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Kinematic Effects and the 8 Meson~
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Thoro mechanisms for the enhancement of threshold resonances are described. These mechanisms are
applied to the case of the 8 meson.

''N this paper, a brief discussion of the kinerratical
~ ~ basis of the 8 D..eson is presented. In a recent paper, '
it was proposed that a peak in the m. +e —& m+e& spec-
trum could be generated by the addition of energy
dependence in the resonance width of the p meson. In
that paper, a numerical calculation of a model is used
to fit the data and the detail operation of the model is
obscured. Here we propose to study twornechanisms
which could lead to the presence of a kinerr. atical en-
I|ancement at the 8 Tr. eson. Both rv. .echanisms are inti-
mately related to the application of unitarity to multi-
channel scattering processes and, therefore, the unitarity
constraints must be observed at all points in the
d&scussson.

A qualitative test of these mechanisms can be made
in any of several possible models, but the sin. .plest
approach is to modify slightly the rr;odel of Ref. 1. The
model is developed from the rrultichannel E/D ex-
pression for the scattering of a J~=i, T= 1 Dr eson
system. The three channels of interest are 7r+m. (1),
m. +co (2), and rt+ p (3).

An amplitude f;; related to the t;; of the scattering
amplitude is defined by

where the g s are the factors required to remove the
kinematical singularities in t,;. The g, s vill also repro-
duce the threshold behavior. It should be noted that
the g s can be rr. .odified with a suitable entire function
and still satisfy the requiren"ents for the kinet. atic
singularities. In this D odel, the g, 's are chosen to be
asymptotically bounded. In Ref. 1, the g s are not so
chosen and this aRects the behavior of the amplitude
in a nontrivial way. This problem will be discussed in
the context of the model as developed in later sections.
The f;; satisfy the usual unitarity modified by the re-
quired kinematical factors.

The model is driven by a fixed left-hand pole. The f
matrix becomes

C,C;
f = - L1—Ri(s) Ci —R2(s) C2 —R3(s) Ca )

s—sg

where i, j=1, 2, 3 designates the channels as labeled
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above. This decoupled form is a general result for all
multichannel N/D with a single fixed pole. The func-
tions R,(s) are the usual phase-space factors with allow-

ance for the kinematical eRects,

(s—si)
R;(s) = p, (s')ds'

4 ($'—sp) ($ —$—te)

The phase-space and couphng factors are

p'(s) = e I p'/v'sl ', C"=g'. ,'/4~,

and t; is the ith threshold. (Note: C has the dimensions
of mass. ) Imposing an effective-range approximation
in the denominator, forcing the appearance of the p
meson, and renormalizing the couplings, the cross sec-
tion is found to have the form

In this model with ReD replaced by a linear function
and the p-resonance fit as a zero of ReD, then equality
is obtained only as s= m, .

og(mp) =o g&ii~(nzp).

More detailed models would be characterized by more
complex behavior of the real part of the D, ImD which
controls the unitarity bounds would be of the same
general nature. It is possible to produce a model with
fixed F with unitarity which produces an eRect which
could be interpreted as a resonance. It is also in the
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12~ I';(s)i', (s)
g o s~

P*' ($—~.)'+LZ* I"'(s)j'
where I';(s)=p;(s)C 8(s—t;) and CP=g„'/4s.

This relatively simple equation for the multichannel
cross section will be the basis for the conclusions that
follow. An in..rr:ediate observation is that any approxi-
mation which holds the I"s in the denominator constant
violates unitarity. The neglect of variation of the kine-
matic factors would require that the I"s in the numer-
ator and denominator be held constant together.
Another observation that is essential for the develop-
ment of this paper is the bounds implied by unitarity.
The unitarity bounds are established by setting the real
part of the amplitude to zero. The eRective unitarity
bounds of the model are then

12m I',(s) I', (s)
~ (s)« "'(s)=-

P" l Z I' ($)j'
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Fro. 1. Effective unitarity limits for 0»
for weak cross-coupling case.

context of this model that the other mechanism of
enhancement can most clearly be displayed. This
second mechanism is responsible for the behavior of the
cross section in Ref. 1.

The model describes two situations with three chan-
nels with fixed entrance widths I';=0.;Fq. The first
situation is shown in Figs. 1 and 2, and is characterized
as the weakly cross-coupled case. In this case n2(1,
and n3=n2. The diagrams show the effective unitarity
hmits of the cross section. The parameters are 7~=m, '—t~ ——t2—t3 and 0,2=0.225, e3=0.189. For the strong
cross coupling, the same widths and thresholds apply,
but a~=4.455 and 0.3——1.245. This choice allows the
exact same curve for 0-~2 in both the strong and the weak
cross-coupling limit. For the strong cross coupling, the
0-~~ curve is virtually zero above t~. The physical basis
for this behavior is obvious. In the weak-coupling case
the beam divides between 0.~~ and 0~~ and ~2~, with
0-22 small and o.~~ large. The 0 ~~ feeds the inelastic chan-
nel. In the strong-coupling situation, the roles of 0-~~

and o-22 are reversed from those above. The important
feature of 0.~2 in this model is the pronounced peak in
~r2 just before t3. The associated a~~ curve does not have
nearly as pronounced an effect and the enhancement is
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FrG. 3. Plot of experimental data versus simple p-resonance model.

restricted to the production channel. This is the erst
of the two mechanisms associated with unitarity which
enhance only the production cross section. This first
mechanism is effective in both the strong- and the weak-
coupling limits. In Fig. 3, the experimental data are
compared with the effective unitarity plots of a (e.+e ~
s+ce). We observe that the opening of the p+g channel
produces a peak in the unitarity bounds of the m+ce
channel. The parameters used to derive the 6gure are
taken from the latest SU(3) values. We used ns=4
and n3 ——4 sin'8, where 8 is the co—p mixing angle,
0=38 . %e also plot the cross section using only the p
resonance as a driving force. It is satisfying that the p
resonance does not saturate the data. As expected, the
neglect of the kinematic factors implies that the ampli-
tude does not rise off of threshold as required.

The second mechanism to be discussed is relevant to
the strong-coupling case only and requires the presence
of the kinematic factors. It does not require the presence
of the third channel. This mechanism is based on the
behavior of the effective unitarity limit when 0.2 is
varied. Note that the kinematic factors are normally
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Pro. 2. EGective unitarity limits for e» for
weak and strong cross coupling.
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Fro. 4. Plot of limits of effective unitarity as a function of
ey, the relative channel width.
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added to compensate for the poor threshold behavior of
a constant-half-width cross section. In this model with
threshold dependence built into the channel widths,
the parameter 0.2 is now given by

=(lp I/lp~l) g'. /g. '.
» Fig. 4, the eRective unitarity limit as a function of

~2 is plotted. The mechanism by which a threshold
bump can be enhanced is now apparent. In Fig. 4 at
o.2=1, the eRective unitarity bound of the inelastic
channel achieves a maximum. As the energy increases
above the threshold, the kinematic factors force a2

to vary from zero to its asymptotic value g„'/g, P. &n

the weak. cross-coupled case (g„'/g, g(1)
interesting happens. The kinematic factors merely
force the correct threshold dependence upon the pro-
duction cross section. In the strong cross-coupled case

(g,u2/g, P) 1) a new effect arises. The kinematic factors
now cause 0.2 to rise from zero, introducing the correct
threshold dependence. As the energy increases, the n~

will go through unity and maximize the eRective
unitarity bound at 3m%'. Further increases in energy
cause the eRective unitarity bound to decrease to the
lower value associated with the asymptotic value of n&.

This enhancement of the unitarity envelope reQects

itself in the production cross section. In Fig. 5, this
effect is applied to the case of the 8 meson. Here the
strong cross coupling is applicable and the unitarity
envelope reaches for its maximum value but then re-

turns to its normal value as the kinematic factors go to
unitarity. In the diagram there are several curves. First
the eRective unitarity envelopes of Fig. 3 are shown.

Then the eRect of the kinematic factors which would be
present with no p+ q channel added. The inner envelope

is the resultant unitarity bound with all factors in-

cluded. Finally, the production cross section for the

model with the resonance driving is shown. Again,
although it reproduces the general shape, this model

produces a cross section somewhat too small to explain
all the data.

In Ref. 1, a model very similar to the one presented
here produced a cross section too strong for the data.
There are two fundamental reasons for this behavior.
First, the model of Ref. 1 omitted the presence of the

p+g channel. The second and more striking reason, al-

luded to earlier, is the presence of nonbounded kinematic
factors. The choice of what type of entire function can be
used to modify the kinematic factors is generally quite
arbitrary. In this case, the use of nonbounded kine-

matic factors would lead to an excellent 6t to the ex-

perimental data. The basic reason for this eRect is that
at large energy the imaginary part of the amplitude
dominates the real part and the cross section tends

asymptotically to the unitarity limits. In p-meson-driven

models, this eRect sets in fairly quickly and of course
causes the amplitude to trail oR too slowly. There are
several reasons why this model has been constructed
with bounded kinematic factors. The p meson is cer-

tainly not the only force present and is not expected to
saturate the data. The use of nonbounded kinematic
factors raises the question of subtractions in the X/D
formalism.

There are several other competing channels whose

eRects have been omitted in this model. These channels

are found to have a small effect in the rr(w++m. o~
7r++ra) cross section. The EZ channel has too low a

threshold to sharply eRect the 8 peak, and its couplings

are weaker than the strong cross coupling required

here. The n.+ y channel has zero entrance width. The

EN channel is too massive to be of real interest.

This model has shown how unitarity can impose
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kinematic enhancements on the cross section of pro-
duction processes. These enhancements, although
present in the elastic channels, are quite marked in the
production channel. The erst mechanism for producing
these enhancements is the opening of a new channel
slightly behind the production threshold. The principal
criterion for the effectiveness of this mechanism is the
strength of the new channel relative to the original

channels. A second mechanism is more novel and arises
only in the strong cross-coupling case. This second
mechanism is also dependent on the presence of kine-
matic factors depend on p"+', the higher the l of the
channel, the more eRective this second mechanism will

be. Both mechanisms are applied to the case of the 8
meson and produce the desired result. In this case, the
low l restricts the eRect of the second mechanim.
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A relationship is derived for the weak coupling constant of the vector-meson-lepton-neutrino vertex
employing the notion of a conserved vector SU(3) current and assuming a pole-dominance model. In the
SU(3) limit, a certain restriction on the Cabibbo angle results so that the theory contains no free param-
eters. Utilizing these results, the decay rates for p ~ l+v and E~ ~ l+v are calculated.

I. INTRODUCTION

''N this paper the SU(3) theory of the two-body
- ~ leptonic decays of vector mesons is considered. The
main result of the investigation is the derivation of a
relationship for the coupling constant y of the vector-
meson —lepton-neutrino vertex which in the SU(3) limit

reads
y = (G/f) M'v

where

.|1 1
o

Egt v~ &

t'1 1

Pzi

In the last expression, 6 denotes the Fermi coupling
constant, f the strong (p7rs.) coupling constant, and M v
the mass of the vector meson.

This result is reminiscent of the Goldberger-Treiman
relation' in terms of which the pion leptonic decay is
explained to about 10%. The derivation of Eq. (1) is

based on the notion of a conserved vector SU(3)
current' and an assumption of a pole-dominance model
analogous to the Narn. bu derivation' of the Goldberger-
Treiman relation. These results are presented in Sec. II.

In Sec. III, Eq. (1) is utilized to calculate the

p ~ l+v and F*~ l+v decay rates.

II. THE COUPLING CONSTANT

In the SU(3) theory, the Lagrangian density respon-
sible for the two-body leptonic decays of vector mesons
is given by

'0 cos8y siney

Cy= 0

-0

0

0 0

which embodies the selection rules of weak interactions. '
The main interest of this paper consists in the

derivation of a relationship for the coupling constant y
in terms of known quantities.

To this end we consider the three-body leptonic
processes depicted in Fig. 1.

In a previous paper' we discussed a treatment of the
three-body leptonic decays of mesons based on the

L =7 TrLe) Cvlttt(P)v. (1—ivs)N. (V), (2) G

eo
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FIG. 1. Pion leptonic decay (a) in the current-current theory;
and (b) in a pole dominance model.


