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A phenomenological model for the strong and weak interactions of an octet or nonet of pseudoscalar
mesons in chiral U(3)QxU(3) is constructed and discussed. In this model one can study the effect that the
partially conserved axial-vector current hypothesis (PCAC) and the transformation properties of the
interaction Lagrangian in chiral U (3)Qx U(3) have on the transition amplitudes for various meson processes.
The processes considered in this paper are the leptonic and nonleptonic decays of E mesons, the strong
interaction decay rt'(959) ~ v(549)+2m. , the s and p--wave scattering lengths for pion-nucleon scattering&
and meson-meson scattering. Low-energy pion-pion scattering is discussed as an illustration of the fact that
for processes involving more than one soft pion, PCAC and the algebra of currents are not sufhcient to give
unique results in general.

I. INTRODUCTION

HE recent success of the combination of the con-
cept of a partially conserved axial-vector current

(PCAC) together with the algebra of vector and axial-
vector currents in SU(3) suggests that the chiral group
U(3) r,8 U(3) tt may be a good symmetry group in which
to formulate a dynamics of the strong and weak inter-
actions. This is illustrated in this paper by the con-
struction of a phenomenological model for the strong
and weak interactions of a nonet of pseudoscalar mesons
based upon this chiral group. The amplitudes for various
strong- and weak-interaction processes will be calculated
and shown to agree with those obtained with current
algebra techniques. These results are also in good agree-
ment with experiment.

In Secs. II-IV, a phenomenological model of strong-
interaction pseudoscalar-meson dynamics is constructed
which is essentially the extension to U(3)r, U(3)tr of
an approach discussed by Gursey' in the context of
U(2)r, U(2)tt. The primary ingredient is the con-
struction of a meson-coupling matrix M (4) as a func-
tion of the 3)&3 pseudoscalar-meson matrix C. This
coupling matrix is defined to transform according to the
representation (3r„3tt*) of U(3) r,s U(3) tr. This function
is not unique, the only constraints being

MtM=I and Mt(rI)=M( —4).
Two forms of M which seem to be of special significance
are discussed. In particular, it is found that only with
M equal to e"f~ is it possible to have only eight pseudo-
scalar mesons in chiral SU(3) SSU(3). Explicit expres-
sions for the meson part of the vector and axial-vector
currents which appear in the weak interactions are de-
rived and PCAC is discussed.
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In Sec. V this model is applied to meson-meson scat-
tering and found to be identical to results obtained
from the current algebra and PCAC. A calculation of
the rate for the strong-interaction decay of the rt' (also
known as the X') to g+27r is given and found to be
in approximate agreement with experiment, although
slightly large.

In Secs. VI and VII, the vector arid axial-vector
currents of this model are applied to the leptonic and
nonleptonic decays of E mesons. Of the nonleptonic
decays, only those with ~AI~ =—', and CP conserving
are discussed. The interaction is taken to be of the
current)&current form and transforming like the sixth
component of (Sr„1tt) under U(3)r, 3U(3)tr. The results
are in agreement with experiment and those obtained
with the algebra-of-currents method.

In Sec. VIII an invariant coupling of the pseudo-
scalar mesons to a nonet of baryons is constructed. The
Goldberger-Treiman relation follows directly from this
chiral invariant coupling. Pion-nucleon scattering is
calculated in lowest order and shown to give excellent
agreement with experiment for the s and p-wave -scat-
tering lengths in all channels except that containing
the E*(1236)resonance. The amplitude calculated from
this coupling is also shown to be identical to that ob-
tained from the conventional pseudovector coupling
together with p exchange at low-momentum transfers,
which is the result obtained from PCAC and the algebra
of currents.

Finally, various aspects of this investigation are
summarized and discussed.

II. CONSTRUCTION OF THE MODEL

In order to construct the transformation properties of
an octet (or nonet) of pseudoscalar mesons under chiral
U(3)3U(3), we consider a particular model. ' This
model is specified by a coupling of these mesons to a
triplet of quarks given by

Z; t,
= rrto(qrM(fC')—qtt+qttM (f4)qr) (1)
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In this expression, C is the 3)&3 Hermitian pseudo-
scalar-meson matrix, while the coupling matrix 3E is
expanded as a power series in 4;

M =P a„(if4)"

The expansion coefficients c„are considered to be in-
dependent of 4, and the parameter f with dimensions
of (mass) ' is chosen to be real. This parameter will be
determined from the decay m ~ tz+v, where one finds

f m '. The notation qz (qis) denotes a left-(right-)
handed quark, i.e., y5qz, = gL, and y5qg= —q~. The terms
ggMqg and q~Mqg do not appear in the coupling be-
cause g;zq, &

=—g;I,q;I,=—0. The expansion given by Eq.
(2) may represent either a polynomial or an infinite
series. For example, one obtains a conventional Yukawa-
type coupling by choosing only a& to be nonzero. How-
ever, as will be shown, this choice is not consistent
with the symmetries demanded of the coupling.

In addition to the full Poincare group (including
parity and time-reversal invariances), this coupling is
required to be invariant under charge conjugation and
the group U(3)z,s U(3)zi. This latter group is defined

by the transformation properties of the quarks:

U(3)z, . qz, ~e' '""~'qz and qzr~qzi, (3a)

U(3)z, . qz~ qz and qz, ~ e~'""'"t'qzr (3b)

The generators of these two groups define the algebra
of U(3)z, U(3)zi,'

(F;+,F, j=0, —

LF,+ F.+j=ij', .sFs+

Under the parity transformation, we define

Pqii(x, t)P '=y4q&( x, t) and Pqz,—(x,t)P '=y4qzi( x,t);—
therefore, parity invariance requires that M satisfy
the equation

PMLf4 (x t)]P '=MtLfC (—x, t)j. (4)

For pseudoscalar mesons PC (x,t)P '= —4 (—x, t);
therefore, invariance requires the coeQicients a„ in
Eq. (2) to be real. Likewise, charge-conjugation in-
variance requires

CM ~C-'=3f '

For the pseudoscalar mesons we have CC;&'C '=4, ',
thus charge conjugation places no constraint on the
coeKcients a„. Similarly, time-reversal invariance
requires

TMjfC(x, t)jT-'=MLfC(x, —t)j.
Since T is an antiunitary operator and the u„are real
from parity invariance, time-reversal invariance may
be satisfied by taking either

TC (x,t) T '= —4 (x, t) with—a„arbitrar—y

TC (x,t) T '= 4 (x t)—

with all a„=0 for n being an odd integer. However,
this latter choice is not compatible with the symmetry
U(3)z 8U(3)zz because one cannot set all the a„equal
to zero for n being an odd integer. The reason is that
invariance under chiral U(3) U(3) is quite demanding
on the coeScients u„ in so far as it requires the matrix
3E to be unitary.

In order to ensure invariance under chiral U(3)
8(3), the mesons must transform in the following
manner:

U(3)z, '. 4'~ 4' where M(f4') =e* '""'M(1'4) (5a)

U(3)zi. 4 ~4", where M(fC")=M(fC)e @"~'" (5b)

From Eq. (5) it follows that

Mt(f4')M(f4') =Mt(f4)M(f4) (6a)

M(yC, ')Mt(yC, ') era&i, &~2M(fg&)Mt(fg)e rlsi, z/s — (6b)

With C and C' being Hermitian, it is easy to verify
that Mt(fC) commutes with M(f4) as does Mt(fC. ')
with M (fC') Thus E. qs. (6a) and (6b) imply that MtM
commutes with all Xs which is only possible if M"M
is a multiple of the identity matrix. ' We shall take 3f
to be normalized such that M~3f =1.

This unitarity restricts the allowed values of a„ in
the expansion of 3E. Without loss of generality, we shall
choose uo ——1, while the parameter a~ may be absorbed
into the definition of f. For convenience we shall choose

ate=2, then the expansion for M becomes

M(f4) = 1+2if4+2 (if4)'+as (if4)'
+2(&s—1)(fi)4'+ " (I)

M is thus determined by two parameters, f and as to
fourth order in C.

Although Eq. (1) represents a certain model of meson-
quark interactions which may or may not have some-
thing to do with reality, the important point is that
the pseudoscalar mesons are contained in M, & which
transforms like the representation (3z„3zr*) of U(3)z,
U(3)zi. An effective Lagrangian will be constructed
as a function of 3f which, when expanded in powers
of f, will be used to calculate the 5 matrix for multiple-
meson processes. We shall use this model only phenom-
enologically, calculating the amplitude for various
meson processes to lowest order in f.

Although M belongs to the representation (3z,3zi*),
the pseudoscalar mesons by themselves do not belong

'The constraint that MtM be a multiple of the identity may
be used to show that one cannot construct the coupling given by
Eq. (1) if scalar rather than pseudoscalar mesons are used. This
follows from parity invariance which requires that M~(fC) M{f4)=
if 4 is a scalar field. Thus M=+ b„fW"with real coeKcients, b„.
The unitarity condition Mt3f =cI can be satisfied only by choos-
ing b0' ——c with all other b„=0 for n/0. This shows that M is a,

multiple of the identity. E'urthermore Eqs. (5a) or (Sb) then re-
quires that M=O.
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to a linear representation of this group. This may be
seen by solving Eqs. (5a) and (5b) for the infinitesimal
transformations BL,C and SIC where one substitutes
4'=4+8rC and 4"=4+biiC and solves to first order
in nq and P~. It is more convenient, however, to work
with the combinations 8~=—brC+BsC and 8~4= br4—
—b~C obtained from simultaneous transformation
under U(3)z, and U(3)~ with nq ——P~ and ni, = Pq, —
respectively. One Ands to lowest order in o.& that

M(fx, )
Tr(bgC') =i Q ni(X~'), ,

M'( x;)
(13)

It is easy to show that the trace of b~C can be zero for
all n& (k= 1, 2, ~, 8) only if

determines the coupling matrix uniquely. From Eq.
(10), one obtains the expression

M(fC+ fbi) =M(fC)+ingPXI„M(f4') j (Sa)
M'( jxi) M'(fx2) M'(fx3)

M(fxi) M(fx2) M(fxa)
(14)

M(fC+ fbgC) =M(fC')+inch'Xi, M(fC)}p.

The solution to Eq. (8) is easily found to be

BrC = ingL2iXg, C j,

(gb) Since at least two of the x s are linearly independent
(if 4 is traceless the third is determined from xi+x2
+x3——0), it follows that

M'/M =C,
which shows that under ordinary SU(3) Lwhere both
left and right quarks undergo the same SU(3) trans-
formationj the mesons transform like an octet and a
singlet.

The solution for b~C is more di6icult to obtain and is
most easily calculated in a basis in which C is diagonal
(with eigenvalues x;)

M(fx;)+M(fx;)
SIC;&'=-', in'(Xg');; (x;—x;). (10)

M (fx;) M(fx;)—
One may then expand this expression in powers of f
and express the result in an arbitrary basis. Thus,

{y f2(g)my„+) „@2)+1j2a(y @2+@7„@+@&27 )
2f

+terms of order (fC)4}. (11)

III. PROPERTIES OF VARIOUS FORMS FOR M

Except for the fact that M must be unitary there is a
great deal of freedom in the form used for M. We have
found the following two forms to be particularly
interesting:

PibC (12a)

(12b)

where C is a constant independent of x. To be com-
patible with the expansion in Eq. (7), we choose
C=2if and hence

g2if 4 (15)

However, this is true for any function satisfying the
equation

M(fx)M( fx) =1—

Hence, in chiral SU(2)SU(2), 8~4 will be traceless
so long as 3E is unitary and C is traceless. However, in
chiral SU(3)3SU(3) this will be so only if M is given
by Eq. (15). It should be noted, however, that al-
though M must be given by (15) if only eight pseudo-
scalars are to be used, there is nothing to prevent one
from using this expression for M with nine pseudo-
scalar mesons in the model, in which case the singlet
meson is invariant under chiral SU(3)SU(3).

If M is given by

It is interesting to note that only at the SU(3) level
is Eq. (14) so restrictive. At the SU(2) level there are
only two eigenvalues x& and x2 and they satisfy the
equation xi+x2=0 if 4 is traceless. In this case Eq.
(14) becomes

M'(fx) M'( fx)—
M (fx) M ( fx)—

From Eq. (11) for 8~4 it can be seen that it is not
consistent in general to use only eight mesons. Even
if one restricts the transformations to SU(3) rather
than the full U(3) group by setting no ——0, one finds
that the trace of B~C is not, in general, zero. This
means that one cannot impose the traceless condition
on C necessary to restrict the model to an octet of
mesons. Thus a set of nine pseudoscalars must be used,
in general. Actually, the requirement that only eight
pseudoscalar mesons be consistent is so strong that it

then the series expansion for 5&4 given by Eq. (11)
ends with the term of order (fC)'. This is easily shown

by using Eq. (10) from which one obtains

SIC =—(Xy+f'4 XiC') .
2

(17)

In fact one can prove that if B&4 is to be a Polynomial
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in C, then Eq. (i7) is the only possibility and M mgst in (20) and obtains
be given by Eq. (16) s

IV. MESON LAGRANGIAN AND THE VECTOR
AND AXIAL-VECTOR CURRENTS

The next stage in the construction of our phenomeno-
logical Lagrangian density is the addition of the kinetic
term. At this level we still require invariance under the
chiral group and define

z
V„= P—r,8„Mt]=i[e,8„C j+" .

4f2

In a similar manner one obtains the axial-vector
current

z
{—8„Mt,M)+

2

1—gq (mesons) =—Tr (8„Mt8„M) .
2

(18) cjtt4
+f(2C 8„4C ,'a—8—„C',)+ . . (22)

Invariance of this Lagrangian density is easily verified
provided the group parameters n& and P& in Eqs. (3a)
and (3b) do not depend on space-time coordinates.
Possible extensions to transformations where these pa-
rameters depend on the space-time coordinates are not
considered in this paper.

The coefficient of Tr(8„Mt8„M) is chosen so that
upon expanding it the leading term is the free La-
grangian for noninteracting mesons, i.e.,

1—Tr(8„Mt8„M) =-,'Tr(8„C8„C)
8f2

+ 'f'Tr(8 -C'8 C'—a,8 C8 C )+" (19)

—si Tr{(a+b)is)C') —sicPp' —ipd4p4s —iseQs'

be contained in 2 with

a=-'s(2m''+m ')

b= (2/ v3)(m' —mx')

c=m ' cos9.+m„s sin')i —i(2mir'+m ') (24)

In order to complete the model, we now add a nieson
"mass" term to the Lagrangian. We treat the general
case for a nonet of mesons and require that the
combination

e=m ' sine, +m ' cos9 —
—s, (4m'' —m ')

(25)
it=ps sin) —Qs cos)i,

The terms of order C' and higher are interPreted as d — 2 sin), coy, (m„,s m„&)+&~2(mxs m s),
meson-meson interactions and contribute to such
processes as pion-pion scattering. That this is a valid
interpretation will be shown when this model is actually

In the above formulas, )i is the iI'(959) and it(548)
~ ~

With this expression for Z& one may now obtain the 'ng ang d fin d y
currents j„&(x) associated with an arbitrary transfor-
mation N~ e~ iI = fp cosh —s sin)i,

n„j„&(x)= ——by&
8(8.A)

Tr(8„—MtBM+bMt8„M) . (20)
8 2

To obtain the vector current, one substitutes the
expression

8pM =in~tL ,'X„,Mj-
'From the above expressions for b&C and B.&4, one may con-

struct vector and axial-vector charges which formally satisfy the
equal-time commutation relations of chiral U(3)U(3). By de-
fining variable ~;(x) which satisfy cannonical commutation re-
lations with the fields 4;, one obtains an expression for the axial-
vector charge density by defining

tn pA p'= ,'tow,—(sgc, ) +—(b—ge,)~,5
In particular, if B&C is given by Eq. (17), the axial-charge density
1s

A.~= —-+ Cm

This is precisely the form constructed by T. K. Kuo and M.
Sugawara, Phys. Rev. 15I, 1181 (1966).

which expresses the physical particles iI' and rl (of
masses 959 and 548 MeV, respectively) in terms of the
SU(3) singlet state and the I=O member of the octet.

It is necessary that the "mass" part of the Lagrangian
contain the terms in Eq. (23) so that when it is com-
bined with the free meson part of the kinetic Lagrangian
given in Eq. (19), together they represent the total free
Lagrangian for a nonet of mesons.

If one requires that the above mass term transforms
at most like a singlet and an octet under SU(3), then
the coefficient e must be zero. From Eq. (24) one finds
in such a case that the mixing angle is given by

-'(4m'' —m ')—m '
sin9 = =0.034&0.004. (26)Ig& fPSy

This 6xes the p' —p mixing angle at X=~ii'.
The above mass term is easily generalized to include

meson interactions. We require that these interac-
tions transform simply under chiral U(3)ISU(3) and
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choose'

C=—Tr((a+9 s) (M+Mt) }+ Tr(kp(M —Mt) }
8 2 64 '

XTr(Xp(M —M')}

d
+ — Tr(Xp(M —Mt)} Tr(Xs(M —Mt}

64 2

ts'(x) = i—xM'(x)/fM(x), (30)

one obtains the PCAC equation

B„A„'=

with 5&C given by Eq. (11).With the help of Eq. (10)
it is not dBBcult to prove that if p, satish. es the di6er-
ential equation

e
+ Tr{hg(M —M)t} Tr()~s(M —Mt)}. (27)

64 '

This expression may be expanded in powers of C, the
terms quadratic in C being given by Eq. (23). The
terms of order C4 and higher represent meson-meson
interactions and contribute to such processes as x-m

and 7r Escatte-ring and the decay rt' ~ rt+2s.

PCAC

The addition of a term such as 2 to the Lagrange
density destroys its invariance under U(3)r, U(3)tt,
and the vector and axial-vector currents in (21) and
(22) are no longer conserved. A particularly successful
hypothesis when used in conjunction with the algebra
of currents has been that the symmetry is broken in a
manner such that one obtains the PCAC equations

m'
8„A„'= y;, (i=1, 2, 3),

fÃ+
B„A„'= g; (j =4, 5, 6, 7).

Thus for each form used for M, one can construct a
model with PCAC. In particular, if one uses the ex-
ponential form for M, then p=C'-, ie zvhich case Z
does rot costa&a any meso' Azteractioes.

For nondegenerate mesons the situation is not nearly
so simple. With the mass Lagrangian in (27), we find
that

ZQp—4r,c)„A„"= — TrL(a+bXs) {(M—M'), &4 }+j
16 '

+similar terms in c, d, and e. (31)

The terms in c, d, and e are proportional to the gp and ps
fields. With regard to PCAC we wish only to point out
that with the parameter c3 in the expansion of 3f taken
to be zero, Eq. (31) yields the PCAC equations in (28)
when contributions of order f' and from the $o and Ps
states are neglected. The amplitudes for m-x and 7(--IC

scattering, and the weak. interactions of E mesons will
be calculated only to lowest order in f (which at most
is f'). Therefore, we shall be able to show that with as
equal to zero these amplitudes satisfy all the limits
required by PCAC as various four-momenta go to zero.

For simplicity we erst consider PCAC when the
mesons are degenerate. If the "mass" Lagrangian den-
sity is not required to transform in some de6nite manner
under chiral U(3) U(3), then one may choose

V. MESON-MESON INTERACTIONS

In applying the above model to various meson proc-
esses, we take the S matrix to be given by

(29)

where the only constraint on t4(C) is that it be an even
function of C (parity invariance) and that the leading
term in an expansion of p be C' which represents the
free meson mass Lagrangian. From the definition of the
axial-vector current in Eq. (20), it follows that the
divergence of the axial-vector current is given by

—
4r4,8„A„"=bgZ=Z(C+bg4) —Z(C)

' The addition of terms such as $Tr(M+Mt) g' and Tr(M+M t)
XTr(xs(M+Mt) } together with more complicated terms is also
possible. In the absence of any strong motivation for their in-
clusion we prefer to delete them. With the choice made in Eq.
(27) the terms proportional to c, d, and e do not contribute to
~-7i- and m.-K scattering in lowest order. The simplest choice,
however, is to keep only the terms in u and b or Eq. (27) in whic. h
case L transforms like the zero and eight components of (3,3*)
+(3*,3). It is the presence of the ninth meson which forces one
to use the more complicated terms proportional to c, d, and e.

S=2'exp i d4x (Zs+Zs)

and calculate only to the lotoest contributing order in f If.
one attempts to calculate these amplitudes to all
orders in f, one is confronted with difficulties associated
with the nonlinear character of the model. Without a
solution to such difhculties we cannot regard the above
model as an entirely satisfactory theory of chiral dy-
namics. Nevertheless, the above model may be used to
calculate the amplitude for an arbitrary meson process
to the lowest contributing order in f, the difficulties being
encountered only if one attempts to go beyond the
lowest-order contribution. However, even in lowest
order. these amplitudes reflect the chiral symmetry of
the Lagrangian and will be shown to be identical to
those that have been obtained with the algebra-of-cur-
rents method.
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From the previous discussion we take

Ze= ——Tr(B„MtB„M)+ T—r((a+b)ts) (M+Mt) )
gf2 gf2

+ Tr{kp(M—Mt) }Tr(hp(M —3IIt))
64 2

+ —Tr(hp(M —Mt)) Tr()ts(M —M'))
64 2

+ Tr(Xs(M —Mt)) Tr(Xs(M —Mt)) ~ (32)
Q4 2

(The weak-interaction Lagrangian density Lrr will be
constructed later. )

For meson-meson scattering and the decay p'~q
+22r, the lowest-order terms (ot order f') arise from
the expansion of L to fourth order in C

24 ' f' —Tr(B——O—'B 4'—asB 4 B 4')
+2f'(1—as) Tr((a+bXs)4 )

srcfsas T—r(XpC) Tr() pC')

——,'d f'as Tr()tpC) Tr(hsC')
—isdf'as Tr(hp42) Tr(hsC)

isef2as Te(—As') Tr(kses) . (33)

This Lagrangian yields the following amplitudes' to
lowest order in perturbation theory.

2r-2r scattering: rr, (qt)+rr, (q2) ~ 2rb(qs)+2rd(q4)

A, ~=2fsb, bb, d(m ' t)+2fsbgd—b,b(m '—tb)

+2f2B,Bbd (m s) 2f a—s(Bab—B.d+BsdB.b+B~.Bbd)

X (4m.'+qP+q2'+qs'+q4'); (34)

2r Escattering: 2r,-(qt)+E (q2) ~ 2rb(qs)+Ep(q4)

A K=-', f'(2mK'+2m '—2t—s—)u. B.bBp

+,'f'(u s)ieb.-)o p
'—

2 f'as(2mK'—+2m.'+qt'+q2'+qs'+q4')B. bb p ', (35)

E Kscattering: E,(-q&)+E, (q2) b Kb(qs)+Kd(q4)

AKK f (2mK t u) (Bbc4d+BcdBa'b)

2f as(4mK +ql +q2 +qs +qp ) (Bb Bad+BcdBab) ) (36)

where s= —(qi+q2)2, t= —(qi —qs)', and u= —(qi —q4)2.

The Adler "self-consistency" condition' which
(follows from PCAC) requires that the above ampli-
tudes vanish when any one of the four meson momenta
goes to zero and the other three remain on the mass
shell. Thus the above amplitudes should satisfy the

'Our amplitudes are defined by Sy;=8f;—i(27')'&'(I'f I')IIj
X (2E;)»'Af; which in lowest-order perturbation theory reduces
to Ar;=Q, (2E;)'~2(f (

—Z(0) 2). Where applicable the Xr and E2
states are defined as V2E1=E'—E'; V2E2=E'+Z'.

S.L. Adler, Phys. Rev. 137, 81022 (1965);139, 81638 (1965).

conditions

=0 at s=t=g=m ',
A ~=0 at s=l=m ', 1=m~' and at

(37)
$=Q=m~

~

A~~ =0 at s= t=I=m~2.

It can be seen that the above amplitudes satisfy these
conditions if u3 is zero, in agreement with our previous
discussion of PCAC. It should also be noted that when
all particles are on the mass shell these amplitudes are
independent of a3. In addition, the above amplitudes
are in agreement with calculations carried out for A
and A ~ using the algebra of currents and PCAC. " 8

From the above amplitudes one obtains the following
scattering lengths' in the various isospins channels (at
threshold):

7
ap(2rir) = (fm )2m —i—(P 15~0 02)m -i

l6x

ai(2r2r) =0,

1
a (~~) — (fm )sm —i= —(0.04~0.004)m

8x

1 ) m )-'
, ( E)=—

V -)'I 1+
mK)

= (0.13~0.02)m.-',
1 t' m.q-'

ast2(~K) = ——(fm-)'I 1+
4~ k mKi

= —(0.07&0.01)m

ap(KK) =0,
mK

ai(EE) = ——
I
(fm )'m '= —(0 15+0.02)m„'

S mi

The above value of ap(vrir) is to be compared with the
experimental value obtained from E,4 decays

ap(2r2r) = (0.6 p. b+ ')m

Besides giving the scattering amplitudes as discussed
above, the Lagrangian density in (33) also gives the
amplitude for rt' —+ 2)+22r. In terms of the mixing angle
delned in Eq. (25) one finds

A (rt' —+ 2)+22r) = —-',V2f'(m '+m ' m')—
( sin2X)

XI c s2oP, + IB;;.
2V2 )

' S. Weinberg, Phys. Rev. Letters 17, 616 (1966);N. N. Khuri,
Phys. Rev. 153, 1477 (1967).' Y. Tomozawa, Princeton Report, 1966 (unpublished).' When leptonic decays of E mesons are discussed it will be
found that f=(1.03+0.05)m + '.
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This amplitude yields the following rate for ri' ~ 4i+2s.

sin2)
I'(0'~ 4i+2s) = cos2X+ (10.8+2) MeV

2

With X= —11', the predicted rate is (6.8&1.5) MeV.
Although this value is slightly large, it is encouraging
that we obtain the right order of magnitude (1 MeV.).

VI. LEPT'03%IC MESON DECAYS

For the leptonic decays of the x and E we shall
assume that the wea¹interaction Lagrangian density
is given by

1
f+= —and f = 0 (41)

In the leptonic decays of E mesons for which there is
One piOn in the final State, e.g., E+~4rp+l+v~, the
matrix elements of J (x) may be parametrized by the
following form:

(4qpkp)"'&s. (q)I J (0)I E(k))
=sin8 (,f+(k+q) +f (k q)

—), (40)

where f~ in general are functions of q', ks, and k q.
Since the total number of mesons in the initial and 6nal
states is even, only the vector part of J (x) contributes
and we find

&s (leptonic)= —J (x)l (a)+h.c. , (38) for both E+~7r'pe++v, and Es'~ s- +e++v, .
With these values for f~ and the measured. rate ior

where g (x) and ) (x) are the hadronic and leptonic E ~~'+e++v„one obtains a value of 8 aPProPriate

currents. In particular' for the vector current

sin8
(2kp)'~s&0

I J~(0) [E+)= (2kp)'"&0
I 8.E+

I
E+)

f
i sin8

(39)

From Eqs. (38) and (39) one obtains the rates for
7r+~ p++v„and E+ -+ p++v„

Q2
I'(s. —+ Itr+v) = m m ' cos'8(1 —m '/m ')'

87rfs
mx (1—m '/mx')'

I'(E +p+ v)/I'(n. ~ p—+v) = tan'8
m (1—m '/m ')'

From the experimental rates one obtains a value of 8
and f appropriate for the axial-vector current"

sin8g =0.263&0.002,
I f I

= (1.03&0.05)m.-'.
"R. P. Feynman and M. Gell Mann, Phys. Rev. 109, 193

(1958); E. C. G. Sudarshan and R. E. Marshak, Phys. Rev. 109,
1860 (1958); J. J. Sakurai, Nuovo Cimento 7, 649 (1958); M,
Gell Mann, Phys. Rev. 125, 1067 (1962); N. Cabibbo, Phys.
Rev. Letters, 10, 531 (1963)."W. J. Willis, in I'roceedings of the Argonne Internutionul Con-
ference on lVeuk Inteructions, 1965 (Argonne National Labora-
tories, Argonne, Illinois& 1966), Report No. 7130.

J =cos8(Vt'+At') +sin8(Vr'+At')„,

with V (x) and A (x) given by the expansions in Eqs.
(21) and. (22). As was done for meson-meson inter-
actions, these decays are calculated only to the lowest
order in f contributing to a given process.

To lowest order the matrix elements (OIJ (0) I
E+)

and (0I J~(0) I
or+) are given by

cos8
(2qo)'"&o

I ~-(0) I
~+)= (2qo)'"&o

I
8-~+ l~+)

i cos8
ga7

sin8v =0.222+0.006 (from E.s) .
For numerical purposes, we shall simply take 8=8~
(or 8~) when referring to the vector current (or axial-
vector current).

It is interesting to compare this and later results with
that expected from PCAC. If B(0) is any operator
which is invariant under right-handed isotopic spin
transformations, it follows from PCAC that the matrix
elements &n,~, (q) IB(0) I

E) and &aIB(0) I
E) are related

by"

llm (2q )"'&, ;(q) I
B(0) I E)

~0
= —4f42(n I LI;,B(0)1 I E), (42)

where I; (i=1, 2, 3) is the isotopic spin operator.
For leptonic E decays B(0) is taken to be J (0), while
for nonleptonic decays B(0) is taken to be the non-
leptonic weak Lagrangian density, both of which are
assumed invariant under right-handed transformations.

With Eq. (42) one obtains the relation

Sln8g
sin8v (f++f )q. p

Neglecting renormalization eRects 8~=8~, and it is
seen that the values of f~ in (41) satisfy the above
equation.

For E&4 the matrix elements of J (0) may be param-
etrized by the following form:

(8qpPpkp)'"&~o(q)s'»(P) I
~ (0) IE (k))

Z

((q+P)-F t+ (q P)-Fp-
m+

+ (k P q)-Fs+ e-~r—44P—vqpF4)

"For a derivation of this formula, see, for example, C. Callan
and S. B. Treirnann, Phys. Rev. Letters 16, 153 (1966). Also
N. Cabibbo, Rapporteur's Talk at the 13th International Con-
ference on High Energy Physics at Berkeley, 1966 (unpublished).
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(&) (b)

Fto. 1(a). Direct contribution to J (0) from the term (2fC'8„44—~u38„4') in A„; (b) combination of a strong-interaction 7f-E
vertex of order Jm and the weak current (0(A„~E) of order 1/f

where in general the F's are functions of the kinematical
variables q', p', k', q k, p k, q p and the isospin indices
a, b, c. Since the total number of mesons in the initial
and final states is odd, only the axial-vector part of
J (0) contributes in the model we are using. Therefore,
F4 will be taken to be zero.

In lowest order, contributions to the F's arise from

two sources. First, there is the direct three-meson term
from the expansion of the axial-vector current in powers
of f given in Eq. (22)

/AC
+-f(2C 8„44 —', a-st)„C ')+

This contribution is of order f and is illustrated by the
Feynman diagram in Fig. 1(a). In addition to this
direct contribution to J,(0), there is also the contribu-
tion from a strong 7r-X vertex (of order fs, was calcu-
lated in Sec. V) together with the vertex (0~J (0) ~E)
(of order 1/f) The. se are illustrated by the Feynman
diagram in Fig. 1(b).

Together these two diagrams yield the following
values for the form factors:

Z+(k) ~ ~+(q)+~-(p)+t++ v, :

L(p +)q' +(k—q)'+mx'+m~'] (mx +2m, '+k'+P'+q')
Fg=A; F2=A; F3=A —-',Aa,

(k p q)s+—mx—s mz'+ (k p q)'— —
Z+(k) ~ s'(q)+or'(p)+l++ v).

(43)

L(k—p)2+ (k q)2+2(p+q)s+2mKs+ 2yg 2] (k 2+ps+qs+ ygxs+ 2yt. s),
Fg ——A; P2 ——0; F3= -', A A (44)

(k —P—q)'+mxs
Es~ 7r'(q)+or (p)+l++vt.

( E(k—p)' —(k —q)']
F =0 F = —A F,=-'A

(k—p—q)'+mx'
(45)

where A = fm» sin—e.
It is interesting to compare these results with the

requirements of PCAC given in Eq. (42). For X+
-+ 7r+(q)+7r (p)+l+v&, Eq. (42) requires that

at q„=0,
Fj——Fg,

F3=0;
at p„=o,

Ft+Fs=2fmx sine(v2f+),

Fs=v2fmx sin8(f++f ) )

where f+ and f are defined in Eq. (40). It is easily seen
that the form factors in Eq. (43) satisfy the above limits
when a3 ——0. On the mass shell where k'= —en~' and
p'=q'= —m ', it is seen that the F's are independent
of as. When terms of order m, p', q', and p q are ne-

glected in Eqs. (43)—(45), these results reduce to those
obtained by steinberg" using current algebra tech-
niques and PCAC.

In comparing with the data on E,4, we neglect F3
compared to F~ and F2 because in the limit as m, ~ 0
it does not contribute. For X+—+s++s +e++v„we
calculate

F&=Fs=0.96&0.05 (theory with 8=0&).

'3 S. steinberg, Phys. Rev. Letters 17, 336 (1966); C. ballan
and S. B.Treimann, jMd. 16, 153 (1966).

From Table I of Cabibbo and Maksymowicz, '4 one
Ands that with F~=F2, one needs a value

Ft=Fs=1.2&0.2 (experiment)

to fit the experimental rate" with the x-m. , I=O, J=O
scattering length taken to be zero. In addition, the
phase-space average of F~ and P2 has been measured"
and found to be given by (F&)/(Fs) =0.8+0.3 in good
agreement with (43).

The rates for the other E,4 decays have not been
measured yet and cannot be compared with the pre-
dictions of (44) and. (45) at present.

VII. NQNLEPTONIC X DECAYS

For the nonleptonic E decays we take the weak-
interaction Lagrangian density to be

cG
Zs (nonleptonic) = —Tr{)tsB„Mc)„Mt}. (46)

4

Thus Zu (n.l.) is taken to be of the currentXcurrent

'4N. Cabibbo and A. Maksymowicz, Phys. Rev. 137, B438
(1965).As pointed out by Weinberg (Ref. 13) there are numerical
errors in Eqs. (12) and (A2) of this paper. These equations for
the rate should be multiplied by a factor of 4. E&'& and F& are
denoted by f and g in this paper."R. Birge et al , Phys. Rev. 139, B1.600 (1965).
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form with the property that it transforms like the sixth
component of (81,,1s) under U(3)r, sU(3)g.

We consider first the Kt —+ sr++rr= and Kt -+ srs+sr'
decays in order to determine the parameter c. From
the third-order terms in C of an expansion of Zg in
powers of C, one obtains the following amplitudes: (a) (b)

Ks(k) —+ sr+(q)+sr (p):

icG
A (+—) =— (2k' —q' —p') .

2

Kt(k) —+ srs (q)+srs (p):
(47)

icG
A (00)= — (2k' —q' —p') .

2

The experimental value of A (+ —) obtained from the
E~ rate is

i
A (+ —) ~

= (2.81+0.04) X10-' ass .

This value requires

c= 1.1&0.1.

cG
A(Ks~ srs) =—A(K+~ sr+) = q(sr) q(K). (48)

2

From the Cabibbo form for the charged currents,
one might expect that c=cos|I sin8. Thus in sharp con-
trast to semileptonic processes, the Cabibbo angle may
not be needed in nonleptonic decays. "

With the parameter c now determined, one may calcu-
late the amplitudes for E—+ 3m and the E—+ ~ spur-
ion.""From the terms of second order in C contained
in g~, one obtains the following amplitudes:

Pro. 2(a). Direct contribution from L|v given in Eq. (49);
(b) and (c) combination of a strong meson-meson vertex of order
f' and a weak Z-s. vertex of order 1/f'

is zeroth order in f and is illustrated by the Feynman
diagram in Fig. 2(a). In addition, the amplitudes ob-
tained by the combination of a strong E-x vertex of
order f' and a weak K sr spur-ion of order 1/f', as in
Fig. 2(b); or a weak K rr spuri-on of order 1/f' and a
strong sr-7r vertex of order f' as in Fig. 2(c), are also
zeroth order in f The. se are the only contributions to
zeroth order in f. The amplitudes corresponding to the
respective diagrams in Fig. 2 will be denoted by A (a),
A (b), and A (c), with the total amplitude being given by

A, =A (a) +A (b) +A (c) .

We calculate only the amplitude for E+(k) —+ sr+(qt)
+sr+(qs)+sr (qs). The other K~ 37r amplitudes may
be obtained from this one by using the

~
DI~ = s rule,

when electromagnetic mass differences are neglected.
From Eqs. (34), (35), (48), and (49) we find

cG
A (a) = ——(qP+qs'+2qs. (qt+qs+qs)

v2
——,'a,L2ks+qss+q, 'j),

cG q2'
A (b) =— + — (nsrcs+sss '+ (qt+qs)s

W2 qs+slsx qr +rsx

+ (qs+qs)' —-', asL2ssssr'+2sss„'+k'+qt'+q'+qs'j),

—asL4srs '+qs'+qs'+q '+k'g) (50)

The above E—+ x amplitudes will be needed to calcu-
late the E~ 3m amplitudes. cG k2

In lowest order the amplitude for K~3rr consists A()= (4srs~+2(qt+qs) +2(qs+qs)'
%2ks m.s

of two parts. First there is the direct four-meson weak
interaction obtained from the terms of order C4 in the
expansion of Eq. (46)

cG
2 sv('l =—Tr(&s (&,C"c) C' —s.ass)„C'r)„C'——,'usr)„C"r)„C')}.

(49)

The amplitude calculated from this Lagrangian density

"J.J. Sakurai, Phys. Rev. 156, 1508 (1967)."Y.Hara snd Y. Nambu, Phys. Rev. Letters 16, 875 (1966).
The constant c de6ned in their E'q. (6) is related to our f byc= 2 v, s/sf sexcept ths. t they use the Goldberger-Treiman relation
to evaluate c numerically whereas we use w decay. See also D. K.
Elias and J. C. Taylor, Nuovo Cimento 44, 518 (1966); S. K.
Bose and S. N. Biswas, Phys. Rev. Letters 16, 330 {1966);
B.M. K.Nefkens, Phys. Letters 22, 94 {1966);H. D. I.Abarbanel,
Phys. Rev, 155, 1547 (1967),

PCAC LEq. (42)j requires that the total amplitude
A(++ )=A(a)+A(b)+—A(c) satisfy the equations

lim A(++ —)=0,
e3~

z
lim A (++—)=—A (Kr —+ sr++sr—), (52)

where the remaining particles are kept on the mass
shell. It is easily verified that these relations are obeyed,
thus demonstrating consistency of our results with
PCAC.
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On the mass shell we shall write the amplitudes for
E —+ 3m in the following form':

cays and the tro in Es —+ 7ro+sr++tr . From Eq. (50)
one obtains

where
A =A, {1+a/m '(Ss—So)}, A„(++—) = —-'sV2cmirsG= —(1.43+0.1)X10 ',

a(++—)=3m '/2mtrs=0. 12.
S;=[q(E)—q(sr;)ps= —mzs m.P—s+2mtrE(rr, ),

3So=Si+Ss+Ss= —mrc —mt —ms —ms . Neglecting the mass differences m~+ —m~ and m +
—m o, the other E—+ 3x amplitudes are obtained from

The third pion srs is defined as the odd pion in It+ de- the
~
AI

~

= s rule. "Thus the predictions of this model are

A, (++—) = —(1.43&0.1)X10-o

A. (+00)= —(0.77+0.05)X10-'

A. (+—0)= (0.77+0.05)X10-',

A, (000)= (2.15&0.15)X10 ',

while the experimental values are"

a(++—)=0.12.

a(+00)= —0.24;

a(+ —0)= —0.24;

a(000) =0;

~
A. (+——) ~, „=(1.93&0.04) X10-',

~A, (+00) )
= (0.96+0.03)X10 ',

~A(+=0)
~

=0.89&0.03)X10 ',
~
A (000) (

= (2.8+0.2) X10

a(++—), o„——0.093&0.01;

a(+00) = —0.25&0.2;

a(+ =0) = —0.24+0.2;

a(000) =0.

The agreement with experiment is in general good,
although the theoretical amplitudes are about 20% too
low.

VIII. CHIRAL INVARIANT MESON-
BARYON COUPLING

We now construct an invariant coupling of an octet
(or nonet) of low-lying baryons (spin sr) to the pseudo-
scalar mesons in analogy with Eq. (1).The advantage of
this coupling is that the baryon mass does not break
the chiral symmetry and the Goldberger-Treiman re-
lation is given directly.

If such a coupling is to be possible then these baryons
must belong to the (3,3*) and (3*,3) representations of
U(3)za U(3)tt as opposed to the (8,1) and (1,8). This
is because the product B8, where 8;& is the baryon
field, must contain the (3,3*) and (3*,3) representations
in order to form an invariant coupling with 3L

Assuming that the low-lying J= 2 baryons belong to
the (3,3*) and (3*,3) representations, then the states

B;&+»=——'s(1+go)B;r' and B —' '=-,'(1—y,)B,&

may be taken to transform under U(3)z U(3)tt like
(3z„3ts*) and (3tt,3z,*), respectively. With the baryons
belonging to this representation, the trace of 8 is not
invariant under F5' and thus a set of nine baryons is
required.

' S. Vileinberg, Phys. Rev. Letters 4, 87, 585 (1960);G. Barton,
C. Kacser, and S. P. Rosen, Phys. Rev. 130, 738 (1963).

'~ G. H. Trilling, in I'roceedengs of the Argonne Internatt'onot
Conference on Weah Interactsons, igti5 (Argonne National Lab-
oratory, Argonne, Illinois, 1966), Report No. 7130.

I.; & mTr(MU)+h. c——.

To zeroth order in f
6

o
& =—m f g BtB'—2BoBo}~

(53)

(54)

If one, therefore identi6es the ninth baryon 6eld 89 with

y580, then I-;„~'" represents the mass term for an octet
of baryons (J~= —,'+) with mass m and an SU(3) singlet
baryon (Jp=ts) with mass 2m. Perhaps this ninth
baryon is the A(1405). The spin and parity is correct;
however, the mass is quite a bit lower than twice the
average mass of the octet. Ignoring difhculties associ-
ated with mass splittings, the Lagrangian in. (53) could
be used to calculate meson-baryon scattering to lowest
order in f. However, only the simplest case of pion-
nucleon elastic scattering will be discussed here.

Neglecting all other particles except the pion and
nucleon, Eq. (53) reduces to

Z; o(srN) = mNM( fvsos ~/2—)N, —(55)
where

is the nucleon Geld and ~ the pion fj.eM, From the ex-

Because of the above transformation properties of
8(+& and 8( ' the bilinear combination

U.~—,.„,zPvg (—»g (+)&

transforms like (3ts,3z*).The following coupling is then
invariant under U(3)z U(3)ts.
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pansion of M in Eq. (7) one obtains as the first few
terms

w i, /N & 7l

/r
/

„N

Z;„t(wX) = m—gJlI+t', (mfV2)Xss ~ysIlI

+m f'(~s)NN+ - . (56)
(8) (b) (c)

The Goldberger-Treiman relation is contained in term Fio. 3(a) and (b). Diagrsms aris&ug from the term 1inear iu

coupling to the pion decay constant f I (7rN) also of order f'.

g„~~=mfa

To order fs the elastic pion-nucleon scattering anipli-
tude is calculated from the Feyman diagrams in Fig. 3.
From these, one obtains the following amplitudes in
the various isospin channels for w(qt)+E(pt) ~ ir(qs)
+&(Ps):

The experimental values as obtained from dispersion
relations" are

ay= 0.171&0.005, a3= —0.088&0.004,

a = —0.101&0.007, eg = —0.029+0.005,

u3g ———0.380&0.005, @33——0.215&0.005.

3
A(s)=i'-msf'~ +

(ms —s

The agreement between experiment and theory is good

PP—I except in the case of a33.
It is interesting to note that the amplitude calcu-

X (q yq )+2smfs ~ lated from (56) toidenticrlP' to that obtained from

T= ': A(-') =-S
—2i mf's

(qi+q, )—2mfs Er,
m' —I (57) aC =$fXys K)( r)sR+ys'r)s 7c'

/ 2
(60)

where s= —(Pi+qi)', I= —(P,—q,)', I,= —(P,—P,) .
These amplitudes yield the following s- and p-wave

scattering lengths:

S muse:

m'pf'(2m+ p)
83= = (—0.08+0.01)p, '

2'�(m+ p) (4ms —p')

to order
The vector part of this effective I.angrangian is

identical to p exchange at low-momentum transfer if
one makes the identification"

fp'/mp' f' m——

Numerically, this equation for f,' is very good.

IX. DISCUSSION
mspf'(4m p)—= (0.144=&0.01)p '.

w2 (m+ p) (4m' —p')
(58) In conclusion we would like to add the following

remarks:

' J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963).

"As first pointed out by S. Weinberg t Phys. Rev. Letters 18,
188 (1967)g nonderivative-type couplings ss in (55) are easily
transformed into derivative-type couplings. If one defines a new
nucleon field by the transformation

N= U(flaw, s/&2)N', —with Ut V=I
and if U is defined by the equation

Ut ( fi'5ss'e/v2)M ( fysss' e/ v2) U (fygm 'e'/v2) =I
then the nucleon part of the Lagrangian

Zx= Ny„B„N mNM—( fygss c/—v2)N—

I' mu~e: This scattering length is denoted by u2~, ~J.

where T is the total isotopic spin and J the total
angular momentum.

= (—0.10+0.01)p, ',
m3 2

8 = (—0.029+0.003)p ',
3wp(m+p) (2m p)'—

(59)

becomes
E'y„S„N' mN'N' —N'y„Ut S„—UN'—

and the interaction has been transformed into a derivative-type
coupling. With U=M'~' and expanded to second order in f, one
obtains the Lagrangian (60). The effective Lagrangian construc-
ted by Weinberg in this reference corresponds to the model pre-
sented here in chiral SU(2)SU(2) with M given by (12b). A
similar model hss also been discussed by J. Schwiuger (Phys.
Letters 24B, 473 (1967)g with the meson mass Lagrangian de-
termined by PCAC I Eq. (30)g."K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966). Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966); J. J. Sskurai, Phys. Rev. Letters 17, 552 (1966).

mf'(4m'+4mp p')—2m'f'
83]=

3wp(m+p) (2m —p)' Svrpm(m+p) (2—mp)

= (—0.034&0.003)p ',

+3S= = (0.05'1&0.006)p '.
3wp(m+ p) (2m —p)'

m'f' f'(Sm' 4mp, ' —p')—
Qyy=-

3wp(m+ p) (2m —p)' Swp(m+ p) (4m' p')—
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(1) The success of the above model in describing low-
energy pseudoscalar physics would seem to indicate
that some sort of chiral dynamics may well be appro-
priate at least at low energies. In particular, it is striking
that the chiral-invariant coupling in (56) reproduces
low-energy pion-nucleon scattering so well. In this re-
gard, it is interesting to point out that the coupling in
(56) is the minimum needed so that the nucleon mass
does not violate the chiral symmetry. An additional
chiral-invariant term is possible by coupling the vector
and axial-vector current of the nucleon to the cor-
responding currents of the pseudoscalars. The fact that
very little of this additional coupling is needed suggests
that there is "just enough" low-energy pion-nucleon
dynamics to make the nucleon mass compatible with a
chiral symmetry.

(2) In this model the breaking of chiral U(3) U(3)
was assumed to be due solely to the meson mass La-
grangian I. in (27). This was written for the general
case in which C contained a nonet of particles and a
rate for g'-+ g+27r could be calculated. A simpler pos-
sibility for the transformation properties of L is to
restrict C to an octet of mesons and neglect the g'. In
this case one may choose

3f must now be of the exponential type in (12a) and the
chiral group restricted to SU(3)SU(3). Of course
now nothing can be said about the rate for g'-+ q+2~;
however, on the mass shell none of the other amplitudes
calculated above are changed.

(3) For all amplitudes calculated it was found that
they were independent of the form used for M on the
mass shell. It may be that in general the amplitudes
calculated from an eQective Lagrangian which is a
function of M alone (i.e., not an explicit function of C)
are independent of the form used for M. If this is true
in general, the amplitudes for other meson processes
such as low-energy multiple pion production could be
calculated without the introduction of new parameters,
namely the expansion coefBcients of 3f.

(4) In chiral SU(2)QxSU(2) where the pions may be
considered degenerate there are many ways of obtain-
ing a model with PCAC. As discussed in Sec. IV, one
obtains PCAC equations for any M as long as the mass
term satisfies Eq. (30). For example, if one chooses

~=e2'~~ then p=C' and. L does rot comtaim @my meson
interactions. In this case the kinetic part of the Lagran-
gian gives in lowest order

g2 —Lf2(~)(g ~)2 (61)

which at low energies gives the same amplitude" as p
exchange with

is also an invariant for a set of baryons belonging to
the (3,3*) and (3*,3) representations, while for baryons
belonging to the (8,1) and (1,8) representations

m TrLB&+&cVB&—'3E&7+H.c.

is invariant. All of these couplings reduce to the
pion-nucleon coupling in (55) which follows from
SU(2)QxSU(2) invariance alone, the nucleon belonging
to the (2,1) and (1,2) representations.
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~ To obtain this result from PCAC and the current algebra,
one need only make the ansatz that the 7r-~ scattering amplitude
vanish at s=t=u=0 in the calculations of Weinberg (Ref. 7).
In his notation, this means A =0, while the Adler self-consistency
requires C= —2B. Using his Eq. (17) for B—C, one then obtains
the amplitude calculable from (61). This amplitude gives a0
= (0.11~0.01)m ' and a2 ———(0.06~0.005)m ' for the I=0, 2
scattering lengths at threshold.

In general, diferent choices for 3f give diferent ~-m.

scattering amplitudes. Since M determines how 4 trans-
forms under the axial-vector charge LZq. (10)j, we see
that the ambiguity associated with diRerent choices for
M is the analog of what one assumes about the equal-
tirne commutator PAD', B„A„&j in current algebra
calculations.

1Vote added ie proof. If higher powers of M are used
in constructing a chiral invariant baryon mass then in
addition to the coupling in (53),

m' TrLB&+'MB& 'M$+H. c.


