
NON —FADDEEV EQUATION

decomposed in a form such as P, ~v)(W—E.) '(v~;
then (26) or (27) would imply that

Q~v)(W —E,) '(v~4)=0, (29)

or, using the orthogonality of the ) v), that (v ~4) =0 for
all ~v), and so, by completeness, ~4')—=0. That is, the
solutions of (26) or (2/) are identically zero. Therefore,
we have proved that the only discrete solutions of (25),
or equivalently, of (22), are bound states of the
Schrodinger equation.

We may conjecture that there are infinitely many
acceptable formulations of the three-body problem, not

equivalent to the Faddeev equations, and without
spurious homogeneous solutions. "One counter-example
is, however, enough to settle the question of the Faddeev
equations's uniqueness.

I would like to acknowledge several useful conversa-
tions with Professor R. D. Amado, and helpful corre-
spondence with Professor R. G. Newton.

"The Faddeev kernel and that given in Eq. (22) di6'er both
in their spectra and in the fact that the kernel of (22) may have
simple poles in lV corresponding to two noninteracting particles
bound to a third. In the theory outlined here (Refs. g—11), the
bound-state problem thus resembles the usual perturbation-
theoretic formalism.
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Using the techniques of current algebra, we have investigated the four-body leptonic decays of hyperons
of the type B~ 8'+x+e +u, .The predicted branching ratios for the favorable cases Z+ ~ p+~++g-1 ~,
and g- -+ g+~+e +g, are 0.35&(10 ~ and 0.85)&10,respectively. The covariant phase-space calculation
for the four-body leptonic decay rate is given in an Appendix.

I. IHTRODUCTIO5

'HK recently developed methods' based on the
algebra of currents and the hypothesis of partially

conserved axial-vector current (PCAC) have been
successfully applied to a wide variety of phenomena
involving strong, weak, and electromagnetic inter-
actions. Using these techniques, we have analyzed the

yet unobserved four-body leptonic decays of hyperons
of the type

8~8'+~+e+v. .

The calculated branching ratios for the favorable cases
Z —+ X+n+e +r, and Z+~ p+n++e +v, are

0.85X10 ' and 0.35' 10 7, respectively. For A. and

decay the branching ratios for such modes are much
smaller. In the next two sections we give the details of
our calculations. In the last section we present the
numerical results for the seven energetically possible

four-body leptonic decay modes of hyperons:

A ~ p+n'+e +v„Z+~ p+m++e +v„
A ~ n+m++e +v„Z ~ p+m +e +r„
'~A+n++e +r„Z—~n+ns+e +r„-
~A+ns+e +r,

~ For an extensive list of references on current algebra methods,
see B.Renner, Rutherford Laboratory Report No. RHEL/R-126,
1966 (un ublished); J. S. Bell, CERN Report No. 66-29 (un-
published; N. Cabibbo, in Proceedings of the IZth International'
Confer+ace on High Energy Physics, Be-rhdey, 1966 (University of
California Press, Berkeley, .California, 1967).

The possible counterparts of these modes where posi-
trons instead of electrons could be emitted are forbidden
since they need AS/AQ= —1 current. The covariant
phase-space calculation for the four-body leptonic decay
rate is given in detail in an Appendix.

IL THE MATRIX ELEME5'TS

We are interested in the weak decays of the type

&(p) ~ &'(pi)+n(ps)+e (ps)+v. (p4) (I)

/
/

,' JT(p }

/
/

e(y) c(~, ~ &, } el(p, )

FIG. 1. Born diagram for JP (&)(p2).

8 and 8' are the initial and final baryons, and the p's
are the four-momenta of the corresponding particles.
The matrix elements for such a process is

~=(&'(pi)n(ps)e (p )v.(p4) I&-(0) l&(p)) (2)

Using the usual current x current form for the weak
Hamiltonian H„and the Cabibbo form for the hadronic
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current, we have

G sin8
(B'(Pt)~(ps) I

~- "='(0)
I B(p)&

Xs2 (Ps)7 (&+vs)ss.(P4), (3)

where 0 is the Cabibbo angle and G is the universal
Fermi coupling constant. For the hadronic part of the
matrix element, we choose to write'

(B'(Pt)~(ps) I
~-"(0)

I B(p))=Ne (pt)
X[aV.+e(7 ps)V.+ex.(V ps)]~.(p),

(B'(Pt)~(ps) I
~-'(0)

I B(P))=Ne (Pt)
X[by +d7 (7 ps)+f(v ps)V.&Vsge(p), (4) where

X (A+B+C+D+E+P), (5)

where J~ and J~ are th'e vector and axial vector cur-
rents, respectively. The coeKcients a,b, ~ - are functions
of the invariants that can be constructed from the
momenta p, pt, and ps. The explicit expressions for
these coeKcients are obtained in the next section.
Combining Eqs. (3) and (4) and performing the sum
over spins, we obtain

& I 3lfl'—= l~ I'= (32Ps/nni~snsn4)
spine

A=(a'+b')[(p p,)(p, p4)+(p p4)(p, .p,)]—(a'—b')mm, (p, p4),

(e +d )(2(pt'ps)[(p'Ps)(Ps P4)+(P'P4)(Ps Ps)] ms [(O'Ps)(pt P4)+(P'P4)(pt'ps)]}
—(cs d)—smmtm(sPssP,),

C=(e'+f')(2(p ps)[(pt Ps)(Ps P4)+(Pt P4)(ps Ps)]—ms'L(P Ps)(pt. P4)+(p P4)(pt ps)]}
—(e'—f')mmtms'(ps p,),

D=2(ac+bd)m, [(p p,)(ps p4)+(p p4)(p. , p,)] 2(ac——bd)m[(p, p,)(ps'p4)],
E= —2(ae+bf)mt[(p'Ps)(ps P4)]+2(ae—bf)m[(pt ps)(ps p4)+(pt p4)(ps ps)],
F=2(ce+df)((Ps Ps)[2(P Pt)(Ps P4) —(P Ps)(Pt P4) —(P P4)(Pt Ps)]—(Ps P4)[(P Ps)(Pt Ps)+(P Ps)(Pt Ps)]

+ms'[(p ps)(pt p4)+(p p4)(pt ps) (p p—t)(ps p4)]}+4(«—df)mmt(ps ps)(ps p4).

T„=T„(tl+T„(s)

The g's are the usual normalization factors' and
P=(6sin8)/V2. In expression (5) we have neglected
interference terms like ab, cd, , since, being odd ps'(0)= dsxAer(xp)
under parity, these do not contribute to the total decay
rate.

III. DETERMINATION OF THE
COEFFICIENTS a, b, ~ ~ ~

We dehne the invariant amplitude for the semi-
leptonic matrix element (B—+ B'+sr) by

~.(B~B+~)=(—s)(B'(P,)~(Ps) le.(0) IB(P)). (6)

Using the standard reduction technique, PCAC, and
performing a partial integration, one obtains the
familiar relation4

lim [ps„T„, +f M ]
F2~0

= s(B(pt) I [J7s(0),J-(0)]I B(p)), (7)

where f is the well-known PCAC coefficient, dehned by

dsx e's"*8(xs)

X(B'(Pt) I LA.(x) ~-(0)] I B(P)& (9)
T'('~ and T&') correspond to the two terms of the
commutator in Eq. (9). As is well known, if there does
not exist any pole term in T„, as ps —+ 0, the left-hand
side of Eq. (7) reduces to f 3I (ps —+ 0). To judge the
presence or absence of pole terms in T„, we insert a
complete set of states between the commutator in
Eq. (9). If the intermediate state C or D (C is the inter-
mediate state in T&'& and D in T"&) is degenerate in
mass with the external baryons (B or B'), then there
will be a pole in T„, as ps ~ 0. In this case the am-
biguous term of ps„T„, is exactly cancelled by that of

i B„A„'(x)=m.sf.y'(x),
(mB+mB')gg

G(B'Bsr)

~ Out of the many possible terms which could be written down
on general arguments we have kept only those which are non-
vanishing in the soft-pion limit. Normalization factors are sup-
pressed. Notations: yp and y~ are Hermitian; yI, y2, y3, are anti-
Hermitian; the scalar product a'b=apbp —a b.' The normalization factor is Lv/(2s)'2E)'Is, where g =2m for
a fermion and g = 1 for a boson (see Appendix).

4V. A. Alessandrini, M. A. B. Bdg, and L. S. Brown, Phys.
Rev. 144, 1137 (1967}.

I
I
&(s )

I
I

I
I

I
O(l '1 )

Fro. 2. Born diagram for 8 &s&(ps).

a'(1, )
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the Born term f 8 (pz-+0) Lthe Born termsare define
by Figs. 1 and 2j, so that the sum of the two is well

defined. On the other hand, if the intermediate state C
or D is not degenerate in mass with the external baryons,
then there exists no pole term in T„, in the limit pz —+ 0,
so that pz„T„, -+ 0, but, in this case the Born term itself
is well defined. Following Brown and Sommerfield, ' we

split M into a sum of Born term 8 and a remainder
term R defined by

~.(p.)=~.(p.)+~.(p.)

We shall assume that the remainder term R (pz) varies
slowly with pz so that its physical value is well approxi-
mated by E (pz=0). Combining Eqs. (6), (7), and (10)

we can write

—1
&B'(pz)~(pz) l~-l&(p)&= &&&'(pz) IP'z ~ (0)jl&(p)&

f-
+(z)rt-(pz ~ 0)+(—z)f-&-(pz)) (11)

where

E.(Pz -+ 0) = hm $Pz„T„,~+f.B.(Pz)j. (12)

We emphasize that the result for K (pz~ 0) is inde-
pendent of whether or not the intermediate states in
T„, and 8 are degenerate in mass with the external
baryons. Evaluating the various terms of Eq. (11) we
have the following results:

&B'(pz)
I
9'z ~-'"3

I B(p)&
=~g~.v'"'~a (pz) v-I Iga(p)

/Vz)

1

(z)++ (z)

(13)

Ejg ' (pz + 0) +zgv, A ~gA BN'(pl)v
I

Izza(p)
1

Vz)
&."""(pz~ o) = zg~'"'g~—.~~"'zza (pz)v-I lma(p) ~

1
—jp (~)+g, (z)

(mz' m. ')—y +(rez+t5 )(p pz)p '(+5)
(1)F,A( z) +zgv, AB cgAc B'zza, ( z) Qf p pI a(p)

(zzzz' —zzz. ')+2pz p2+m2 (1)
(z)z' —md')y W(zm+z)zd)y. (y. pz)- yz)

fA "' '"(pz) = zg~ gv—,~ Na (pz) INa(p)
(m' —zzzd') —2P Pz+zzzzz 1 )

(14)

where
x=1 for m+

=0 for x
=1/V2 for zr'.

VX'~~ "g""&
and f =—zzz, and zzzq are the masses of the intermediate single-

particle states in the two Born diagrams, Figs. 1 and 2.
We have made use of the Goldberger-Treiman relation

LEq. (8)j to write the strong-coupling constants
G((7Pzr) in terms of the corresponding axial-vector
coupling constants g~ t'. The g~'s and gy's have the
standard definitions

(18)

IV. RESULTS

As inentioned earlier, all the g~'s and g~'s are related
by SU(3) symmetry. The gv's have only the f-type
coupling, while the g&'s involve both f and d-type-
couplings. From the leptonic decays of hyperons it
seems that the ratio d/f 1 95 gives a reaso. nable fit to
the experimental data. ' Using u, b, - from Table I we
have calculated the decay rates for the seven energeti-
cally possible four-body leptonic decays. Values of the
various parameters used are the following: (a) Cabibbo
angle 8=0.26; (b) gz" &=1.0 and g~"-&=1.18; (c)
three different values for the ratio d/f, namely, 1.68
1.95, and 2.3 (the results are insensitive to the variations

lim & 3(p')
I
J v "(0)

I n(p) &
(u—u')

(zzz.mp)
'I'

--
I g...--&-a(p')~.

I .(p). (»)
&z.z,i

gy""&~1.0 and g~""& 1.18.All the other g's are related
to these two by SU(3) invariance. From Eqs. (13),
(14), and (15) it is easy to derive the coeKcients

(z, f), c, (E, e, and f. They are tabulated in Table I. The
coefficients a,b, . ~ have an over-all common factor

(16) (—1/f, ) Lsee Eq. (11)g which we include in the
definition of P in Eq. (5), so that

6 sin8

5 L. S. Brown and C. Sommerheld, Phys. Rev. Letters 16, 751
(1966&. N. Brene et a/. , Phys. Rev. 149, j.288 (1966).
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TAsz, z I. The contributions to the various terms of the semileptonic hadronic matrix element,
Eq. (4), obtained from the current algebra relation, Eq. (11).a is defined in Eq. .(16).

Contribution from

Equal-time
commutator

(t)E (pe~ 0)

CoeG. of y

XgAB B'

gAB CgAC B'+gAB DgAD B'

Coe8. of y~yg

Xg VB"B'

g T
B~CgAC~B'+gAB~Dg D ~B'

(—4)f.& "'(pe) gA CgAC B'
m12 —m. '

m1 m +2p1 ' p2+m2
g+ CgAC B'

m1' —m, 2

m1' —m, +2p1.p2+m2'

(—4') f-&-'" (pe)

m2 —md'
gAB ~DgAD ~B'

m2 —md2 —2p p2+m22
gAB Dg VD B'

m' —md'

m2 md2 2p ' p2+m22

(—4)f & '"'(pt)

(—4) f-& "'(Pe)

Coeif. of (7 pe)y
m1+me

gAB~CgAC ~B'

m1 m +2p1 ' p2+m2

Coeif. of ya(y. Pe)
m+md

gA gA
m' —md' —2p p2+m2'

Coeff. of (y pe)y, y,
m1+me

g yB ~CgAC~B'

m12 —m, 12p1 p2+m22

Coeif. of y (p pe)~,
m+ md

.gAB ~Dg I/D~B'

m md 2p ' p2+m2

of this ratio; (d) physical masses for all the external and
intermediate hadrons; and (e) other constants: G=1.0
X 10 '/414„', gN&~'/41r =14.6. The calculated decay
rates are given in Table II.

The small decay rates for such modes can be under-
stood in terms of the small phase space available and
cancellations7 between the various terms in the matrix
elements. For instance, in Z —+ p+2r +e +f, decay,
each one of the two Born terms will give a decay rate
about 25-30 times larger than the one obtained here.
But the two together almost cancel each other, leavirig
a small net contribution. In conclusion, the predicted
rates appear to be rather small, so that the observation
of four-body leptonic decays of hyperons (even for the
most favorable case) will not be feasible unless the

TABLE II. The calculated four-body leptonic
decay rates of hyperons.

number of hyperon decay events is increased by at
least two orders of magnitude.

APPENDIX

Decay Rate and Phase-Space Integrations

The decay rate for the process (1), in the rest frame
of the decaying particle, is given by

I'= (22r) 4
g1d P'1 y2d P2 g3d P3 'Q4d I'4

(21r)22Et (2n.) '2Es (22r) '2Es (2m) '2E4
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Decay mode

Experimental
Decay rate F~Br+~+e-+pe(sec ') total decay
d/f=1. 68 d//=1. 93 d//=2 28 rate (eec . ) U'sing Fq (5). for

X&'(p pt ps ps p4) ~
01Z—

~

' —(A1—)—
h ~P+x +e +Te-

h ~ tC+7r++e +Te
Z+ ~P+2r++e +re
Z -+ X+~0+e +Te
Z ~pie +e +Te,

o -+h+2r++e +Ye
~h+H+e +ve

0.47
0.35
4.52 X102
4.72 X10&
1.35 X102
1.01 X101
1.61 X101

0.46
0.35
4.68 X10'
4.87 X102
1.40 X10~
1.01 X101
1.62 X101

0.45
0.34
4.83 X102

05 X10gl
1.47 X10RJ
1.0 X10&

1.63 X101

4.0 X109

1.3 X101o

6.2 X109

3.4 X10&
5.7 X109

1 (p'~ dsp, de, a,sP, dsP4I'=
(2~)'(214& E, E,

X~'(P-Pt-ps ps-p )-
7 We note that our expression, Eq. (11), for the amplitude in

terms of the Born terms is a consequence of soft-pion extrapola-
tion together with current algebra. As it is not clear how well the
amplitude is approximated by the soft-pion limit, it is not certain
that the smallness of the amplitude is a feature independent of
extrapolation. However, we feel that the cancellations may not be
related to the errors involved in the soft-pion extrapolation since,
in a similar analysis of nonleptonic decays of hyperons, I A. Kumar
and J. C. Pati, Phys. Rev. Letters 18, 1230 (1967)g large cancella-
tions between the Born terms produce results which are in very
good agreement with the experiment.

X(&+B+C+D+E+F). (A2)

/I, B, ~ are given in Eq. (5) and ti is given in Eq. (1g).
Integrations over d3E3 and d'P4 can be easi]y performe
by using the standard covariant techniques. ' The end
result of these two integrations for the matrix element

' See, for example, . J. D. Jackson, Brandeis Lectures Vol; 1 .

(i962};D. Loebbaka, Ph. D. thesis, Univ'ersity of Maryland, T966
(unpublished) .
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given by Kq. (5) can be stated as follows:

d'P3 deP4
~'(& p8——p4)HV ps)(s p4)]

E3 E4
=-,'~[2(q N)(s E)+(q s)E'],

d Pad P4
8'(& Ps —P4)—[(Ps P4)]=~&'

X=p—pi —p~. Here we have neglected the mass of the
electron and have put m„=0. Making use of Eq. (A3)
in Eq. (A2) to take account of the O'Ps and O'P4

integrations, we obtain

1 (P') O'Pg O'Ps

2(27r)" km) Eg Es

X(A+B+C+D+E+I'), (A4)
q and s are four-vectors independent of ps and p, and where

A= (a'+b')(-')[2(p X)(pg X)1 (p pg)¹]—(a'—b')mmglP,

B=(c'+d')(-'){2(pi p,)[2(p.iV)(p& X)+(p p )¹]—m2'[2(p E)(pi E)+(p pi)¹]}—(c'—d')mmmm~»'

C= (e'+f')(i~){2(p.p2)[2(pi E)(p2 E)+(p& p&)¹]—ms2[2(p X)(pi X)+(p pi)¹]}—(e' f'—)mmim2'gs,

D=2(ac+bd)(-', )mi[2(p X)(p2 X)+(p p2)Ã'] 2(a—c bd)—m(pi p2)¹,
E= —2(ae+bf)ma(P Pu)¹+2(ae—bf)(s)m[2(P, E)(P& X)+(Pl'P2P ],
~=2(«+df)(s){(p pl)[(p2 &)'—2m2»'] —(p p2)[(pl &)(p2 &)+(pl p2)¹]

—(p Ã)[(p, p,)(p2 E)—m2'(p, E)]}+2(ce—df)(s)mm, [2(p, E)2—m, »&].

To perform the d'P2 and O'P1 integrations, we choose
the rest frame of the decaying particle and fix P2 along
the z axis and Pz along any (8,$) direction. Since our
integrand has no P dependence, integration over dg
gives a factor of (2n.). Now we can choose P, in the x-s
plane, so that the momentum vectors are

Limits of Integrations

The minimum value that E~ can have is obviously nz2.

The maximum value of E2 will occur when all the other
particles have their momenta directed against P2 and
are moving with the same velocity. Energy-momentum
conservation then gives

and

p= (m, 0);
p, = (E&,P2); Pz is along the s axis;

pi ——(Ei,Pi); Pi is in the x-s plane, (A5)

(P2'+m2')' '+[P2'+(mi+msim )']"'=m. (A11)

Solving for E2 we get

E2= (PP+m2')' '= [m' —(m&+m&+m )'+m ']/2m .
P1'P2

IPil IPs I

=cosa=—x. Neglecting the electron mass, the upper limit for dE
integration is therefore

Using the relation E2~ x——(m' —mP+m2')/2m.
d'x=

I xl'dxdQ„ (A6)
we. can write

Pg+P2 —Q, cos8= ———1 m= E +E + I Q I (A13)
Since there is no preferred direction for P2, integrating
over d02 gives another factor of 4~.

I= (2sr) (4s ) — —— dx. (A8)

Q is the momentum of the electron and neutrino,
Q=Ps+P4. Solving Eq. (A13) for Pi, we get

a
I Ps

I
+y[~&—4m/(y& —P 2)]&/&

IPi-"I =— (A14)
2(p2 —p2s)

Choosing dE2 and dE1 as our new integration variables,
we have where y= m —E2 and. a=y'+mP P22. In determining-

E2 and I'1 ' we have used. x= —1; this, being the
(A9) minimum value of x, is the lower limit of the dx integra-

tion. The upper limit for x can be obtained from
1=(2~)(4~) I P, l OE,

I P, l OE,dx.

Now, using Kq. (A9) in Eq. (A4), we obtain P~+Pi cos8+Q cosP= 0,
Pi sin8+Q sing= 0,

El+E2+Es+E4 m, ——
Ea+E4) IQ I,

1 tP')I'=
I
—

I IP2I OEs
(2s)'km) @ man

1 —1

X (A+B+C+D+E+F) ~ (A10) (A15)

For a 6xed value of momentum P2 the energy E& will
have its maximum value when all the other momenta
are directed opposite to Pi. In such a situation—= (2s.) OQs- dx. (A7)
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where p is the angle between Q and Ps. Eliminating g
from the first two equations, we get

x=—cos(i= (Q' —Pts —Pss)/2IPtl IPsl . (A16)

For 6xed magnitude of P1 and P2, x will be maximum
when

I Q I
is maximum.

I Q I
will be maximum when Ps

and P4 are parallel, so that

I Q I

'"=Es+E4——m —tP-'t —Es. (A17)
This gives

x '"=L(m ~t—&s)' Pt' Ps'3/2IPtl IPsl (A18)

For some values of Pt and Ps, Eq. . (A17) may give. an
overestimate for

I Ql in which case we shall limit x
to +1.From Eq. (A18) we can see that for fixed value

of P& the momentum P& cannot be zero as this will imply
unphysical value of x '. Thus the minimum value
for P& will be decided by the condition that x '" be not
less than —1.

With the limits so determined, the three integrations
in Eq. (A10) were performed numerically on the com-

puter to obtain the decay rates given in Table EI.
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Strong and Weak Decays with Meson Emission in the Quark Model

HARRY J. LIPKIN, H. R. RUBINSTEINs AND H. STERN*

Weismann Institute of Science, Rehoeoth, Israel
(Received 5 April 1967)

Strong, electromagnetic, and weak decays are described in the independent-quark model as single quark
transitions with no symmetry higher than isospin assumed for the interaction. Relations between quark
model and symmetry predictions, e.g. , SU(6)s, and the possibility of experimental tests are discussed.
Strong decays of a three-quark baryon supermultiplet with L=2 are treated in detail. Many predictions
are given which can provide tests of symmetries and of the model when more data are available. Present data
indicate rough agreement, but are inconclusive.

' 'N the same manner that electromagnetic decays are
~ ~ described in the "independent-quark model"" by
considering that each quark in the initial state can
radiate a photon, one can also consider a model in which

each quark individually can "radiate" a meson to
describe certain decays. There is no inconsistency in

treating a meson as a "radiated quantum" rather than

as a quark-antiquark bound state. Although a justifica-

tion of this model from first principles is out of the

question at present, the general approach is similar to
that used in conventional treatment of "soft pion
emission. " This treatment is based on very general

considerations which are independent of the structure

of the pion and are consistent with a composite

structure. 3

* Present address: Centre d'Etudes Nucleaires de Saclay,
Gif-sur- Yvette, France.

' Y. Nambu, in Proceedings of the Second Coral Gages Con

ference on Symmetry Principles at High Energy, edited by B.
Ku"sunoglu, A. Perlmutter, and I. Sakmar (W. H. Freeman and

Company, San Francisco, 1965), p. 274; G. Morpurgo, Physics 2,
95 (1965); C. Becchi and G. Morpurgo, Phys. Rev. 140, B687
(1965). Y. Anisovich, A. Anselm, Y. Azimov, G, Danilov, and

I. Dyatlov, Phys. Letters 16, 194 (1965); R. H. Dalitz, in Pro-
ceedings of the XIII International Conference on High-Lnergy
Physics, Berkeley, 1967 (University of California Press, Berkeley,
1967); %. Thirring, Acta Phys. Austriaca Suppl. ;. III, 294 (1966).

s H. J. Lipkin, in Proceedings of the Yatta Igternatiogal School

an High-Energy Physics- antj Elementary I'urticles, 1966, edited by
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