

1
186

768 c
1 6

6+1

768 c
3 6

6+—
16 c
3 6

16 c
3 6'

6+3

64 c
3 6

6
64 c
0
0

2(g Ne) 3(~I+ ~ II gI gII) (3 9)&1/2I

which is degenerate with respect to J =-,' or ~
—.Two

SU(6) relations, connecting the 56 masses with those
of (?0,3) are '4"

g 1/2I I

1

768 (a+b)
1 6—-', 6+

768 (o+b)
62

6+—3

32 (o—sb)
1 6'

32 (o—$b)
1 6

&3/2
(3.10)~~ —Z=~™I/g—ZI]g =~~3]2 —Z3(2 )

y.*+g N~= NI&,*+—NI&sv 2NI&s"—
=N,(,*+Ns&sq 2N3/s", (3.11)—

+3/211

h.3/2 g6+
128 (o &r&b)—
1 6

ge—
128 (o—$b)

0
0

P3/211

MI/2 =Ml/2

Me/2 —MS/2
I-M~ II » G. L. Kane, Phys. Rev. Letters 17, 719 (1966).

34 K. Bardakci, I. M. Cornwall, P. G. O. Freund, and B. W.
Lee Phys. Letters 15, 79 (1965).

"We indicate the J value by a subscript to the main symbol,
according to Ref. 26.

"The predictions of the schemes (Xs. '&+&&s&I&) or Xs '»&s '& are
not shown, as these turn out to be in violent disagreement with
the observed mass pattern of the established cases.

where in the last two expressions in each relation the
8', 8", or 10 members of the (?0,3) particles are indi-
cated, and the first member of (3.10) or (3.11) refers
to the usual positive-parity baryons.

Inclusion of a spin-orbit force, as in Table IV, does
not significantly affect these relations. For example,
Eq. (3.09) picks up a term —2e on the left and —se

on the right, resulting in a net violation of the equality



by an amount —',e 12 MeV. Eq. (3.10) is even less
aQected by this modification, the violating being only—(5/24)e for the middle member (J~= ~

—
) and —~~' e

for the last member (J~=2—). Equation (3.11), on
the other hand, is somewhat more violated by the
spin-orbit effect, the net "corrections" being —(13/4)e
and +e for J~=

~ and 2, respectively. Unfortunately,
in the absence of sufficiently clear experimental identi-
6cations of the various members of the above relations,
any meaningful comparison with experiment is at
present premature.

4. RESULTS AND DISCUSSIONS

We now look into the possibility of a semiquantitative
fit to the masses of the negative-parity baryons to the
extent that they have been recognized experimentally.
At first view, one could try with V&'& and/or V"&,
separately or in association with a spin-orbit force.
Since a lot of trial and error is involved, we start by
ruling out a few simple possibilities. For example,
taking the parameters (2.9) of V&'&, we find that these
are utterly inadequate for even a crude representation
of the negative-parity data. Thus, V~') predicts a
discrepancy of 320 MeV from the experimental mass
difference of barely 20 MeV between 1V*(1670) of
J~=', (known to be a member of 10) and X*(1688)
of J~=—,'(a member of 8q). Similar discrepancies of
large magnitudes are noticed for the mass difference
between, say, "%5~2(1688) and %3~2(1518). In an even
worse fashion, the parameters (2.12) for V&'& are at
complete variance with the data for the established
cases. Finally, we have not succeeded in finding any
suitable combination of the two sets of parameters
(2.9) and (2.12) to give even a qualitatively correct
picture of the masses of the negative-parity baryons.

Next we look for an alternative possibility for fitting
the masses by determining some of the potential
parameters from a few negative-parity baryons as input.
Since we have already seen in Sec. 3 that V") is likely
to play a more interesting role for the negative-parity
baryons (not being tied to the GMO relations), we
first seek to determine the parameters of V('), rather
than V"), from some of these masses. As a working
hypothesis, we choose the following masses as input:

1V&;(g'(1688), ZQ/2'(1765), (4.1)
Fe (1405) A&

r Fs (1520)—A3 z&r (4 2)

It is then possible to check the parameters from such a
determination against the masses of the following
particles:

J~= —,
'—: E*(1670)—=1V&)2*, X~(1540)—=X'&; (43)

J&'= $—: cV*(1518)—=1V3(2~, Vg*(1660)—=&',
*(1816)—= -'. (4.4)

In this respect, the biggest problem lies in the SU(3)

assignments. According to our calculations outlined in
Sec. 3, we find strong admixtures of 8" and 10, or 8"
and 1 states, all of which have spin-doublet structures.
It is only the spin-quartet 8' states whose mixing with
the doublet states may be neglected in the absence of
a strong spin-orbit coupling, an assumption justified
from the analysis of Sec. 3.

The only quartet states in (4.1)—(4.4) are X&(1688)
and Nq(1540), according to the analysis of Dalitz' and
the results for strong-decay widths. "All other states
listed therein are strongly mixed doublet states. Thus,
we have a choice of identification of the experimental
states listed above with the assignments (superscript
I or II) discussed in Sec. 3. We have (hopefully) indi-
cated these assignments in (4.1)—(4.4) with a view to
minimizing the discrepancy between theory and experi-
ment. To determine the parameters of V"', we have
also to consider the eRect of the spin-orbit force, which,
according to Sec. 3, is &=26 MeV. It turns out that the
SU(2) variety ~; ~, of this force gives by far the best
results —the next best, the SU(3) version, being ap-
preciably worse. After correcting for the spin-orbit
effect, a fit to the masses (4.1) and (4.2) with V&"

above, leads to the following values (in Mev):

&&, = —31.0, b = —264, &:=118, f=235. (4.5)

Now it turns out that even these values give very
bad results for the masses of the particles (4.3) and
(4.4). We notice, however, the interesting result that
the large discrepancies in several cases are roughly
equal and opposite from the V") and V(') contributions.
This indicates that large components of both V(" and
V(2) are necessary even for a qualitative understanding
of the Inass pattern, through a cancellation of large
terms of opposite signs. As the simplest possibility,
therefore, we have considered the effect of 50% mix-
tures of V&'& and V&'& with parameters taken from (2.9)
and (4.5), respectively, and this reduces the scatter in
the mass differences from several hundred MeV to the
modest range of 20—60 MeV. We mention in passing
that the results obtained by interchanging the roles of
V"& and V&" Lviz. , determining the V"& parameters
from (4.1) and (4.2) and taking the V"& parameters
from (2.12)j are nowhere near the qualitative accord
achieved with the procedure just outlined.

We consider the above numerical result so significant
that we venture to offer a rough physical explanation
of the mixture ~~(V&'&+ V "&) required to fit the masses
of the negative-parity baryons. It is an observational
fact that for the negative-parity baryons the mass
diQerence between Y=O and V=1 particles, which

may be called the "equal-spacing parameter, "is roughly
half that among the corresponding positive baryons.
Therefore, if we suppose that the "equal-spacing
parameter" is contributed almost entirely by V(') and
little by V"& the formulas V"& and —,'(V&'&+V&")
respectively, for the 56 and (70,3) of baryons, provide
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TAnzz V. Mass tits for negative-parity baryons (MeV).

S. No.
Mass

difference
Central eGect

V(&) $(Vir)+P'(&)) =V

Spin-
orbit
force

V (I.S) +v(L S)=—q

Exp.
8

&S/2 —&1/2'
&5/2 —&3/2
N5/2 —~3/2"
+5/2 ~l/2
+5/2 ~5/2
&5/2 —Z3/2
&5/2 —&3/2'

317
0
317
140
65—140—75

140

—342
0—48
181
267—79—342—143

—13
0
134
160
165—iio—209—2

28
144
18
36
90
57
54
57

15
144
152
196
254—53—155
55

8
148
170
168
283—77—138
28

—7
+4

+18—28
+29—24
+17—27

a very simple und. erstanding of this phenomenon. To see
this point somewhat more clearly, we recall from Sec. 2,
that the "equal-spacing parameter" in V&') is repre-
sented by s~(b+ f), whence a zero value for this param-
eter requires

b= f, a=——e, (4.6)

by virtue of (2.11). Actually, the condition b= f is-
almost satisfied by the values (4.5), considering the
large magnitudes for b and f. Though the other con-
dition a= —e is not satisfied by (4.5), this could well
be due to the failure of the GMO formula for V&2). In
any case we seem to have found a rather simple dy-
namical mechanism to understand the smaller mag-
nitude (by roughly half) of the "equal-spacing pararn-
eter" for the negative parity baryons. The 50:50
mixture of V&" and V&2) which gave a mass pattern in
qualitative accord with experiment also leads, without
extra assumptions, to the requisite magnitude of the
equal-spacing parameter.

A more quantitative determination of the V"' can
now be made directly by the method of least squares
to fit all the masses (4.0)—(4.4) simultaneously, with the
help of the potential

—,'(v&'&+ v&'&)+ v(L S), (4.7)

the last term being of the SU(2) type ~,"~;. The least-
squares values of the parameters (in MeV),

a = —48.0, b = —216, e =+99.0, f= +199, (4.8)

yield the masses shown in Table V, which are in
reasonable accord, with experiment, with an error
ranging between 10 and 30 MeV.

Table VI lists several predicted masses according to
the present analysis. While some of these lie rather
low in mass, indeed loner than a few observed ones,
this fact by itself need not be an embarrassment. For,
as has been found from the analysis of strong decays, "
most of these states would be extremely hard to detect,
because their widths are either too large to too small.
Their effect could, however, be felt indirectly, e.g. ,
through careful phase-shift analyses in EA" scattering.
In this connection, we wish to record a point of dis-
crepancy between the results of strong-decay widths,
which had indicated very little mixing between the

Tmizz VI. Mass predictions (MeV).

A5/2 1746
/2I 1486

Z8/P 1746
Z1/2I 1670

1804
~~1/2II 1591
N3/2* 1706

A3/p 1686
A1/2" 1438
Z1/P 1749

1804
II 1591

E3/2~ 1598
03/2 2102

AI/P 1660
g, /, II 1485
Z3/2II 1475

1804
1830

IVI/2" 1443
01/2 2102

representation states listed, in Table II, and the present
calculations, which predict very large mixing between
the (doublet) states of 8", 10, and 1 multiplets. Perhaps
more experimental evidence is needed to clear up the
picture.

While the formula (4.7) for the potential to represent
the (70,3) masses contrasts rather prominently with the
simple formula Vt'& for the 56 masses, it is formally
just a question of suitable projection operators to
accommodate the different varieties. A simple possi-
bility is to use projection operators PLO) for V&'i and
PL1) for (4.7), where Pt l) is the projection operator
for interaction in a Q-Q partial wave l. Since V(L S)
is necessarily associated with at least l=1, it cannot
of course be operative on the 56 states, as was already
stated in Sec. 2. Since the parameters of V&" already
give a good fit to the 56 inasses (within 10 MeV), this
fact leaves little scope for other forces to play any
useful role. While in our model, the s-wave structure of
all Q-Q pairs in the 56 states, effectively keeps out the
spin-orbit force, the situation would be quite different
with Fermi statistics, where the mutual p-wave Q-Q
pairs associated with an A function of 1.~=0+ could
be badly affected by the spin-orbit force. If now the
strength of the latter were to be d,etermined by its to
the (70,3) masses, viz. , e=25 MeV, one would expect
the same force to produce mass shifts of like magnitude
( 25 MeV) among the members of the 56 states.
Since, on the other hand, the V&'~ parameters, as deter-
mined from the 56 masses, do not leave much scope for
adjustments, distortions of the order of 25 MeV in
these values could provide at least some hindrance to
the assumption of Fermi statistics for Gell-Mann —Zweig
quarks.

To summarize, we have found two independent sets
of potentials, V('~ and V&'&, each of which gives con-
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ventional results for the 56+ sets; but V&'I predicts a
departure from the GMO for the negative-parity
baryons. While Vi'& is ideally suited for the 56 states,
the negative-parity (70,3) particles require roughly
equal mixtures of both, in addition to a spin-orbit
force of the ~,'c; type. This also provides a simple

dynamical mechanism for the empirical result that the
negative-parity baryons show a magnitude for the
"equal-spacing parameter" of =77 MeV, only about
half the value of 140 MeV for the positive-parity ones.
Finally, while the spin-orbit force required to Gt the
negative-parity masses is of rather modest strength

( 25 MeV), it is big enough to show up as a vexing
perturbation on the otherwise beautiful fit to the 56
masses with the help of V&", thus making an anti-
symmetric function (Fermi statistics) much less favored
than a S function, again in conformity with the results
on the baryon form factors" as well as dynamical
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Sul)erconvergence Sum Rules for 2+-0 Scattering*
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We develop the kinematics for 2+-0 elastic scattering and determine the asymptotic behavior of the
invariant amplitudes assuming (a) Regge behavior and (b) a Froissart bound. The corresponding sum rules
are written down and an approximate saturation with a few low-lying single-particle states is attempted.
In general, such saturation is not obtained.

I. INTRODUCTION

' "T has been noted by several authors' that amplitudes
~ - falling oB sufficiently fast as s —+~ satisfy sum

rules, which have been called "superconvergence sum
rules" by de Alfaro, Fubini, Furlan, and Rosetti. Such
sum rules have been derived by current algebraic and,

Regge-pole-theory techniques, and many authors' have
attempted, to saturate them approximately by a small
number of low-lying single-particle states and get rela-
tions among coupling constants and masses. Such at-
tempts have met with various degrees of success.

In this paper we study the elastic scattering of 2+

and, 0 Inesons and derive superconvergence sum rules

for the corresponding invariant amplitudes, assuming
that they have the usual Regge behavior. We feel that
this process should be a particularly interesting one to
study, because a large number of sum rules are obtained,
because of the high spins involved. Some of the sum
rules are actually a consequence of the Froissart bound, '
alone. Next we attempt to saturate the sum rules so
obtained by low-lying ((1.5 GeV) one-particle states
and find that under any reasonable approximation the
only consistent solution is the trivial one (all coupling
constants vanish). The only exception are the sum
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Commission.' L. D. Soloviev, Soviet J. of Nucl. Phys. 3, 131 (1966); M. L.
Goldberger, H. Miyazawa, and R. Oehme, Phys. Rev. 99, 986
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Schumacher, Phys. Rev. Letters 12, 209 (1964); A. P. Balachan-
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Phys. 5, 614 (1964); A. P. Balachandran, Ann. Phys. 30, 476
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Letters 21, 576 (1966).' P. Frampton and J. C. Taylor, Oxford University Report, 1967
(unpublished); G. Altarelli, F. Buccella, and R. Gatto, Phys.
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. FIG. 1. 2+-0 elastic scattering.
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