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Bootstrap Model with Hadrons of Both Parities*
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A bootstrap condition, used commonly to study internal symmetries, is generalized so that it may be
applied to states of different spins and parities. A bootstrap model of vector mesons and spin--, baryons,
developed by Cutkosky and Polkinghorne, is generalized to SU(6)~ symmetry and to include mesons and
baryons of both parities. A solution is found involving odd- and even-parity mesons and even- and odd-
parity baryons that correspond to the SU(6)s representations 35, 35Q+1, 56, and 70, respectively. The
existence of the solution depends on certain exact properties of the 35Qx56 and 35Qx35 crossing matrices of
SU(6). The physical interpretation of the solution is discussed; the odd-parity baryon multiplet corresponds
physically to the SU(6)QxO(3) representation (70, 3).

I. INTRODUCTIOH

''N 1963, Cutkosky considered, a bootstrap model
~ ~ involving the trilinear interactions of a set of de-
generate V (vector) mesons, in which the V are VV
composites produced by V exchange forces. ' The self-

consistency cond. itions in this model can be satisfied

only if the V correspond to the regular representation
of a compact, semisimple Lie group. Later, Polking-
horne extended this model by introducing a set of
degenerate spin--', baryons. ' The baryons 8 are assumed,

to be VB composites produced by 8 and V exchange
forces. Polkinghorne showed that if the VVV inter-
actions satisfy the requirements of Ref. 1, the baryons
must correspond to a representation of the group, and
the VBB interactions must be proportional to matrix
elements of the group generators.

The Cutkosky-Polkinghorne (CP) model suggests
an elegant way in which the requirement of self-

consistency may induce an interaction symmetry.
However, the model is very incomplete dynamically,
since attention is limited to VV and VB states trans-
forming under space rotations as vectors and spin-~
spinors. The exchange mechanisms considered induce
strong potentials in other partial waves as well. It is
reasonable to neglect states of large angular momenta,
because the centrifugal barrier in these states is ex-

pected to inhibit the potential in the low-energy region.
However, in the CP model, states are neglected that
correspond to orbital angular momenta no larger than
that of the included states. The model is inconsistent if
these states are considered. For example, it has been
shown that if the group is SU(m), the force in the
P-wave, pseudoscalar VV state corresponding to an
SU(N) singlet is attractive and stronger than the force
in the P-wave states in which the V are bootstrapped. '
Thus, the assumption of no pseudoscalar mesons is
inconsistent.

If one can find a modification of the CP mod. el, in

* Supported in part by the National Science Foundation.
R. E. Cutkosky, Phys. Rev. 131, 1888 (1963).' J. C. Polkinghorne, Ann. Phys. (N.Y.) 34, 153 (1965).

"'R. H. Capps, in Proceedings of the Summer Institute for
Theoretical Physics, University of Colorado, Boulder, Colorado,
1966 (to be published). See Ref. 11.

which all partial waves of orbital angular Inomenta
smaller than some fixed value are considered. , this type
of inconsistency would be removed. The main purpose
of this paper is to point out that a symmetry of the
SU(6)s type leads to such a modification, provided
that meson and baryon multiplets of both intrinsic
parities are present.

The self-consistency conditions of the CP model are
expressed in convenient form in Sec. II of the paper.
In Sec. III, these conditions are generalized to SU(6) s
sylnmetry. Exact solutions are found. that involve
mesons and baryons of both parities. The nature of the
potentials and some effects of symmetry breaking are
d,iscussed in Sec. IV.

II. THE STRONG BOOTSTRAP CO5'DITION

We consider a set of degenerate mesons M and a set
of degenerate baryons 8. In this section the M and 8
are vector mesons and spin- —,

' baryons; the derivation
of the self-consistency condition is a modification of
that of Ref. 2. Ke concentrate on the baryon bootstrap
condition, since it is more complicated than the corre-
sponding meson condition.

The baryon and meson exchange potentials that act
on the amplitude M,+B —»M,+By are represented
by Figs. 1(a) and 1(b). LFigure 1(c) is not relevant for
this section. ) For convenience, we choose the mesons
to correspond to Hermitian fields; the coupling constant
Gp

' corresponds to either of the vertices, B ~ Bfi+M,
or B +M, -+Be. In general, G s'= (Gs ')* (a repre-
sentation in which the G are not real may be used). The
baryon exchange potential V is the sum of the con-
tributions of all possible intermediate baryons, and is
given by

V (f3i &) = &' Z. Gs.'G.-',
where e is a function of energy determined by making
the appropriate partial-wave projection of the full
potential (left-hand cut in a dispersion formalism). If
the M&M interaction constants are denoted by g, the
meson exchange potential may be written similarly,

Vsi(Pj ~s) —eM Q„G sg, ,s (2)

A key assumption of the mod, el is that the p and ~
i538



BOOTSTRAP MODEL KITH HADRONS OF BOTH PARITIES i539

If Eqs. (3) through (6) are substituted into the sum
of Eqs. (1) and (2), the result may be written

{a) (b) (c)

(e)

FIG. l. Exchange poles and direct poles in MB states. Dashed
lines, single solid lines, and double sclid lines denote mesons (M),
even-parity baryons (J3), and odd-parity baryons (R), respec-
tively.

exchange potentials may be considered proportional,
i.e.,

where ~ is a constant. Since we are concerned with the
low-energy region, in which the shape of the potential
is not expected to be important, this assumption is
justifiable, even though the actual shapes of ~ and ~M

may be quite different.
The entire potential (Un+ U~) may be expanded in

terms of its eigenvectors, i.e.,

where the A„are the eigenvalues, and the eigenvectors
u, are normalized by the condition Ps; u, (/9j) u, .(Pj)
=8» . It is well known that in the static limit, v is an
attractive potential, so that a positive eigenvalue X~ cor-
responds to an attractive potential in the eigenstate y.

We define the "weak bootstrap condition" by the
two following requirements:

(i) If composites are assumed formed in the eigen-
states with the largest positive eigenvalues ) ~, these
composites are of the proper quantum numbers so that
they may be identified with the B.

(ii) If this identification is made, the coefficients
u~ (ni) are proportional to the appropriate ÃJ38
coupling constants, i.e.,

G,.'= u, (ni)A „
where the A~ are constants.

We define the "strong bootstrap condition" to include
the weak condition and the additional requirement that
all nonzero eigenvalues X are positive and correspond to
composite baryons. The strong condition also includes
the assumption that the ratio A~sjh~ is independent of
the composite y, i.e.,

An important advantage of this strong bootstrap
equation is that one may consider a fixed pair of external
states at a time, and need, not compute the eigenvectors
of the full potential.

Both the strong and weak conditions are used fre-
quently in bootstrap models, although the distinction
is sometimes not drawn clearly. The weak condition
permits potentials that are repulsive or attractive and
weaker than the strongest to exist and not be associated
with composites. The strong condition does not permit
this, and so is more dificult to satisfy. The strong con-
dition is more consistent with the basic bootstrap
philosophy, since the distinction between resonances
and nonresonating states with attractive interactions
is not a sharp one. The validity of the strong condition
does not require that all attractive potentials produce
observable resonances, but rather that the effect of
exchanging states with attractive interactions may be
approximated by single-particle exchange. The con-
tribution to the left-hand cut of the interaction in
nonresonating states is neglected if one uses the weak
condition. The strong condition will be used in the rest
of the paper. 4

If the baryon exchange forces are treated in the static
approximation, the residue of the pseudopole resulting
from the I-channel pole is a convenient measure of the
strength of V~. It is well known that if one makes the
effective-range approximation as well as the static
approximation, the magnitudes of the residues of the
pseudopole and composite pole in the s channel must be
the same. ' This implies the condition

If this relation is substituted into Eq. (7), the result is
equivalent to Eq. (12) of Ref. 2. It is pointed out by
Polkinghorne that if the g;, are proportional to the
structure constants of the group, as is required in the
Cutkosky model, this equation implies that the baryons
correspond to a representation of the group, and that
the MBB interaction constants are proportional to
matrix elements of the group generators.

If the mesons are all pseudoscalar mesons, so that
no MMiV interaction exists, and attention is limited to
states of baryon number one, the strong bootstrap
condition requires an infinite number of baryon states.
This is the strong-coupling model of Goebel and
collaborators. ' The strong-coupling assumption of this
model requires the strong-bootstrap condition, and may

A ~'/X, =As. (6)

If the 8 are degenerate, one might require ) ~ to be
independent of y and assume that A~' is independent
of y. However, the less strict condition of Eq. (6) is
sufhcient for the derivation of the bootstrap condition.

' In Ref. 1, Cutkosky shows that in the VVV model, the weak
condition implies the strong condition.

~See, for example, G. F. Chew, Phys. Rev. Letters 9, 233
(1962); R. H. Capps, Nnovo Cimen~to 34, 932 (1964).

6 C, J. Goebel, Phys. 14ev. Letters 16, 1130 (1966).This paper
contains references to previous works on the subject.
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be regarded simply as one way of imposing this
condition.

We wish to make one more point concerning strong-
bootstrap conditions in general, in order to clear up a
conimon misconception about the bootstrap hypothesis.
Frequently, it is pointed out that some coupling.
constant relations that result from bootstrap models
also may be derived from an alternate set of assumptions
that do not include a "compositeness" assumption. ' It
is clear from these nonbootstrap arguments that a
dynamical condition on the residue of an s-channel pole
associated with a particle 2 in the (BC) scattering
amplitude does not imply that A is a composite of 8
and C. It is commonly thought that this result is foreign
to bootstrap models. This is not so. In order to illustrate
this point, let us consider a channel BC coupled to only
one direct pole (A) in a strong bootstrap model, and
assume that A is coupled to other channels much more
strongly than to the BC channel. Clearly, A is not
simply a SC composite. This does not alter the validity
or usefulness of the strong bootstrap condition in the
SC state. By extending this argument, we see that in a
strong bootstrap model, it is not necessary for the entire
set of two-particle states considered to dominate the
composite wave functions. For example, if the strong
bootstrap hypothesis for all states is valid approxi-
mately, Eq. (7) remains valid even if the most im-

portant states in the composite wave function of the
8 are three-quark states, or something else not con-
sidered here. Of course, if one uses the bootstrap

arguments to predict which particles exist, and, the
mass diGerences among the composites, this does
involve the assumption that the mass relations depend
more on the states considered than on the states
omitted.

An important result of this section is that one can
generalize the strong bootstrap condition to many
systems by applying the proportionality approximation
of Eq. (3) to many potentials. Such a generalized strong
bootstrap condition overs a possible way out of one of
the dilemmas of bootstrap theory, that of finding a set
of particles that provides a reasonable first approxi-
mation to a complete theory of hadrons. It is clear that
one must start with only a subset of the existing
particles. If the model is to describe reality, additional
particles must be generated by the forces. The dilemma
results from the requirement that all particles be treated
equivalently, so that the generation of new particles
requires that one redo the 6rst approximation, including
the new particles.

In order to see how the strong bootstrap formulation
may help with this problem, let us denote by A all the
particles to be included in the first approximation. The

' See, for exatnple, F. E.Low, Phys. Rev. Letters 9, 277 (1962);
in Proceedings of the Thirteenth International Conference on High
Energy I'hysics, Berkeley, 1066 (University of California Press,
Berkeley, California, 1967), p. 24j..

A are AA composites produced by A exchange forces.
In general, one must postulate an additional set of
particles 8, with interactions of the type BAA, in
order that the consistency conditions of the type of
Eq. (7) are satisfied. (Finding such a 8 set is the
program of Sec. III.) The resulting model is not com-
plete, since 88 and BA states must also be considered.
Consideration of these states, and further iterations of
this general procedure may lead to other particles,
denoted by C. It may turn out that no CAA interactions
are necessary, in which case the AA states need not be
re-examined. The AA equations are correct, and the A
set is suitable first approximation to a complete boot-
strap theory.

IIL 8U(6)~ SOLUTIONS FOR
BARYO+S AND MESONS

A. Ayylication of the Bootstrap Conditions to SU(6)tv

It is pointed out in Sec. I that in the CP model, one
neglects partial waves with orbital angular momenta as
small or smaller than the 1 considered. This Qaw can be
eliminated if the spin and internal symmetry correspond
to the same Lie group. The semisimplicity requirement
on the group in the CP model rules out a group
of the type SU(3)SSU(2). The SU(6) group is sug-
gested, although the bootstrap conditions do not favor
this over similar groups that correspond to internal
symmetries other than SU(3) syrrunetry. We will con-
sider SU(6) tv symmetry, since this is the only form of
SU(6) that describes nonzero cd% interactions
simply. ' The odd-parity mesons (I' and U nonets) are
assumed to correspond to the direct sum of the regular
and identity representations. The singlet state (U
singlet with spin component zero in the direction of the
interaction vertex) does not participate in the M3EM'
interaction, and so may be neglected here, if the only
external mesons considered correspond to the SU(6)tr
representation BS. It has been shown previously that
in a meson bootstrap model involving only the SU(6) tv

representation 35, all 36 physical meson states are
bootstrapped. '

The assumption of SU(6)tr-synnnetric MMM and
3fBBvertices implies symmetric forward and backward
one-particle-exchange amplitudes Tf and T~. The
potentials corresponding to even and odd orbital
angular momenta will be taken proportional to the
linear combinations, —,'(Tf&Ts). (The terms potential,
one-particle-exchange amplitude, and Born-approxi-
mation amplitude will be used interchangeably. ) We
will make the assumptions that S waves and S-D tran-
sitions dominate the even-l amplitudes, and that I'
waves dominate the odd-l amplitudes. With these
assumptions, the sum TI+Ts determines the S-S and
S-D potentials completely, while Tf—T& determines

s H. J. Lipkin and S. Meshkov, Phys. Rev. 143, 1269 (1965).
s R. H. Capps, Phys. Rev. 148, 1332 (1966).
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the P-wave potentials nearly completely. "That term
of the E-wave amplitude that is proportional to LXL'
(where L and L' are the initial and final orbital angular
momenta) does not contribute in the collinear directions
and so is not includ, ed. in the model. ' However, this only
means that the model is incomplete, and does not
invalidate the consistency conditions used.

In the generalization of the CP model to SU(6)s,
the assumption of Eq. (3) is extended, i.e., it is assumed
that all contributions to the MB potential (or to the
MM potential) may be taken proportional to each other.
If attention were restricted. to the P-wave MM and MB
states, id,entification of the M and, 8 with the repre-
sentations 35 and 56 of SU(6) s would, lead to a solution
of the bootstrap condition of Eq. (7), and the corre-
sponding meson condition. Furthermore, all P-wave
amplitudes (except the LXL' amplitudes mentioned
above) are considered in this model. However, the M
exchange potentials are strong in states of both parities.
Clearly, the bootstrap condition for states of even /

cannot be satisied unless ad,ditional particles are
present. The baryon and meson bootstrap conditions
for states of both parities are discussed in Secs. III 8
and III C.

B, The Baryon Bootstray

We attempt to satisfy the bootstrap condition in the
odd-parity (even-l) MB states by introducing an odd-

parity baryon multiplet corresponding to the irreducible
representation R, in ad,dition to M and, B. Since the
strong bootstrap condition is used, we need not treat
MB and MR states at the same time. Scattering in the
MR states is complicated, and. is not treated in this
paper. The potentials in the MB states result from 8,
M, and R exchange, as shown in Figs. 1(a), 1(b), and

1(c).The B and R composites correspond. to Figs. 1(d)
and 1(e).

We treat the n-channel (B and R exchange) potentials
in the static approximation. In this approximation,
k„'=k,' and cose„=cos8„where k is the momentum
in the center-of-mass system. This implies that 8
exchange affects only the even-parity states, while R
exchange affects only the odd-parity states. Further-
more, if the effective range approximation is made,
Eq. (8) may be used for the u-channel contributions in
the states of both parities. The even-parity bootstrap
condition is then the straightforward, generalization of
the Polkinghorne condition to SU(6)s, and may be
satis6ed if 8 is identified with any irreducible repre-
sentation other than the identity, provided that the
MBB interaction constants are of Ii type, i.e., are
proportional to the matrix elements of the generators.
For such an interaction, Eq. (7) (with A.s=1) may be
written in terms of the irreducible representations i in

"R.H. Capps, Phys. Rev. 158, 1433 (1967).

the direct product MB, i.e.,

8ggG~s= C;gGns+ ', $(-Xsr+Xn X—;)/Xn js,„,„Ggg, (9)

where X is the eigenvalue of the quadratic Casimir
operator, C is the I-channel crossing matrix, and f(:, ,„
is the proportionality constant analogous to the z of
Eq. (7). The symbols G& and g denote total MBB and
MMM interaction constants, defined, by the relations
Gn' ——+Is; (G p&)' and g'=P;s (g;,")s, where n and s

denote any states in the 8 and M multiplets. The co-
efficient —', (X~+Xn—X,)/Xn is the t-channel crossing
matrix element. The form of the bootstrap condi. tion
for odd-parity states is similar, i.e.,

8;s=C,gGg + ', ((Xsr-+Xn X;)/—Xn js.ssGng (10).

We use the convention that a universal M interaction
(one in which the M interactions with both mesons and
baryons are proportional to matrix elements of the
generators, with the same proportionality constant)
corresponds to a positive Ggg. With this convention,
both ~, ,„and ~,~q are positive, as is shown in the
literature, "and. discussed, brieQy in Sec. IV. The even-
parity equation, Eq. (9), is satisfied if it, ,g=G&, in
this case the equation is equivalent to a well-known
expression for the crossing matrix elements C;g."
Consistency of both conditions may be obtained if the
B and R columns of the matrix (1—C) are proportional
to each other, with a positive proportionality constant.
Recently, it has been proved. that if B is any repre-
sentation such that the MBB interaction is unique, all
columns of 1—C are proportional; thus, the number of
solutions is very large. "We write below the crossing
matrix for the physically relevant 5635 case. '4

56 70 1134 700

56 132 —90 —162 300

70 —72 45 243 450 1
x . (»)

153 50 180

81 30-

1134 —8 —15

700 . 24 45

"R.H. Capps, Phys. Rev. Letters 14, 842 (1965)."J.G. Belinfante and R. E. Cutkosky, Phys. Rev. Letters I4,
33 (1965).

n R. H. Capps, Ann. Phys. (N. Y.) 4$, 428 (1967).
'4 V. Singh and B.M. Udgaonkar, Phys. Rev. 159,81585 (1965).

In. this case, either of the assignments 56, 70, or 1134
for R leads to a solution.

Physically, the resonances R correspond to the
representation (R,3) of SU(6)0(3) Lrather than to
the representation (R,1)j." Thus, the assignment of
R to the 70 of SU(6)s leads to 210 predicted spin
states in the R multiplet. This phenomenon is discussed
in detail in Ref. 10.It results from the fact that an MB
state of 8" spin m is a superposition of states of spins
w —1, w, and w+1, in general. Since all odd-parity MB
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amplitudes in this model involve at least one 5 state,
the intrinsic spin spectrum of the 3M states corresponds
to the predicted spin spectrum of R. On the other hand,
this argument does not apply to the P-wave MS states.
The 8 multiplet does correspond simply to the repre-
sentation 8 of SU(6)."

Because of this difference in the interpretation of 8
and R, there is no reason to expect nature to choose the
"apparently symmetrical" solution of Eqs. (9) and

(10), in which 8 and R are the same representation.
The experimental evidence seems to indicate that
nature has chosen the 70."This brings up the question
of whether or not some simple dynamical principle is
behind this choice. In previous SU(6) or SU(6)~.
symmetric models of baryon resonances, where only
the meson exchange force was considered in odd-parity
states, the 70 seemed the most likely resonance candi-
date because the meson exchange force is most at-
tractive in this state.""A related argument exists in
the present model, if one assumes that the average R
mass is greater than the average 8 mass. (This assump-
tion agrees with experiment. ) The mass difference
increases the energy denominator corresponding to R
exchange LFig. 1(c)j, and is expected to decrease the
importance of this process. Hence, a particular assign-
ment of a representation to E. is especially stable to
the R-8 mass difference if the R exchange potentials
are small compared to the largest M exchange po-
tentials. This is equivalent to the condition that the
elements of the R column of Eq. (11) are small com-

pared to 1—Cgn. The assignment of R to the 70 is the
most stable in this sense.

C. The Meson Bootstrap

Ke now turn to the 3f3f states, where M corresponds
to the regular representation of the group SU(n)u,
and n is even. In these states, also, the 3E exchange
potential vanishes in the forward direction, indicating
that potentials in states of different parities must be
comparable. We assume the existence of even-parity
mesons, denoted by 1V. There are two types of potential
diagrams in the MM states, corresponding to M and, E
exchange, and also there are M and Ã direct-pole
diagrams. The dynamics are quite different from those
of the baryon case. No static approximation is appli-
cable, and statistics limits the M3f states to those of
the proper combined orbital and SU(e)s symmetry.

For each amplitude, both M and E exchange may
contribute in both the t and u channels. However, if
syrrunetrized MM states are used, it is suf6cient to
consider only the t channel, since inclusion of the u
channel would simply multiply the potential by two.
The t-channel MM crossing matrix has been computed

TABLE I. The M3II —+ MM crossing matrix elements corre-
spcnding to the exchange of the states I, D, and 3f.

s-channel
state

Exchanged (t-channel) stateI D

I
D
M

pA
pA'
p A

p 8

1l(e'—1}
1/(e' —1)
1/(n' —1)
1/(n' —1)
1/(n' —1)
1/(e' —1}
1/(n' —1)

1
(e'—12)/2 (n' —4)

1
2—2/(n' —4)—2/(n' —4)—1/ (n —2)

1/(e+2)

0
0

1/n—1/e

voe = &ovoo p

vee &eveo ~ (13)

An advantage of using the t-channel crossing matrix
(rather than the u-channel matrix) is that the four
potentials v„, v„, v„, and v„are attractive. Thus, z,
and x, are positive. The attractive nature of the M

by seville. '6 The columns corresponding to the ex-
change of the singlet (I), the symmetric regular repre-
sentation (D), and the antisymmetric regular represen-
tation (M) are listed in Table I. The notation for the
representations other than I, D, and M is that of Ref.
16. If m=6, P, , P~', P~, and P,' are the represen-
tations 280, 280e, 189, and 405, respectively. The t-
channel crossing matrix differs from the corresponding
u-channel matrix only in the signs of the elements
connecting the symmetric and antisymmetric states.
One could derive the bootstrap conditions equally well

by using the u-channel matrix, provided the signs of
the potentials were chosen correctly.

We write the consistency equations in terms of the
states of Table I. The indices r and s will be used for
the antisymmetric and symmetric states, respectively.
(The antisymmetric states are M, F,", and F~'.) It is
assumed that M is the only antisymmetric state in
which composites occur, while the even-parity mesons
may correspond to more than one irreducible repre-
sentation. The potentials V in the various states are

,'V„=e..C,srFsr'+Q—; v..C„F
s Vs= &eoCssrFN+Qs' t'eeCss'Fs' ) '(12)

where the C are the crossing matrix coefficients, F~'
is the coupling constant associated with the %Afar
interaction, F,' are the coupling constants associated,
with the MAX interactions, and v„ is the form of the
potential in the odd-parity state resulting from even-

parity meson exchange, etc. The factors of ~ are in-
cluded because the effect of including the u-channel
exchange contribution would be to double the con-
tribution of the t-channel exchange. The generalization
of the proportionality assumption of Eq. (3) is

»This follows from the extension to SU(6)~ of the SU(6)-
symmetric bootstrap model treated by R. H. Capps (Phys. Rev.
Letters 14, 31 (1965)g and by Helinfante and Cutkosky (Ref. 12}.
The extension to SU(6)s is simple and is discussed in Rej. 3,

"Donald E. Neville, Phys. Rev. 132, 844 (1963), Table III.
The elements referring to the P,A and PA' exchange potentials in
the representation PAA are in error in this table. They should be—(2+n)/ (4n) rather than —(2 e)/(4n)—
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where
V„=u..F„'/A.', V,=e„FP/A, 2, (14)

Ao2=AM~/X~) h '=A, 2/X, . (15)

The constant Ii is to be taken as zero if no composite
corresponding to the state i exists.

We look for a solution involving composites only in
the states M, I, and. D. Thus, Ii„'=b„~IiJvl', and.
F82=8.rFr'+8, +FAN'. Combination of these relations
with Eqs. (12), (13), and (14) yields the bootstrap
equations

k~fMFM /~ =C MF3f

+..(C„,FP+C, F '), (16)

', (5,rFr2+o, nF-n')/A. 2= C,~F+
+,.(C„FPyC,oF 2). (17)

It is seen from the crossing matrix elements of Table I
that the potentials in the antisymmetric representations
P,~ and P~' and in the symmetric representations P, '
and P~~ will vanish if the following conditions hold:

F"=L2(' —1)/(I' —4)jF~' (18)

gZD2 L(~2 4)/e2)FM2 ~ (19)

Thus, the total potential is nonzero in the states M,
I, and D. If the F;2 satisfy Eqs. (18) and (19), the
bootstrap conditions of Eqs. (16) and (17) will be con-
sistent for the M, I, and D states also if

h =2~„A.-'=1+ (~./a, ) . (20)

These equations are equivalent to the usual bootstrap
condition that the over-all output coupling constant is
equal to the input coupling constant. Since we have no
accurate dispersion theory, we do not attempt to use
these conditions to calculate the over-all magnitudes
of the MAES and MAX interaction constants. Instead,
we simply assume that there would be suQicient param-
eters in a complete theory so that over-all constants for

exchange potentials (e„and e„) has already been used
in Sec. III B. (The M-exchange potentials in MM and
MB states are similar. ) The signs of the E-exchange
potentials are demonstrated by the following simple
argument. An S-wave direct pole in the t channel.
corresponds to an amplitude of the form F'p, '/(IJ, ' t), —
where p is the mass of an E meson. The corresponding
s-channel amplitude is

CP2~2

p'+ 2k,2 (1—cos8,)

where C is the appropriate crossing matrix element.
If C)0, the integral over cosa, of this amplitude
multiplied by either 1 or cos8, is positive in the physical
s-channel region. Thus, e„and ~„are attractive. These
potentials are discussed further in Sec. IV.

Since the potentials are already diagonalized, the
analogs of Eqs. (4), (5), and (6) are simply

each type of interaction could be chosen that would
lead to consistency in all the bootstrap relations. This
assumption implies that the A' may be chosen in
accordance with Eq. (20).

The consistency condition may be stated in a more
familiar way. The eigenvalues of C are +i. The boot-
strap equations are consistent because an eigenvector
corresponding to the eigenvalue 1 exists completely
within the M-I-D subspace, with relative components
along the three axes that are positive. This form of the
bootstrap condition is used, frequently in models of
baryons. "

We now specialize to SU(6)q. Our solution implies
that even-parity meson multiplets corresponding to
the representations I and 35 exist. When the amplitudes
are analyzed in terms of spin, rather than W spin, these
multiplets must also be classifiable according to the
group SU(6) SO(3), as is the baryon multiplet R. On
the other hand, the SU(6) s representation 35 for the
odd-parity states corresponds to the 36 physical meson
states (P and V nonets), as is explained in Ref. 9. A
thorough study of the properties of the predicted meson
resonances will be published shortly.

The M-I-D solution to the bootstrap equations is
not the only solution, but it is the simplest one. If
e&2, one may use the crossing matrix of Ref. 16 to

. show that there are no solutions involving M and only
one other multiplet. There are two solutions involving
M and two other multiplets, the M-I-D solution and an
M-I-P&~ solution. The second involves many more
particles than the first, e.g. , P~~ contains 189 states if
m= 6. Furthermore, the potential is comparatively weak
in the P~" state in this solution; if v=6, F,892/Fz'
= 8/63.

We assume that the S mesons do not interact with
the 8 baryons and so do not inQuence the baryon
bootstrap.

IV. DISCUSSION OF THE POTENTIALS

Our SU(6)s-symmetric model is more complicated
than one involving internal symmetry only, because the
symmetry cannot be exact. The collinear amplitudes in
Born approximation may satisfy the syrrunetry. How-
ever, the virtual momenta of the two particles in the
intermediate states associated with the right-hand
(unitarity) cut need not be parallel to the external
momenta. Therefore, this cut destroys the exact SU(6) s
symmetry. Although we do not refer to the unitarity
cut explicitly in formulating the bootstrap conditions,
the presence of the cut is implied by the assumption
that bound states or resonances are formed. This cut
violates the symmetry of the model in still another way;
since the unitarity condition is diGerent in states of
even and od.d orbital angular momenta, the model is

~7This condition was 6rst used by Chew in Ref. 5. See a1so
I. S. Gerstein and K. T. Mahanthappa, Nuovo Cimento 32, 239
(i.964).
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not truly synunetric with respect to the two parities.
Because of these effects, we study the potentials more
carefully. We erst discuss the signs and relative mag-
nitudes of the potentials in MM states, assuming
SU(6)s synunetry. Effects that break the symmetry
are then discussed. The fact that the E and Emultiplets
correspond physically to representations of SU(6)
0(3) does not lead to any difliculty in the treatment
of M3f and, MB states, since the bootstrap equations
and crossing relations are formulated in terms of
SU(6)s states.

The relation between the channel variables in 3II3f
states is s+t+n=4m'. The simplest way of obtaining
reasonable 3f-exchange potentials is to use Feynmann
rules, with conventional vertex functions. It has been
shown that for a t-channel amplitude corresponding to
a direct P-meson pole (or V pole in one of the spin
states S,=&1), this procedure leads to collinear ampli-
tudes of the form

T= G,G, (-,'t/m') (+kP)/(m' —t), (21)

where the ~ signs refer to the forward, and backward
directions (s=O and N=O), k, is the magnitude of the
particle momenta in the center-of-mass system, and.
the G are coupling constants. ' This amplitude vanishes
in the forward direction in the s channel, because of
the (s't/m') factor. The s-channel backward amplitude
T& is given by

Tg= —CG,G,
4m' nz'+4k, s

(22)

CG,G, e " 4s.b(r)

12 r
(23)

where a negative potential correspond. s to attraction.
The volume integral of the potential vanishes. Since
the model is not accurate at extremely small distances,
we take for the sign of '0 the sign of the Yukawa term.
Hence, a positive C corresponds to attraction; the

's R. H. Capps, Phys. Rev. 150, 1263 (1966).

where C is the appropriate t-channel crossing matrix
element.

If C is positive and, i= j, the P-wave potential is
attractive, since the collinear P-wave amplitude is
equal to —', (Tr—T&)/k' cos8, and a positive Born-
approximation amplitude corresponds to attraction.
It is not inunediately obvious whether or not a positive
C corresponds to an S-wave attraction, because the k'
factor in Eq. (22) implies that the S-wave amplitude
changes sign at threshold. A simple way to resolve this
ambiguity is to use the technique of Ref. 11, i.e., to
treat the spin wave functions of the real particles non-
relativistically and write the potential in configuration
space. Tensor and. central potentials result. ""The
central potential corresponding to the amplitude T is

potentials in corresponding 5 and P states are of the
same sign.

The situation is somewhat diferent if the virtual
meson is a V meson with S,=0.The t-channel amplitude
corresponding to such a V pole does not contain the
—,'t/m' factor of Eq. (21).' The static potential corre-
sponding to the exchange of a zero-helicity V is

,'CG, G—m'/ (m' t), — (24)

where t= —2k s(1—cos8,). In configuration space, this
potential contains a Vukawa term similar to that of
Eq. (23), but no 8-function term. Thus, the M-exchange
potential computed this way is not SU(6) s symmetric.
However the deviation results from the nonsymmetric
manner of analytic continuation from the mass shell
that is implied. by the conventional vertex functions.
It may be remedied by inserting a delta function into
the zero-helicity V-exchange potential. If ~~s/ms=1,
this is equivalent to making the following threshold.
subtraction in Eq. (24):

(~2 t)-1~ (~2 t)
—1 (~2)—1 (25)

The 3I-exchange potential in 3f8 states is similar to
the potential in iViV states. It vanishes in the forward,
direction, and in the backward direction (near thresh-
old) is proportional to the factor k,s/(m'+4k, s) of Eq.
(22). It follows that the constants ~, ,„and z,qq of Eq.
(9) and Eq. (10) are positive.

The separation of the potential into two types (called
here central and tensor) is discussed, extensively in
Ref. 10. This separation does not depend on the form
of the vertex functions: it may be mad, e from a spin
analysis of the collinear amplitude 2+8 ~ C+D,
where the symbols denote either mesons or baryons.
One writes for the amplitude

(gB) m ~ (CD),ml 0 (26)

where the subscripts and, superscripts are total spins
and s components, and I is a "spin-spurion, " dined
to conserve total spin. For 3M —+ MB amplitudes, the
spin-exchange 6 must be 0 or 2; these are the central
and, tensor-type potentials.

We now consider the SU(6) s -spmunetric, ¹xchange
potentials in the M3f states. These also contain t
factors, and so vanish in the forward direction in the
s channel. This may be seen from the following argu-
ment. The potentials vanish at the s-channel threshold
energy, because the threshold potential cannot contain
tensor (6=2) terms, yet SU(6)s symmetry generally
requires these terms. In order to vanish at threshold,
the potential must contain either the factor t, or s—4m',
or a linear combination of the two. However, the factor
s—4m' corresponds to an energy-dependent mixture of
partial waves in the t channel, and. thus cannot result
from simple meson exchange. Therefore, the factor t is
present.

A t-channel S-D transition amplitude containing a
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direct pole may be written in a form similar to that of
Eq. (21), i.e., in the forward and backward directions:

T= F;F—, (-,'t/ti') k P/(p' t), — (27)

where p is the mass of the even-parity meson. In the
s channel, the forward amplitude vanishes, and the
backward, amplitude is

k.2S
Tg= —CF;F, --

pe ~2+4/ 2

If the t-channel S-S amplitudes with direct poles are
written in the form of Eq. (27), these contributions to
the s-channel potential are also of the form of Eq. (28).
The sign has been chosen correctly, because if i= j, the
S-wave coupling constant squared (the negative of the
residue of the t-channel pole) is —F,2(kP), q2=F,'
X (m' —4iti')) 0. (It is assumed that the 1V are bound,
i.e., @&2m. Otherwise, our simple pole treatment would
be inadequate. ) Comparison of Eqs. (22) and (28)
indicates that the signs of the corresponding M and E
exchange potentials v;, and. e,, are the same. In fact,
if @=as, the potentials are of the same form in this
approximation.

It is more conventional to assume that a t-channel
S-S amplitude with a direct pole is of the form ~iF,F,ti'/
(ti' —t). With such an amplitude, one needs only to make
a subtraction similar to that of Eq. (25) in order to
obtain a potential similar in form to Eq. (28) when
s=4m'.

We have shown that with suitable MMM and MMS
vertex functions SU(6)s symmetry of the coupling
constants will lead to symmetry of the potentials, and
that the four potentials v;, of Eq. (12) are attractive.
We now turn to the question of the d,eviations from the
symmetry that are caused by the unitarity cut. It is
reasonable to assume that these d,eviations d.o not alter
the results concerning the multiplets of composites that
are favored. However, the deviations may affect the
relative strengths of different potentials, and the rela-
tive coupling constants. We omit the 8 exchange force
from the discussion, since this force is treated very
simply in the usual static approximation.

The relative size of the 6=0 and 6= 2 (central and
tensor-type) potentials may be quite different in the
M, E, and E. exchange mechanisms, and may not be
predictable from SU(6)s synnnetry. The presence of
this ambiguity in the M-exchange forces is seen from
the fact that the radial dependences of the central and,
tensor potentials are different. " In the momentum

representation, the equivalent statement is that the
6=0/6=2 ratio (called here (R) in the Horn-approxi-
mation amplitud. es is energy-dependent. Fortunately,
very few of the predictions of the model d,epend on 8,.
It has been shown in Ref. 18 that the ratios of output
MMM coupling constants do not d.epend on (R. Further-
more, the relative predicted masses and branching
ratios (except for the over-all D-wave/S-wave ratio)
of the od.d-parity baryon resonances do not depend on
e..m

V. CONCLUDING REMARKS

We have pointed. out that in any bootstrap model
involving meson exchange forces, either in MM or 3M
states, composite particles of both parities should be
expected. Generalization of the proportionality approxi-
mation of Eq. (3) allows one to apply the strong boot-
strap condition to states of different parities and
different spins.

If one assumes vertices invariant to SU(6)s sym-
metry, it is straightforward, to separate the one-particle-
exchange potentials into even- and odd-parity parts.
The bootstrap model involving the 36-foM, odd-parity
meson multiplet and the 56-fold baryon multiplet has
been extended. to include even orbital angular momenta,
and is consistent if even-parity meson resonances corre-
sponding to the SU(6) s representations 35 and I, and
odd-parity baryon resonances corresponding to the
SU(6) s representation 70, are added.

In a previous paper it was shown that the quantum
numbers of such an od.d.-parity baryon multiplet must
correspond to the (70,3) representation. of SU(6)
0(3). 'o This assigmnent fits the experimental data
very well, much better than does the assumption that
these resonances correspond, to a superposition of
representations. " One of the principle motivations of
the present paper is to provide a justification for the
assumption that only the (70,3) is involved.

A detailed study of the implications of the model with
respect to the meson resonances will be published
shortly.

An important question for the future of this type of
model is that of whether or not scattering states in-
volving the meson and baryon resonances may be
included in a manner that is consistent theoretically,
and leads to predicted, composites that may be identi-
fied with the observed Regge recurrences of the lighter
meson and baryon states.

'~ R. H. Capps, Phys. Rev. 153, 1503 (1967).


