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A number of difficulties in previous treatments of the properties of linear homogeneous charged systems
are discussed. With respect to the Kramers —Kronig relations and sum rules, it is argued that since the
nonlocal electrical conductivity is the ratio of the current to the total field, a quantity which is physical
but not necessarily arbitrary, the usual proof of the Kramers-Kronig relation fails. A valid proof, based
on the dynamical properties of the electromagnetic field, is presented for the transverse electrical con-
ductivity. On the other hand, it is shown by counterexample that there can be no general proof for the
conventionally defined longitudinal electrical conductivity. Part of the difFiculty may be ascribed to the
failure of the conventional definition to account properly for the change in chemical potential which ac-
companies a longitudinal spatially varying Geld and charge distribution. A nonlocal quantity more closely
related to the ratio of the longitudinal current to the longitudinal field plus the chemical potential gradient
is shown to have more desirable causality properties. Rigorous expressions for the other transport coeffi-
cients (the thermopower and thermal conductivity) of simple charged systems are also obtained. These
expressions dier substantially from the usually rigorous integral expressions associated with Kubo because
of the long-range electromagnetic forces. A compilation of sum rules is included and a number of recurring
pitfalls noted.

1. INTRODUCTION

&~ESPITE the large number of papers which have
been written on the linear response of uniform

homogeneous charged systems, surprisingly many
facets of this theory have not been adequately or simply
described. The purpose of this paper is to summarize
this theory, distinguishing those aspects which are
generally true from those aspects which are sometimes
(or usually) true for some (or most) systems because of
additional approximations which might well be violated
in some physical systems. By generally true we mean
that they follow for any homogeneous system of charged
particles with magnetic moments, whose dynamics can
be treated nonrelativistically, interacting with one
another by nonelectromagnetic forces and by all the
electromagnetic forces which Maxwell's equations
imply. The homogeneity assumption (which we take
to include translational and rotational invariance)
prevents us from literally applying our conclusions to
the ferromagnetic state, or to real metals, or even to
models of superconductivity with no lattice when there
is an equilibrium current J,. Although most arguments
can be generalized to include these effects, we shall not
examine these generalizations here. We shaH, however,
take into account the magnetic interactions between
particles, which are not, despite assertions to the
contrary, of order (s/c)', since ferromagnetism hardly
requires relativity. We also make no assumptions about
the number of species or their mass ratio. Our results
are therefore rigorous for plasmas and liquids (including
liquid metals) . Among the specific problems we discuss
are the conditions under which the Kramers —Kronig
relations apply, the conditions under which the-sum
rules for the electrical conductivity hold, the recon-
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If he does, it would be interesting but he should not
herald a breakdown of causality. A philosophically and
physically respectable system may violate these equa-
tions, although most systems usually do not.

The author has also found that experimentalists, as
well as some theorists, are unhappy about a much
simp). er question. How is it possible to reconcile orbital

ciliation of the Kramers —Kronig relations and sum
rules with the properties of diamagnetic systems in
general and superconductors in particular, and the
rigorous expressions for transport coefficients in systems
in which the long-range nature of the electromagnetic
forces invalidates the usual Kubo correlation function
definitions. Many of the subtleties we shall discuss are
unlikely to concern the experimentalist. However, this
paper contains some problems which may interest him.
We point out, for example, that if he performs inelastic
electron scattering experiments which determine
Im)1/e~(kco) 7 where e~(kco) is the conventionally
defined wave number and frequency-dependent longitu-
dinal dielectric constant, and from these, determines
e~(kco), he may some day find that the quantities he has
measured do not satisfy the familiar relations'

~ Supported in part by the U.S. Air Force Once af Scientilc
Research and the National /cjews. ce Foundation.

'L. D. Landau and E. M. Lifshitz, Electrodynunzics of Con-
tirtuous Media (Pergamon Press, Inc., New York, 1960), Sec. 62.
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diamagnetism, i.e., a negative static spin susceptibility
y~M(0), with the Kramers —Kronig relation
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ductivity even when the conductivity is nonlocal, that
is, when the field varies sufriciently rapidly in space so
that it is insufhcient to assume that the conductivity

o;,(rr'; ~) =o; (rr'; cv) +z o;,"(rr'; zo), (2.2)

which occurs in the linear relation
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and the requirement that Imx~~(zo) must be positive
since it represents dissipationP' The experimentalist
might also be interested in whether it is correct to
assume that in homogeneous systems (a type-two super-
conductor with pinned flux lines is not homogeneous)
superconductivity and the Meissner eGect are equiv-
alent. The answer is yes.

The casual reader will also no doubt be happy to hear
that the local conductivity (i.e., a(0~) = is&fe(0&v) —1))
always satisfies the usual Kramers —Kronig relation and
sum rule, and that the transverse nonlocal conductivity
sum rule (which has been employed in superconduc-
tors') is valid for all wave numbers even when magnetic
effects are important (e.g. , in a ferromagnetic material
when the temperature is even infinitesimally above the
Curie temperature). He will also not be upset to hear
that there are rigorous expressions in terms of equilib-
rium correlation functions for the thermal conductivity
and thermopower, even though the usual Kubo formu-
las for these properties are incorrect because of the
long-range nature of the Coulomb forces. Since it is
possible that he may not be interested in the derivation
of these expressions and properties, an attempt has been
made to make the summary of sum rules (Sec. 7)
comprehensible in terms of the standard definitions
(3.1)—(3.5) and (4.1)—(4.6) to someone who has not
read the intervening proofs in Secs. 3—6. The formulas
for the dissipative coefIicients are summarized at the
end of Sec. 6.
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where co„ is the plasma frequency. The sum rule is also
stated for both the transverse and longitudinal con-

' J. H. Van Vleck, Nuovo Cimento. Suppl. 6, (19i7).Professor
Van Vleck has urged the author for many years to point out this
error (see pp. 862—863) and give the proper explanation.

3 M. Tinkham and R. Ferrell, Phys. Rev. Letters 2, 331 (1959).
4 See, for example, J. M. Luttinger, Phys. Rev. 135, A1505

(1964).

2. CONVENTIONAL DISCUSSION OF KRAMERS-
KRONIG RELATIONS AND SUM RULES
FOR THE ELECTRICAL CONDUCTIVITY

In the discussion of electrical conductivity in plasmas
it is conventionally stated that the measured, real part
of the frequency-dependent conductivity o'(~) satisfies
the sum rule

~ de—og'(rr'; (o) =a) '8 "5(r—r'). (2 4)

As stated in the Introduction, we shall restrict our-
selves to systems which are spatially invariant so that
the nonlocal conductivity satisfies

o,;(rr'; ~) =—o,;(r-r'; a)

, expLzk (r—r')]o;, (k(o)

and the linear relation (2.3) takes the form

J;(k(a) = ~o;;(ka)) Z;(kco) . (2.3')

The decomposition into transverse (divergence-free)
and longitudinal (irrota, tional) Acids then gives

with

Jr(kyar) =o"(ka&)Er(ka),

Ji(ka)) =or (k(u) Ei(ka&), (2.3")
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The conventionally employed sum rule (2.4) is then
written as

de (—op'(k(u) = a)„'hg, (2.4')

that is, for all k

dM—o.'~(kM) = —o'r(k~) =(u„'. (2.4")

The conventional argument for (2.4") is the follow-
ing. Equations (2.3") are equivalent to the statementz

J(k, t) = dt'~(k, t -- t') E(k, t')

' We omit the label L or T from the conductivity in these equa-
tions, understanding that it may refer to either. We also use the
same symbol for the 6eld as a function of frequency and time
using the argument and comma to distinguish E(key) from E(k,t).

between the current J and the Geld, is of the form

o,;(rr'; zo) =o;;((o)8(r —r').

For the general nonlocal conductivity the sum rule
states



SUM RULES, KRAMERS-KRONIG RELATIONS

for both transverse and longitudinal Gelds with

IM
J(k, t) = —e *'"'-J(k(o), etc.
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As long as E(k, t) vanishes for all t(0, its transform
E(ks) is analytic whenever s is in the upper half-plane.
For all such 6elds, causality requires that J(ks) must
also be analytic. The ratio o (ks) = J(ks)/E(ks) is
therefore analytic in the neighborhood of each value
ss, at which not all physical Acids E(k, t), which
vanish for t(0, have E(kss) =0. Since it is possible to
exhibit functions E(k, t) which vanish for t(0 and
whose transforms do not vanish at any given 2'0, it is
argued that o(ks) is analytic and consequently that
the Kramers- Kronig relations

d(o' o'(k(o')

7l CO CO

(2.5a)
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~pp~~
Furthermore, as co—+~ any collection of particles

behaves as free particles, and for free particles,
a" (ko)) =(or'/(o. The identities (2.4") then follow by
equating this expression with the high-frequency
asymptote of the integral in (2.5a).

It has been pointed out that despite its simplicity
the argument is not compelling since the Geld E(k, t)
or its transform E(k(o) is not necessarily a quantity
which can be varied arbitrarily. E(k, t) represents the
total microscopic field in the medium: It may be that
some fmlds Eo(k, t) would give rise to precursor
currents according to the relation inferred by analytic
continuation from physically attainable Gelds, but that,
in fact, the medium responds in such a way that these
total fields Eo(k, t) are impossible to produce. This
does not make the ratio of J(k(o) and E(ko)) for physi-
cally attainable E unphysical. It merely implies that
for some k the ratio is only measurable (i.e., E(k~)
obtainable) for a range of (o, and that the measureable
ratio, together with its continuation, satisfies neither the
Kramers —Kronig relation nor the sum rule.

In the subsequent three sections we shall discuss this
question more correctly. In Sec. 3, we prove that in a
homogeneous system which obeys linear laws the
transverse conductivity always satisGes the Kram-rs-
Kronig relation and sum rule. In Sec. 4 we point out
that the conventionally defined longitudinal. conduc-
tivity describes a quantity which may not satisfy these
relations for some k by presenting a speciGc counter-
example (the conductivity of a plasma at temperatures
slightly above the temperature of a charge density
ordering). We argue, however, that as k-+0, there

is no difficulty. In Sec. 5 we point out that this con-
ventional definition is not the one which enters experi-
mental discussions and that a quantity closer to what
is experimentally called the conductivity (the ratio of
J to E plus the chemical-potential gradient) does
satisfy a Kramers —Kronig relation, but a different
sum rule.

%e employ rationalized Gaussian units, so that, for
example, o)„'=g n e'/m where n, e, and m are,
respectively the density, charge, and mass of the nth
species.

Jr(k(o) = or(k(o) Er(ko))

and use Maxwell's equations we Gnd

Er (k(o)

t (o' e'k'+—i(oo r (ko)) )
Br (k(o)

=0.

(3.1)

(3.2)

That is to say, the transverse conductivity is naturally
defined in terms of the way the electromagnetic Geld
propagates. Since the Geld propagation may be induced
by an external magnetization and the response to an
external disturbance coupled to the magnetic field is
described by the retarded commutator of the fields we
may define the transverse conductivity in terms of this
commutator. As usual, we write'

z~,. ~,"(ho) = (25) ' df f dr

X exp( —ik r+i(ot) (L8;(r, t), 8;(0, 0) )),

yg. g (Ir ) =d ' f dk f dr
0

X exp( ik r+io)t) —(L8,(r, t), 8;(0, 0)))
~ d(o' X"dd,.s, (k(o')= lim

,~o ~ rl (o —((o+ze)
(3.3)

where the brackets indicate an average over a thermal
equilibrium density matrix. Because the magnetic Geld
is transverse, g~,.~, and g~,.~,.

"can be written as

Xe Bd (k(o) = XBQ(k(o) (t);;—k,k;/k') ~ (3.4)

The function xee(k(o) is the boundary value of an

3. TRANSVERSE CONDUCTIVITY

Our proof of the Kramers —Kronig relations for the
transverse conductivity is based on the dynamical
properties (i.e., commutation relations or, classically,
Poisson-bracket relations) for the transverse electro-
magnetic fields. It is precisely because these have no
analog for the longitudinal fields that a parallel proof
fails in the latter case. %e begin by recalling that when
we define the transverse conductivity as

e P. Nozieres and D. Pines (henceforth NP), Theory ofQ(d(irdtrdw,
L~uids {W.A. Benjamin, Inc. , New York, 1966), Sec. 41.

r L. P. Kadanoff and P. C. Martin, Ann. Phys. (N.Y.) 24, 419
{1963). The notation in NP differs by a minus sign.
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analytic function defined as

x»(ks) = ~~ XBa (k~)
(3.5)

equations

c)B/clf = —c(VXE),

From spatial invariance and time-reversal invariance it
follows that a&X»"(k~) is real, even, and positive, so
that

f)'B/r)P = —c(V X Lc (V XB)—J]), (3.13)

the definition of the current

J(r, f)= ', g(e/m ) fp —(e /c)A(r, t), 8(r—r (f))I

x»(ks) = dM MX» (kM)
(3.6) +cVXgg.s (t) 8(r—r (t) ), (3.14)

—a)X»"(k~) = c'k',

we may define

x» (ks) =c'k't e'k' —s' sso ~ (k—s) ]— (3 g)

where o.~(ks) is analytic and approaches zero as s—&~.
Indeed, we may write

dM 0' (kM)

—co 7i"Z CO

and for large s,

dko o' r(k(u)
(3.9)

co +Z Co S

c'k' c'k' der
Xzz(kz) — — z'k'+ —' (k )).

(3.10)

Our proof of the Kramers —Kronig relations and sum
rule will therefore be complete if we can show that

~ des
rox ~;n (kryo)

dr exp( —ik r) ($(i/A)B, (r, 0), B,(0, 0)])

= c'k'(3;;—k,k;/k')

and

(3.11)

Qco—aPX"n,.~, (k(u)

dr exp( ik r) (P(—i/fi)B, (r, 0), B;(0,0)])

= c'k'(c'k'+co ') (3"—k k /k') . (3.12)

Both of these facts follow directly from Maxwell's

never vanishes in the upper half-plane. Furthermore,
for large s2

x»(»)
dGO 1 2M—aXirn (k~) —— —co'X» (k~).

S co 7l S QQ 7l

(3.7)
Anticipating that

and the commutation relations' for the electric and
magnetic fields and the vector potential. We have
included, since it does not affect the argument, the
contribution from magnetic moments, g s (t), due to
spin s.

In the literature it has previously been argued, '
somewhat incompletely, that the quantity which
occurs in the expression for the conductivity is given to
order s/c by the transverse current correlation function
for a system whose Hamiltonian contains the Coulomb
but no magnetic interaction, i.e.,

er(ks) = 1+ior(ks) /s

where kg(" "~ is the rigorous current correlation
function for a Hamiltonian with no magnetic terms.
(As in the case of the magnetic field correlation function
x»(ks), we mean more precisely by xJzr(ks) the con-
tinuation of the Fourier transform of the retarded
transverse current commutator. ) Since all such func-
tions x have the necessary analytic properties, it follows
that e~(ks) has them. The proof we have presented
eliminates the v/c restriction and the need for filling in
the incomplete more complicated arguments which
lead to (3.15).M

Since the discussions of conductivity" are ordinarily
carried out in terms of the currents rather than the

See, for example, P. A. Dirac, Quantum Mechanics (Oxford
University Press, London, 1947), 3rd ed. , Chap. XII.

'D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951). See
alternatively NP, Sec. 47, pp. 254-265. Even when fully demon-
strated, the expression (2.15) for the conductivity would hold
less generally than the authors suggest. Physically, the error would
be to order (v/c)' in the sense that magnetic susceptibilities are
of order (s/c)'. The expressions we have given and the proof of
the sum rule and dispersion relation apply, for example, in an
itinerant ferromagnetic substance, slightly above T, where it is
normal and nonrelativistic but very paramagnetic and where the
identity (2.15) does not hold. Our deviation is truly correct to
order (ejc)' in the sense that it is only restricted because we have
used a nonrelativistic expression for the particle kinetic energy.

's One may of course define, as in NP s'L~ (ks) —1j=
XJJ"~(ks) —or ' Our arguments then show that y~~" (ks) is
analytic, etc. , even when it is not equal to x~J ~ '»(ks}.We shall
reserve the superscript "sc" for a speci6c combination of correla-
tion functions consistent with the definition in Sec. 6.

» These identities are derived and discussed in L. P. Kadanoff
and P. C. Martin, Phys. Rev. 124, 677 {1961).This section pro-
vides a concise discussion of the usual approach. $1n Eq. (3.31),
the alternative to cxL =a'~(1 —u'L) ' should read {eL) '—1=1-
z's. g The assumption of the last paragraph of that discussion is the
subject of the present investigation. The expressions may also
be found in NP, pp. 252—.254.
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6elds, it may be useful to note that by using Maxwell's
equations and the field commutation relations we may
write

eT(kz)

= 1+2oT(ks)/s= (c'k'/s') [1—xttn '(ks) ]
= (csk2/. 2) +[1—xs~T(kz) ]-'

(C2k2/S2) + (S2 C2k2) 2[S2(S2 C2k2+M 2
X T(kS) )] 1

(3.16)

where xss (ks) and

HAJJ

(ks) like xtt+(ks) are the
continuations of the Fourier transforms of the retarded
electric field and current commutators calculated in
the presence of all magnetic interactions. However, in
terms of the latter expressions and without the field
commutation or Poisson-bracket relations, we have
been unable to construct a proof (2.4) and (2.5) .

4. LONGITUDINAL CONDUCTIVITY

A. De6nitions and Consequences of Analyticity

which follows from current conservation and the
commutation relations, and guarantees gauge invari-
ance."Note incidentally that Poisson. 's equation (4.4)
converts the next-to-last identity in (4.3) into perhaps
its most familiar form,

[er (ks) ]—i= 1—X (ks) /k2. (4.6)

These equations (which imply the analyticity of
[ez(ks)] ') give the value of o~(ks) when E can be
produced, and the value of the mathematical con-
tinuation when it cannot.

It has been argued somewhat incompletely' that
under many circumstances the dielectric response
may be calculated approximately by treating the
long-range interparticle Coulomb potential as an
external field to be treated self-consistently but per
turbatively, and by taking the remainder to be a short-
range potential included in an effective Hamiltonian.
If this could be proven, there would be no difhculty in
deducing the Kramers —Kronig relations and sum rule.
The function

If the longitudinal conductivity is defined in the con-
ventional manner as the ratio of the measured current
to the measured Geld (or its continuation),

e (ks) —1+[ygg- (ks) —cc ']/s'

—= 1+xpp-(ks) /k' (4 /)

Ji(kcc) = oi(ka&) Ei(kcc),

then Maxwell's equations imply

(4.1) would be analytic since it would be the response func-
tion for an effective Harniltonian. ' It would then
follow that

[(0+io~(kcc)]E~(kcc) =0. (4.2)
ec(ks) —1= dCO tee (ktd)

(4.8)
In this case, similar identities to the transverse ones
cited in Sec. 3 apply for the longitudinal conductivity.
These are suKciently familiar" so we may cite them
without prooP':

so that

dc@—oi'(kid), (4.9)
(ks) = 1+str~(kz)/z= [1—yztr~(kz) ] i

—S2[S2+~ 2
X L(k )]z—1 (4.3)

e (k0) =1+
" dec ec"(kro)

(4.10)
In the longitudinal case, the identity of the last two

forms incorporates Poisson's equation

and the identity

ksxssn(ks) = Xpp(kz) (4 4)

s'x pp (ks) =k2[xgg~ (ks) —cc„'], (45)

"J.Lindhard, Kgl. Danske Videnskab Mat. -Fys. Medd. 28,
No. 8 (1954). See also P. Nozieres and D. Pines, Nuovo Cimento
9, 470 (1958}or NP.

"Note that (3.3) and (2.16) are identical when we let c=O,
since in this limit, the relation between the current and field,
whether transverse or longitudinal, is given by —J=BE/Bt.
Because the combination ck occurs, this is consistent with our
expectation that ordinarily, as k—4, we expect transverse and
longitudinal correlations to be identical. The identity also gives-a
clue to why the long-wavelength and low-frequency limits are
not uniform; we can tell whether a disturbance of arbitrarily
long wavelength is transverse or longitudinal by waiting longer
than the time for a light wave to transverse it, i.e., by making the
frequency much less than ck.

In a system with free charge, (4.2) identifies the

'4 For example, S. F. Edwards, Phil. Mag. 3, 33, 1020 (1958).
It is perhaps worth pointing out that in the more rigorous dis-
cussions, e.g. , of J. S. Langer, Phys. Rev. 127, 5 (1962) this point
is still obscured. Langer has probably correctly studied the ir-
reducible graphs which contribute to the impurity resistance at
low concentrations; he has not evaluated what he says he is
evaluating —the quantity x~~" (Oca)/co for the Hamiltonian with
Coulomb interactions and impurities. One may, of course, also
interpret the evaluation although it is not stated as an evaluation
of xq~"T(Oco)/co for the Hamiltonian which neglects magnetic
interaction, in line with (2.15). It is then subject to the possible
errors discussed in Ref. 9; large corrections due to incipient ferro-
magnetism, like those due to incipi. ent superconductivity are
not easily seen by a Fermi liquid-theory type of analysis. These
comments are not intended as an objection to Langer's useful
analysis. They are only aimed at clearly separating, to the extent
that it is possible, the general discussion of electromagnetic proper-
ties without: qualifications or approximations from specific
(and not so specific) calculational approximations which may be
valid at certain temperatures.
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inverse screening length k, ' dehned by

~ dip e"z(kto) kP

$pk P= lim kPez (kO) = hm —,(4.11)

ep= Iim Le (k0) —(lim kPp (ko))/k

with the "compressibility" for the system with screened
Coulomb forces. In a two-component system of oppo-
sitely charged particles, we may identify

dip y "-(kpp) Bp&
epkP= lim —" = e —

~

. (4.12)
p — r to BPjp, T

(p is the change in energy with a change in composition
keeping the pressure constant and compensating the
charge imbalance by an external charge. ) If we idealize
further to a system of particles moving in a uniform
background of positive charge we may write instead

pke, '/e'= Be/Bp =e(B—e/BP)

The last equality, which is a thermodynamic identity
for a one-component system, in this case is nothing
more than a dehnition of the "electronic compressi-
bility. " If there were an effective Hamiltonian which
described the screened electron interactions, P would be
the pressure determined by this Hamiltonian. We might
alternatively define the electronic compressibility in
terms of a p' which is given by P' =p, 'ep. It is frequently
a good approximation (the random-phase approxima-
tion) when the kinetic energy is large compared to
the Coulomb energy, to take x»"/e' equal to the free-
particle density correlation function and consequently,
to obtain for the inverse square screening radius,
classically

kg= e'(Be/By) =ee'P

and in a degenerate Fermi system

kg =3ee'/2'.

3. Lack of Analyticity

The question which has been raised concerns under
what conditions the effective short-range interactions
may be represented by an effective Hamiltonian, the
long-range effects being treated classically by a self-
consistent equation. If they may, ez(kp~) or o~(ktp)
can be measured by looking at the ratio of the current
and the Geld. (We recall, however, that since fez(k&p)7 '
describes the result of inelastic electron scattering
experiments, there is in principle no difliculty in meas-
uring it by other means. ") Mathematically, the

'~ More precisely, inelastic electron scattering measures charge-
density fluctuations as a function of momentum transfer Ak,
and energy loss Ace. The charge fluctuation s ectrum is equal to—

Imager (4u) g 'k~=x»" (ks&) multiplied by 1 —exp( —Plea) g '.
The connection between the fluctuation spectrum and inelastic
scattering has a long history and is frequently attributed to the
important paper of L. Van Hove, Phys. Rev. 95, 249 (1952).

necessary and sufhcient condition for measurability
is that Lpz7 ' has no complex zero. If it has none, pz

will satisfy a dispersion relation and sum rule; if it has
one or more, c will not.

It is easy to verify that there can be no zero of
Le~(ks) 7 ' when Ims'NO, and therefore, that the only
complex zeros possible occur for s= iy. Thus we must
show that if y/0, then

X»(k, iy) &O'; XEE~(k, iy) 41;
x~~'(k, iy) g~„'—y, (4.13)

just as we have shown t Eq. (3.16)7 by using the
transverse-Geld commutation relations that in the
transverse case in isotropic systems (and therefore
implicitly in systems with no magnetic ordering)

XEET(k iy) ~ 1; XggT(k iy) Qtp 2 y2 o2kP (4 14)

In the longitudinal case, because (ez(k, iy) 7 ' decreases
monotonically as y decreases, there can be at most one
value of y for which ez=0 or x»(k, iy) =k'. Neverthe-
less, since we do not have longitudinal-field commuta-
tion relations, we cannot exclude this one possible
solution for all k. Indeed, it would appear that it occurs
in a system which permits, or almost permits, a static
charge density wave solution. In such a system"
x»(k0) approaches eo for k 2k~ at some transition
temperature (perhaps T=O). At higher temperatures,
before any transition takes place x»(2k', 0) &(2kF)'
and ~ is not analytic. We claim that this is approximately
the case in a very low density electron gas when it
crystallizes. It can be made rigorous by also including
nonelectromagnetic long, but not inhnite range ex-
change forces.

C. Heuristic Argument for Longitudinal Suan Rule
vrhen k=o

We may obtain some insight into the role of the Geld
commutation relations in our proof of the transverse
sum rule by giving the parallel argument that o~(0s)
is analytic in the upper-half complex plane, and hence
that

~ dM—o~(0(o) =to„'. (4.15)

The conclusion is not unexpected, quite apart from the
artificial character of the argument. Indeed, if the
current correlations have a finite range we expect that
oz(0s) =oT(0s). This artificial argument leads to the
conclusion that x,.(kPO)-+eo as k~O. More particu-
larly, it leads to the identity

= 1, (4.16)xEE (00) =

' A proof of this physically obvious result is not dificult, but is
verbose. We may content ourselves with noting the magnetic
analogy. The wave-number-dependent susceptibility diverges
for k equal to a reciprocal lattice vector at the Neel temperature.
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" d(o xz,.z,."(Oar) CD d~ oo

dt
—00 2+ —oo

z
Ke'"([A,(r, t), E,(0, 0)])—

C

which we have proven for transverse fields. The argu-
ment consists of noting that in the gauge in which g
vanishes we may write

E;(r, t) = (aA—,(r, i)/act),

treat it as we treat other linear response functions.
Let us ask, however, whether this expectation is in
accord with the experimental situation. It is well known
that for finite k, when the charge distribution varies
spatially, a compensating chemical potential gradient
is set up. Thus with a high density of impurities (or a
reduced value for the charge) so that &v„r«1 and
kt«1 at zero temperature (so that thermoelectric
effects are unimportant), the phenomenological equa-
tion" one would employ is not J/E= n but

J'= '(E' —V(p/)) (5 2)
dr ([A;(r, 0), A;(0, 0)]).

Now if this commutator were valuated in the Lorentz
gauge instead of the gauge in which @ vanishes and if
the covariant commutation relations' are supposed to
hold in this gauge, then

dr([A;(r, 0),A;(0, 0)])= 5;,.

(4.18)

The error made in writing cE;= BA;/B—t in the Lorentz
gauge comes from the longitudinal terms in VP and
therefore if the potential correlations are of finite range,
the error, which is proportional to k', vanishes as k—4.
The distance over which the potential correlations
vanish is essentially determined by the distance to
which fields penetrate the material. Hence in a perfect
dielectric (if there are infinite uniform perfect dielec-
trics) they are of infinite extent and the argument that
e~(kO) —+~ as k—:0would fail. It is more likely that
the conclusion is correct and that any substance which
becomes a perfect dielectric undergoes a transition
which involves microscopic charge nonuniformity, (the
lattice structure is essential), thereby violating the
assumption of spatial homogeneity.

5. PHENOMENOLOGICAL DEFINITION OF THE
SPATIALLY VARYING CONDUCTIVITY

A. Physical Arguments

~=i~[.0 'yk'-(~p/ape)] (5.3)

%e shall encounter this relation in Sec. 58. First,
however, let us note that in a steady state we have
0= [c0 '+k'(Bp/Bpe) ], which enables us again to make
the identification (4.12)

epkP =8pe/Bp. (5.4)

As exhibited in (5.3), the combination 0 (Bp/Bpe) plays
the role of a diffusion constant D; the ratio of D to the
conductivity Bp,, ape is called the Einstein relation.
Actually, it is only a definition, since a given system
does not have both a diffusion constant and con-
ductivity in its hydrodynamic description. The relation
acquires content when the Coulomb forces contribute
negligibly to the diGusion and the screening length is
very large. In the simplest approximation discussed
earlier, we have, for example, the familiar Einstein
relation D= 0/e PN.

B.Alternative De6nition of Nonlocal Conductivity

If we assume that 0~(0z) is analytic (as argued in
Sec. 4) and that we may interchange limits, while we
do not obtain (4.9) for arbitrary k, we do have

This equation implies that the charge variations satisfy
an equation of the form

—bp=V 8J=V JJ~=o~[(5p/E0)+'k'(Bp/Bpe) 8p]

or a dispersion relation in plasmas in which the con-
ductivity appears as

Although, as we have stressed, there is no contra-
diction with causality if the quantity 0~(kz), defined
as J~(kz)/E~(kz) or

and (4.11)

im —~ L(k~) =~ (5 5)

1+io~(kz) /z= [1—xpp(kz)/k']-' (5.1)

is not analytic, it &s a somewhat inelegant state of
affairs. We would like to think of the conductivity
0~(kz) not only as a measurable quantity, but also to

"The extension of the justification of the covariant commuta-
tion relations from scattering to these circumstances is not ob-
vious, and this qualification could invalidate our subsequent
statements about 0L as k—4. Ke believe the statements are cor-
rect, although a better argument would be desirable.

da& 0'~(ka)) epk 2

lim l2
Iz~P —co 7i GO

In contrast with

1—y„(kz) /k'= 1—
gggz (kz), (5.6)

' Reference 1, Sec. 25. To conform with the usual notation we
have written p/e, where e is the charge of the lightest species.
The quantity p (p/e) is well defined when there are many species.
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x„(ks)
»(kO)

"d(v o'~(ka) -' zo'(ks) —'
1+

co X' GO S

(5.8)

By evaluating both sides asymptotically for large
s, we obtain

f

dic)
—o'~( kco) = co,'' x„(k0)

(5.9)
g~~~(kO)

The quantity 0- behaves as we expect a transport
coefficient to behave. " Whenever xs~z(k0) )0 and
there is no ordering (i.e., in any isotropic material),
o (kO) is positive. It decrea, ses in the neighborhood of
a transition in which the charge or field is ordered, i.e.,
where yE~~~~. The point at which a pole appears in
ez or oz, i.e., at which x»(k0)/k'= ~~~(kO) = 1 as con-
trasted with infinity, has no significance other than
indicating that oz(kz) is an arti6cial quantity.

To the extent that o./o may be taken to be frequency-
independent, we may also infer from (5.9) in conformity
with (5.3) that

o (k0) =o.k'/xoo(k0) = o L1+(cttz/8 pe) k'$. (5.10)

With this replacement, at long wavelengths and low
frequencies, where the dispersion relation for charge
Quctuations

I+zoic(kco)

= 0 (5 11)

reduces (for eo= 1) to the phenomenological equation

~+z~gl+k'(at /aep) j 0, =

0' is k-independent. Thus the generally more appro-
priate conductivity function 0 is closer to the phen-
nomenological description, and coincides with it in this
suitably simplified example.

At finite temperatures, there will be electric con-
duction and thermal conduction modes. For arbitrary
k, both modes will appear as solutions to &o+zo~(kco) = 0.
For this reason one may question whether even o (kco)
should be called a nonlocal conductivity. The situation
is similar to the one which exists for momentum
Quctuations in a Quid. 20 There, because the transverse
modes are uncoupled at all temperatures, it is possible

"The argument that the analogous quantity in a neutral system
(the dift'usion constant) vanishes is a general one. The diBusion
constant is given by a transport coefFicient, which is relatively
regular, divided by an infInite susceptibility. Experimental veri-
6cation of this slowing down at the critical temperature has been
the subject of several recent investigations.

~ L. P. KadggoG and P. C. Martin, Ann. Phys. (N.Y.) 24, 454
i1963l,

which may vanish for nonvanishing k in some systems,
the quantity

1—xsit (ks)/xE~ (k0) =1—x»(kz)/x»(k0) (5.7)

Lwhich agrees with (5.6) as k—+0 except in the hypo-
thetical uniform insulator) can never equal zero. We
may therefore define o., which is analytic, by

to define a complex frequency and wave-number-
dependent shear viscosity or shear modulus. However,
because the longitudinal sound mode is coupled with
thermal conduction at finite temperatures, the coeK-
cient one might be tempted to call the wave-number—
dependent longitudinal viscosity contains also the
effects of thermal conduction on the velocity and
damping of the sound wave mode and gives the solution
to the dispersion equation which corresponds to the
thermal conduction mode. In the electrical case this
coupling is weaker and vanishes at k~0.

6. TRANSPORT COEFFICIENT IN CHARGED
SYSTEMS

In the previous sections we have investigated in some
detail the nonlocal conductivity. A special case, of
course, is the local conductivity, the transport coefh-
cient which occurs in Ohm's law. We may write it
alternatively as

o '= lim lim o'( k(v)

co~0 k~0

= lim lim
~

e (k&o) ~'xJJ (k(u) /o&
co~0 k~0

= hm lim xgg"zee(kco) /a)
co~0 k~0

= lim lim cox '"'(Lr) /k'.
co~0 k~0

(6.1)

because of the long-range Coulomb forces. Indeed,
because of the Coulomb forces, the thermodynamics of
a charged system are really simpler than those of a
neutral system. For simplicity, and to conform with
earlier discussions of this problem, we shall discuss the
case in which there is a single charge carrier. The com-
pensating background is taken to be inert as are the
infinitely heavy neutral impurities we shall suppose
produce the resistance. In this case the only thermo-
dynamic variables are the ones which occur in a one-
component neutral system with infinitely heavy
impurities —total mass, total momentum, and total
energy. The concentration is not a thermodynamic
variable which can be varied quasistatically because the
long-range Coulomb forces restore neutrality in a
finite time of order co„'. As might be expected, this
simplifies the hydrodynamic description and conse-
quently the expressions for the transport coefficients.

"P. C. Martin, in Statistical Mechanics of Equilibrium aud Eou
Eguilibrinm, edited by J. Meixner (North-Holland Publishing
C'ompany, Amsterdam, 1965).

As noted here and stressed previously elsewhere, " it is
not, as is frequently stated, the same as the di6usion
constant in a neutral system,

(ctn/ettz) D= lim lim xss" (kco) /co
n) —&0 k-+0

= lim lim arx»" (ka&)/k', (6.2)
co~0 k~0
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lim lim cox»" (kco)/kz=0,
or~0 k~0

lim lim cox»" (kco) /kz =0
or~0 k~0

(6.4)

and consequently in a rigorous evaluation we have
for any X,

Indeed, just as in a one-component system we may
prove that the thermal conductivity ~ is given by

«T= hm hm cox„"(kco)/k',
or~0 k~0

where e is the energy density operator. Because the
charge gradients are not maintained on a hydrodynamic
time scale, we have (as in a one-component system)

connect them with the ordinarily applied ones by the
following identities":

~B-(kco) =x—Ae (kco) gclp (kco) xpB (kco) $c (kco) /k ], -

xgp'(kco) =xone (kco) '
xAp (kco) xpe (kco) [k e (kco) ]

(6.11)

These identities have a significance in perturbation
theory, and are in accord with our earlier definition of
x»-(kco). In general, ~&-(kco) defined by these equa-
tions is not a correlation function )and as we have
argued earlier for x»"(kco), need not have the ana, lytic
properties of a correlation function]. Nonetheless, since

IcT= lim lim x, «, ,, «,"(kco)/co.
or~0 k~0

(6.5) lim lim coez(kco) = zo~
co~0 k~0

In other words, the expression in terms of a commutator
(for the thermal conductivity) in a two-component
charged system is identical with the expression in a
neutral one-component system. "

The situation is also quite simple for the thermo-
electric power. In this case it is convenient to take as
the defining experiment the one which can be char-
acterized by an open circuit (i.e., with a closed system) .

Since such a system is characterized by a constant
chemical potential, we have, when we adiabatically
apply a force which can be shown to correspond to a
change in temperature and charge density in the long-
wavelength limit,

bp= T(crp/BT) oT/T,

~p=x, . „i.(~T/T) =x. .(~T/T),—

we may write

Kzz ——hm hm xp, ,(kco) coe (kco) /zk'
or~0 k~0

= lim lim x, ,"(kco)co/ik'.
or~0 k~0

(6.12)

(6.13)

= lim lim xgg&'"'(kco)/co.
or-+0 k-+0

(6.14)

(The last equality involves a few manipulations since
the screened functions are not correlation functions but
combinations of them. ) Furthermore, we may write

Even in superconductors the imaginary part of this
term vanishes, so that

Ezz ——hm hm xp, z"-(kco) co/k'
or~0 k~0

whence, in this limit
o.'z= lim lim x "-(kco)co/k'.

or~0 k~0
(6.15)

E= (~/T) v T= (E~/oT) vT, (6.8)

where X~2 is the conventional Onsager coefficient, "
J= (E-V(/)) —(E /T)VT,

J'= Ezze(E —V(rz/e) )—(cc+KrzKzz/oT) V T. (6.9).
Thus,

Erz/o = lim lim x, ,/k'= lim lim x, ,/k'. (6.10)

sE= (x, ,/k') (v T/T). (6.7)

The quantity x, z/kz has a limit as k and co approach
zero, which is independent of order (just as x»/k' —&1

as k and co approach zero independent of the order).
Were we to describe this same ratio between field and
temperature in terms of the usual phenomenological
equations, we would write

= lim lim xq&~" (kco)/co
or~0 k~0

may also be written as

xg~g""'(kco) Egz'cT'

ca~0 k-&0 GO

(6.17)

Since o" is proportional to p, /co, the last term vanishes

Finally, if we express the thermal conductivity in
terms of screened quantities, we find

-
coxoz(kcd) co coz (x„")z

k k'(.+;:(k.) )
Therefore,

«T= lim lim cox,z" (kco)/k'
or —&0 k~0

k—&0 co-+0 co~0 k~0

These definitions appear to be very different from the
ones which are usually employed. However, we may

~ J. M. Luttinger, Phys. Rev. 136, A1481 (1964).

"This identity is related to the elimination of the Coulomb
force in terms of the screened dynamic Coulomb force which one
carries out diagrammatically or in terms of functional derivatives.
The dynamic force cannot be described in terms of a Hamil-
tonian.
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in a superconductor and we may write~

«T= lim lim x~q&'"'(koi)/co= lim lim x~q&" (koi)/oi.

case, it would be possible to take the definitions

Eii lim——lim xz z&' '&"r(koi)/oi, (6.23)
o)~0 k-+0

co~0 k~0 re~0 k~0

(6.19)
gT+Ei22/o = lim lim xg&g«o"r(ko))/~o. (6.24)

The first equality which is restricted to superconductors
is not a Kubo-like expression in terms of a correlation
function; the second, which is a Kubo-like expression,
is not restricted to superconductors.

Clearly, as the charge is turned oG we obtain the
equations we have noted elsewhere" for neutral systems;

J/e= D(Bn/B—p) Vli L„(VT—/T),

J'= —Li2Vp (a+Li22(B—n/BIJ)/DT) V T, (6.20)

the combinations

lim lim lim xq~""(k~) /cue ~D(Bn/Bli) r,
coM k~0 eM

lim lim lim xz~&"«(koi) /oi~L»,
cuM k~0

lim lim lim xq&~'"'(koi)/oi~a T+Lim (Bp/Bn) /D,
co~0 k~0 eM

(6.21)

approaching the rigorous Kubo-like expressions for
neutral systems. When the neutral limit e—+0 is taken
first, an additional hydrodynamic mode develops and
the thermodynamic description is modified because the
concentration becomes a thermodynamic variable
as ~„—+0. In other words, the nonhydrodynamic plasma
mode becomes the hydrodynamic diA'usion mode.
Provided that the screening length is much larger than
any other characteristic length, we have two domains
in the charged system: k &k„where there are Coulomb-
like phenomena and no hydrodynamic diQ'usion mode,
and k, &k& 1/l, where the Coulomb effects are unimpor-
tant and we may speak of a diffusion constant. The
conductivity in the former wavelength domain and the
approximate diffusion constant in the latter are con-
nected by the Einstein relation. Equivalently, we may
say that the plasma mode which behaves as P=o'+o
iDk'co„when k(&k, behaves as a diGusive mode co—iDk'
when Dk'»~~ and k&&k,.

It might be true that if magnetic eGects are neglected
the arguments which state

(6.22)

also apply to the energy current. If this is truly the

In addition to being artificial, such a procedure'4 is at
best only approximate and requires proof. It also re-
quires some examination of the relevant current
operators. We have been careful to avoid discussing
either the longitudinal or transverse energy current
because when long-range forces are present, explicit
examination shows that they are peculiar surface-
dependent operators for which it is unclear that limits
exist. The energy density, itself, even though it is less
singular, is a sensitive extremely nonlocal operator
when there are Coulomb forces."

We may summarize this section as follows: (1) The
simplest current correlation expression for the thermal
conductivity is always rigorously correct (it is not
correct only in superconductors); (2) the usually
written current correlation function expression for the
thermopower, like the Kubo expression for the electric
conductivity, is never correct; (3) the usual expressions
for the thermal conductivity, thermop~wer, and con-
ductivity are correct when expressed in terms of
"screened" response functions, but screened response
functions are not correlation functions of currents for
an eGective Hamiltonian, and need not have the
analytic properties of correlation functions, i.e., there
is no H" such that one can write a Kubo formula
x~e""= (Tr/A, 8) exp( —PH") )/Tr exp( —PH80) (4)
these statements all come about because of the long-
range Coulomb force, and consequently when e—+0, the
usually quoted expressions become rigorously correct.

'7. SUMMARY

In this section we tabulate the results we have
derived, together with other properties of the current
correlation functions. In isotropic materials, in addition
to the well-known result for all k,

8M—(o Im
—m 'r E (kM)

we have defined (5.8) a longitudinal conductivity
oz(ko~) which for all k, satisfies the Kramers —Kronig

24 Under these implicit assumptions, Ref. 4 is probably correct
except for magnetic (not v/c) corrections.

"Although we have not investigated the question in detail,
the rigorous formula which relates the thermopower to the
conductivity in terms of a thermodynamic derivative suggests
that it may be possible, as Lord Kelvin originally argued, to
obtain the reriprocity relation without the irreversible thermo-
dynamics which is necessary for neutral systems.
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even though we can not, "in general, deduce the analog
of (7.1), i.e.,

- dhc xgg" (k&c)
@co& (7.14)

and of (7.11),
" dec' Imps(k(u') = «5"(») —13, (7.»)

This latter equation defines the magnetic screening
length, or equivalently, the number of superconducting
electrons c'kr, ' ——(rc,/n) pc„spp

As in the electrical case, the more completely mean-
ingful quantity is the static nonlocal permeability
XBB(k0)=p(k), which plays a role parallel to the static
nonlocal dielectric constant eB(k0). Its singularities,
rather than its behavior for small k, may determine
the field at large distances. "

for arbitrary k, nor even for k=0, in a superconductor.
To deduce (7.14) for k~0, we must argue that the
current correlations do not extend to infinity, (which is
true except in superconductors"), so that as k—+0,
xzz" (ka&) —+xzz" (kcc) and employ (7.1).

To make contact with other statements about the
transverse conductivity —including a few prevalent
ones about the transverse conductivity in supercon-
ductors that our conclusions might seem to contradict-
we note that the statement for magnetic properties
which corresponds to (7.8) is

To choose as counterexample to the above argument about their
equivalence a free-electron gas in a uniform background of
positive charge is to becloud the issue since the counterexample,
in addition to being unphysical, is a system for which the con-
ductivity is not infinite but nonexistent. It is true that a long-
wavelength plasma oscillation will persist forever, but that is not
how one measures the conductivity. Furthermore, we do not want
to call any system in which a nonuniform current propagates
for an in6nitely long time a superconductor. By that de6nition
an insulator, which has persistent induced diamagnetic currents
associated with the persistent propagation of electromagnetic
waves, would be a superconductor. (Mathematically, the in-
sulator has a pole for co real and or/0, the superconductor, a pole
at or =0; both lead to nondecaying waves. )

One can produce a mathematical definition for the conductivity

—= hm ——Im
P p~p co 3 M xBB(kcc)

(BBI—'
lim lima (Lu),
ep ~P Jg~P

dM M
hm — Im
s p pr c'k' 1—xBB~(kcp)

' (7.15)

and in a superconductor the analog of (7.9) is'P

k dc' k= lim ——Im
Pp g~p co 7l M xBB (kpc)

de) CO

=- lim ——,Im . (7.16)
s p pr c' 1—xBBr(k(o)

"This point has been discussed at considerable length in
superconductivity where the discrepancy is greatest. The first
to stress the inequality in the literature was P. W'. Anderson, Phys.
Rev. 110, 827 (1958).

"M. R. Schafroth, Phys. Rev. 100, 502 (1955).The argument,
which states more precisely that the volume integral of the current
correlation function is finite, is probably correct except in super-
conductors.

"Over the years a great deal has been written about the re-
lationship between an energy gap, on the one hand, and the Meiss-
ner eGect and superconductivity on the other hand. While the
Meissner effect certainly does not require an energy gap, the con-
verse is true in a sense. If the frequency integral of the measured
absorption does not exhaust the sum rule (it does in insulators)
for values of k for which the dispersion is anomalous, there is a
Meissner effect.

The objections to the argument that the Meissner eRect and
superconductivity are equivalent also seem superQuous to us.
A superconductor is characterized by the fact that in isolation it
can support a spatially varying time-independent current (super-
conductivity) and magnetic field (the compensating induced mag-
netic field which gives rise to the Meissner effect) although (in con-
trast with a ferromagnet) its equilibrium state has no magneti-
zation or current. The two statements are equivalent since time-
independent spatially varying magnetic fields imply Lby the micro-
scopic Maxwell equation p X8= (1/c) Jj time-independent
currents, and conversely. The dispersion-relation and sum-rule
argument is a restatement of this fact.

and this limiting process does give a vanishing conductivity to the
insulator and an infinite conductivity to free particles, but to
relate this mathematical de6nition to any measurement requires:
(1) the existence of a mean free path l, (2) the argument that
the limit k~0 may be freely taken whenever the wave number
of the field k, satisfies M((1. The measurement involves a steady
state with no accelerating currents and with a spatially varying
magnetic 6eld. Such a state cannot be produced in a free-electron
gas, and so the mathematical limit has nothing to do with a
measurement in this case. An equally confusing and similar
statement would be that a neutral one-component system has an
in6nite diRusion constant; in fact the diffusion constant is unde-
fined and unmeasurable.

For this reason we believe that the discussion of G. Rickayzen
and W. A. B. Evans, Ann. Phys. (N.Y.) 33, 275 (1965), which
demonstrates that the mean free path has the same eRect on the
conductivity of the normal component of a superconductor as it
has on the conductivity of a normal metal, is quite unnecessary
for answering the question of the equivalence of superconduc-
tivity and Meissner eRect—a question which assumes that we
are talking about systems with defined measurable conductivities."It should be apparent that the combinations cps ed@/Bp=
and kcp/pp= (n,/n) (co.„p/c') play a more fundamental role than
the individual terms k,' and e0 or kL,' and p0 '. Their independent
de6nitions are based on the small wave-number expansion of
e(k0) and p, (k). Under some circumstances this small wave-num-
ber expansion is applicable for determining the 6eld penetration
depth. The Debye screening of a classical plasma and the mag-
netic screening of a superconductor for which the London equa-
tions apply are two examples. On the other hand there are several
circumstancesin which the small wave-number expansion does not
determine the dominant long wavelength dependence or is in-
applicable at the penetration depth it determines. One example
is the Friedel oscillations which arise from the singularity in
&(k0) at k=2k', another is the typical weak coupling type-I
superconductor whose coherence length g is much larger than
kI, ', and whose magnetic penetration length lies between the
two.

Like the electric field penetration length argument, the mag-
net'ic penetration length argument can be expressed in simple
terms. The London equation is: cd& J=(n,/n)co„'8 and Max-
well's equation is cp&(H=cp&B/p, 0= J, when we use the k=0
values for the coefBcients (n, /n)or2, ' and p0 '. The conclusion,
kzp ——( / )I(co„prp/cp)pp, is therefore limited to the case in which
their wave-number dependence may be neglected.



SUM RULES, KRAMERS-KRONIG RELATIONS

The quantity li(k) is related to the transverse con-
ductivity in the following way: In general we have"

&~T(k~) —c2k22rg(o)) [ 1++—1(k) )+&~ms T(k o))

oT(ks) = —(ic ks/s) [1—li (k)]+a"s (ks). (7.17)

The sum rule (7.12) may therefore be written for
gras

dco—o"" (ko)) =o) '—c'k'[tu '(k) —1) (7.18)

which implies that"

li
—I—1(o) 2/Csks li) (1+o) 2/Csks) —I (7.19)

Except in superconductors we have

dM ~ iv)
lim —o'" (k~) = lim —o' (ko)) =o) '.
I(,mp —'co 7t Jg-+0 —po X

(7.20)

These equations provide in a somewhat concise
fashion the resolution of the paradox concerning
diamagnetism which we posed in the Introduction. To
spell it out more comprehensibly, that paradox is the
result of a particular separation of the eGects of an
external transverse Geld into magnetic and electric
parts. All of the effects are described in terms of 0-~ or
Xzz, and a ' and yII "/co must be positive definite.
However, the conventional description entails writing

J =oTE T+rr. LE-,L

—~LE,+ (~T ~L) E T

oLE,+ (o T oL) (io)/ck2) ( ~7X—B),
= oLE,+c(V&&3II);,

whence

2~ (rr rr ) /c'k'= 1 12
'=—Xsrsr/(1+—X2III—)

(ros/csk2) (eT eI,)
For simplicity, suppose magnetic effects are small.
Then these quantities are the same as

(~) (y T(n.m. i) X L(n.m. i) ) /C2k2

" d(o xT" (ko&) —xL"(ko))= hm
k~p COC h'

The quantity [z"T(I)—x"L(co))/k' represents the total
work done by the external magnetic field minus the
work which we have chosen to describe in terms of its
associated electric field. There is no reason why the
difference need be positive. Indeed, the orbital con-
tribution to the difference is usually negative (i.e.,
diamagnetic). The proper deduction is just the one
contained in (7.19), or equivalently,

x~~(0) & —~,'/[~, '+ c'k'],
"The general signihcance of such 6-function terms has been

stressed in Ref. 21."P.C. Martin and J. Schwinger, Phys. Rev. 115, 1355 (1959).

dc' Sn
lim —o'"' (ko)) =o) '—
k~p e (7.22)

This equation is the one referred to when it is stated
that the transverse sum rule is violated. Substituting
the relations between 0-"g and XJJ and between
0-"g~ and XJJ|'". ' we see alternatively that

(ko))
lim
k~p CO

" do& XgJ "T(ko)) 22„= lim — = —"o)„2. (7.23)
$~p —(x) 'r Q) S

Thus the condition that p ' be finite as k—+0, which is
equivalent to the condition that the current correlations
have finite range, is also equivalent to the condition
that the transverse conductivity sum rule be exhausted
by the regular part of 0'~.

When k&0, the two sides of (7.14) are equal, and the
regsil(Ir part of o'T satisfies the sum rule if and only if
there is no magnetic susceptibility, i.e., when p(k) = 1.
This is the case in one special circumstance —a system
with classical dynamics and with no intrinsic magnetic
moments. In that case the current is purely orbital and,
as first shown by van Leeuwen, '4 there is no orbital
diamagnetism. To prove it in our formulation we note
that the classical fluctuation dissipation theorem
enables us to write

do) xgg (ko))

=P dr exp( ik r) —(js(r, 0)ji(0, 0) ) (()s&—krak&/ks) -', .

The instantaneous velocity correlation is immediately
evaluable classically and gives for the right-hand side
co„'. There is, of course, a paramagnetic contribution
which alters this result even classically when we allow
for intrinsic magnetization but use classical dynamics.
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ee J.H. Van Leeuwen, dissertation, Leiden, 1919 (unpublished);
N. Bohr, dissertation, Copenhagen, 1911 (unpublished); as quoted
in J. H. Van Vleck, Classical Theory of Magnetic Susceptibilities
(Oxford University Press, London, 1932), Secs. 24—27.

and, as we might expect, as k—+0 this is precisely the
familiar thermodynamic restriction p~~& —1 or p&0.

In superconductors, as k—+0

p
—'(k) —1~((d„s/csks) (24/22)

and so


