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We present a quark model of mesons which treats the kinematics, including spin, exactly, but neglects
the effects of retardation in the interaction. Starting with the two-particle Dirac equation with a static
square-well potential, we find that tightly bound physical solutions exist only for certain special cases.
In addition, there are unphysical solutions which correspond to the binding of a positive-energy spinor to a
negative-energy spinor. The solution used in the Fermi-Yang model of the pion is unphysical in this sense.
For continuously varying potentials, the equations contain singularities which arise from the presence of
unfilled negative-energy states. These make the two-particle Dirac equation unreliable for interaction
energies which are comparable to the masses involved. Using a reduced form of the Bethe-Salpeter equation
in the ladder approximation for an instantaneous interaction, which we represent by an S-wave separable
potential, we compute the wave functions of the = and p mesons. We calculate the = lifetime, which comes
out in good agreement with the observed value for a quark mass of 3.1 BeV. The n-p mass splitting has
the right sign, but is too large, for all values of the quark mass.

I. INTRODUCTION

HE idea that the hadrons may be bound states of
quarks! is an esthetically pleasing and natural
way to account for the observed symmetries.? Nearly
all the recent applications of this idea have assumed
that the quarks move nonrelativistically in the bound
state, although if their mass is very large, as appears to
be indicated experimentally,?® this would seem to be a
bad approximation. Nevertheless, the ‘“naive quark
model” has had some remarkable successes.* As a
justification for the assumption, Morpurgo® has sug-
gested a specific model in which the quarks are bound in
a very deep, but very wide, square-well potential. On
the basis of the Schrédinger equation it is reasoned
that in such a system the quarks may be very tightly
bound and yet possess arbitrarily small kinetic energy.
Greenberg® has shown that this is not the case for
Coulomb, Yukawa, or exponential potentials. Several
consequences of the model have been worked out by
Becchi and Morpurgo.”

Notwithstanding the success of the nonrelativistic
models, several attempts have been made to treat the
relativistic aspects of the problem. None of these has
attempted to deal with the difficult problem of the
many-body states which couple to the ‘“bare’ ¢g state.
Bogolyubov et al.? have used the Bethe-Salpeter equa-
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tion, keeping only the largest terms and using a separ-
able potential, to compute the electromagnetic proper-
ties of mesons. Lichtenberg and Tassie® have computed
meson mass formulas using the Klein-Gordon equation
with a local potential, and handling the kinematics
(neglecting the quark spins) exactly.

In this paper, we shall investigate quark models of
mesons, using the two-particle Dirac equation, and a
reduced, noncovariant form of the Bethe-Salpeter
equation. For the two-particle Dirac equation, with a
square-well potential, we show that arbitrarily tightly
bound physical solutions do not exist. By “physical”’
we mean solutions which go over smoothly to a state of
two positive-energy spinors as the interaction is turned
off. In particular, for the state studied in the Fermi-
Yang treatment of the pion' (the 1S, state, bound by a
vector-coupled square-well potential), we show that
the minimum energy of the bound state is 2V2M,
where M is the sum of the masses of the constituent
quarks. The solution found by Fermi and Yang is
unphysical, in the sense defined above. This fact has
been pointed out by Moseley and Rosen.!t

We extend the analysis to other LS states, and to
other couplings. For all states other than 1S, with
vector coupling, tightly bound solutions exist only in
the case of equal masses of the constituent particles.
The same qualitative features hold with scalar and
axial-vector coupling. For tensor coupling, all solutions
are well behaved (in the sense that their energy goes to
zero as the depth of the potential increases). For
pseudoscalar coupling, no bound state exists at all, for
any combination of potential depth and range. Explicit
calculations with more general potentials than square
wells are made difficult by the presence in the differential
equation of an unexpected singularity at a particular
finite value of 7. We are able, through a qualitative
analysis of a general nonsingular potential, to show that

¢ L. J. Tassie and D. B. Lichtenberg, Australian J. Phys. 19,
599 (1966).
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tightly bound solutions can exist. However, their
existence requires the presence of the extra singularity.
This singularity results from an improper treatment of
the negative-energy states in the two-particle Dirac
equation, which is therefore of doubtful validity, even
as a first approximation, in the relativistic regime.

If one neglects retardation effects in the interaction,
the Bethe-Salpeter equation, in the ladder approxima-
tion, can be reduced to a simpler, noncovariant one, by
a method first used by Salpeter.’? This equation differs
from the Dirac equation by the presence in it of certain
energy projection operators, which arise from the
imposition of Feynman boundary conditions on the
propagators. These projection operators perform the
valuable services of eliminating the unphysical solu-
tions, and of allowing the existence of tightly bound
states. The reduced Bethe-Salpeter equation is therefore
a more promising candidate than the Dirac equation
for calculating the properties of tightly bound states of
spinors.

In Secs. IT and III we treat the /=0 and J=1 states
of the Dirac equation with a vector-coupled square-well
potential. In Sec. IV we generalize this to include other
couplings, and more general potentials. In Secs. V and
VI we consider the model based on the reduced Bethe-
Salpeter equation, and apply it to the calculation of
the pion lifetime, and the p-y vertex.

II. THE TWO-BODY DIRAC EQUATION:
J=0 STATES

We consider a system of two spin-} particles, of
masses m; and s, interacting through a local potential.
The Dirac equation of motion, in the center-of-mass
system of the particles, is

[H1(1)+Ha(r)— EJ (1) =V ()¢ (x).
Here r is the relative coordinate, and
Hi(r)=—ie®-V+0m,
Hy(r)=1a®-V+Boms.

The superscripts denote the spin subspaces in which the
a’s and the B act. ' is an operator which depends on the
coupling. For vector coupling, in our notation,

P=[I0[®—qW.q®],

(2.1)

Finally, we take V (r) to be a square well:

Vin=V,
=0,

r<ro
r>70.

With this convention, V is positive (negative) for
attractive (repulsive) potentials.

Actually, (2.1) applies to a system of two particles.
For a particle-antiparticle system, the correct equation
would be (2.1) multiplied through by the operator C®
which charge conjugates the ith particle. The correct

2 E, E. Salpeter, Phys. Rev. 87, 328 (1952).
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wave function, therefore, differs from the one which
appears in (2.1) by just this operator C®. It is con-
venient for our purposes to deal with a particle-particle
system, remembering to make the required change
whenever necessary. We remark that of the five
possible couplings (scalar, vector, tensor, axial vector,
and pseudoscalar), the vector and tensor have the
property that they change sign under charge conjuga-
tion of one of the two particles. Thus in these cases the
sign of the interaction determines whether gg or ¢g
actually bind.

Throughout this paper we shall use the representation

0 o, T 0
()
o O 0o —1I
where the o, are the usual Pauli matrices. Our notation
for the y matrices will be

Yo=B8, Y+=Bar, Ys=YoYrv2Ys,

and they satisfy
{(Vwv} =2gw,

with — goo=gu=gea=gas=—1.

Y carries two spinor indices, each of which ranges
from 1 to 4. It is convenient to write it as a 4X4
matrix. Furthermore, Eq. (2.1) is invariant under
rotations and reflections so ¢ is an eigenstate of total
angular momentum J, and parity P. With our represen-
tation for the o’s and B, ¥ breaks up into four parts:

¢ 7 ( ) (A LlS1Jm(r) BLzssz(r)>
my)= s
F CLsSaJm(r) DL4S4Jm(r)

in which 4, B, C, D are 2X2 matrices, eigenstates of J,
J., L, and S. Under parity,

V2T (1) — BV ()
(=184 p,57"(—1) (—1)"Brys’™(—1)
((— DECrys’™(—1) (= 1)L‘DL4S4J"'(—Y)>
= (—1)7yp7n(—x).
This requires
Ly=Ly, Ly=L;=L;=+1.

In other words the diagonal and off-diagonal quadrants
have opposite parity.

For J=0 there are two possible states, which we
label in the usual spectroscopic notation, according to
the LS values of their “large components,” i.e., the
quadrant we have labeled 4 above. For states which
are formed of two positive-energy spinors (those which
we shall call “physical” states below) the quadrants B
and C will be of order v/c, and D will be of order (v/c)?,
compared to 4. For the ¢q (¢¢) system, the 15, state
has even (odd) parity, and the 3P, state has odd (even)
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parity. We shall label our wave functions according to
the parity they would have if they represented ¢g states.

A. The 1S, State

The 1S, state, which we identify with the pseudo-
scalar octet, has the wave function

1(P)Xo®  2g1(r)Xyy

pre= (P70 Y g
iga(n)X1®  f2(r)Xod
where the X’s are 2X2 bispinor matrices, independent
of |r|, and we have suppressed the index m for J=0.
A particular realization of the bispinors is displayed in
the Appendix. fi(r) and gi(r) are real, continuous
functions. Equation (2.1) now breaks up into 4 equa-
tions in the f’s and g’s. It is convenient to express these
in terms of the linear combinations fi= fitfs, gr=g
=+ g;. Then, defining M =my+ms, m=m1—m., we find,
for r<r,,

Mfi—Ef ==2Vji.,  (23)
a 2
Mfw—Ef+“2<—+—>g+=4Vf+: (2.4)
dr 7
mg—Eg_=2Vg_, (2.5)
d
mg_— Eg,+2—f,=0. (2.6)
dr

Because the potential is a simple square well, the solu-
tion to these equations is simply expressible in terms of
spherical Bessel functions. The choice which satisfies the
boundary conditions at r= o is

fe=Ayjo(ar), r<ro

g:i:zBijl(ar) )

Je=ah® @r), ge=biu®Br), r>r. @7
Solving for « and 8, we find
1 [(E+4V)(E—2V)— M2 E(E+2V)—m?]
! B—4y? 29
1 [E*—M*J[E*—m*]
B2=- . (2.9)
4 E?
The various coefficients are related by
M M
=E—2V T a=—ay;, (2.10)
g B, b_=%b+, (2.11)
E+2V E
a B
by=2— . (2.12)

=2,
E—m2/(E+2V) E—m?/E
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Equations (2.4) and (2.6) imply that f; and g, are
continuous across the boundary, though their first
derivatives are not. This determines E by

m2 1
e e
E4-2V IL1—ary cotar,

3T o

The finiteness of the wave function at =0 and r=
requires o?>0, 82<0. The latter condition places the
limits on E:

m< A< M2, (2.14)

a? has singularities at E==2V, but in this instance
these will not have any effect on the solutions of
interest. To see this, we set a?=0 and solve for E.
(Since o? is the eigenvalue of p?, this corresponds to
neglecting the kinetic-energy terms in the Hamiltonian.
This is a good approximation in the limit 7>>M™2,
which is the situation envisaged by Morpurgo.®)

E=—V& (M>4-977)0

= — V£ (V)2 (2.15)

(a2=0).

In Fig. 1 we have graphed these curves, together with
the cuts in o? at E=4-2V.

The only solution which is physically attainable is
that for which E=M when V=0. The other three
solutions contain admixtures of negative-energy states.
We note that our condition on o? requires that the phys-
ical solutions lie above the curve E=— V-4 (M24-3V?2)12,
which they approach as #o—co. This curve does not
cross the cut at E=2V, which may therefore be
neglected. The minimum in the curve constitutes an
absolute minimum for the energy of a physical solu-
tion. It is easily seen to be 3V2ZM, and to occur at
V=_1/12)V2M.

Solutions exist with values of E lower than this
minimum, but they are bounded above by E=2V.
They correspond to products of positive- with negative-
energy solutions to the (single-particle) Dirac equation,
and are unphysical. Their existence is an unavoidable
consequence of the fact that the single-particle Dirac
Hamiltonian is not positive-definite. We shall not
consider them further, except to note that we must be
on guard against the possibility that the two families
of solutions may have overlapping energy spectra, in
which case the two kinds of eigenstates may mix. This
does not happen for a square-well potential, however.

The fact that there exists a definite value of V for
which the binding energy is maximized implies that for
sufficiently short-range potentials no physical solution
exists at all, in contrast to the situation, e.g., with the
Schrodinger equation, in which, by increasing the depth
of the potential, it is always possible to create a bound
state, no matter what the range is. A rough estimate
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F16. 1. Locus of poles and zeros of
o?(E,V) for the 15, state.

1418 PAUL HORWITZ
1.0 E=-Va/Me+ V2 /
2
w
o0s E=-V4/m+V2
=
4
=) E=2
z
> 0 L .
e 05 — 1o 5 20 25 .30 35
w =-2V POTENTIAL DEPTH IN UNITS OF M
w
w
[
=2
003 E=-V-/m?+VE
4
2
(o]
o

10 E=-v- AFrovE

yields the inequality
1> 4.4M1

as a condition for the existence of a physical bound
state. In Ref. 10, Fermi and Yang took ro=2M"1, so
that in fact no physical solution existed, and the one
they write down is unphysical. In Fig. 2 we have
graphed E against V for two different solutions, one
physical and one unphysical, taking ro=40M"1,

B. The 3P, State

o VLE(E2V) = MO (EA-4V)(BE—2V)—m?]

and the equations which are obtained from (2.1) for
this wave function differ from (2.3)-(2.6) only by the
transformations r— —r and M < m. Therefore, for
this state we have

]

(2.17)

4 E?—4Vp?

with (% still given by Eq. (2.9). Setting a?=0, we obtain

. ==V (24?212
The Py wave function has the general form A+ V) (2.18)
=—VEm43V)12  (2=0).
7)X1 0 ifi(r)X . .
¢+o(r)=(g1( M ifa0) °°O> , (2.16) These curves, and the cuts, are graphed in Fig. 3.
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curve E=—V-+(M24V?)2 and, if m#0, above the
line E=2V. This places an absolute minimum on E of
IVZM. However, if m=0, the singularity at E=2V in
a? is cancelled, and the energy of the physical solutions
tends asymptotically to zero as ¥ —o. We shall call
solutions with this property “well behaved.”

The limit of equal masses is clearly a strange one.
The existence of even a very small splitting completely
changes the nature of the solutions. In the mathematical
sense the convergence of the differential equation is not
uniform as we take the limit m — 0, and although this
had no effect for the 1S, state, we see that, in general,

¢_1m<r>=(

Equation (2.1) now breaks up into eight equations.
Writing these in terms of the linear combinations
fe= it fo, g12= gu=E g19, §or= gt gos, and by =M hs,
we have

8/d 2
Mf+-Ef———<—+—>g1_=2Vf~, (3.2)
3\dr r
4sd 2
up=Eh= )0, G3)
3\dr
d d 3
Mg —Egi +—f +2 —+‘>h—-=2V81—, (3.4)
dr dr r
d d 3
Mgy —Ego+—f—4 —+—)h+=4V82+, (3.5)
dr dr 7.
27d 1
Mh+—Eh_—-(;——>g1_=2V/l_, (36)
3\dr r

F1®)Xor Ry ()X 2s'™
1(g12(r)X11 "+ g22 (7) X10'™)

one may lose a lot of information by solving (2.1)
only for equal masses.

III. THE TWO-BODY DIRAC EQUATION:
THE J=1 STATES

A. The 3S;+3D,; State

For J£0 there are two LS states of each parity,
which will be mixed by the interaction. The wave
function of over-all negative parity (which we identify
as the vector meson nonet) is a mixture of 351 and 2D,
in its diagonal components, and of 3P; and P in its
off-diagonal components. We shall refer to it, for
convenience, as the 3S; wave function. It has the form

1(g11(r)X11! ”‘+g21(r)X1o“")) 3.1)
Fe(r)Xoit ™+ ha(r)X '™ ' .
2/d 1
Mh_— Eh++—<——— —)g2+= 0, 3.7)
3\dr r
mgr-—Egu.=0, (3.8)

mg%-—Eg2_= - 2Vg2_. (3.9)

Equations (3.8) and (3.9) may be used to eliminate gy,
and g.—. We may then drop the indices 1 and 2 without
confusion, defining

§-=81—.

Again, for a square-well potential, the solutions are
spherical Bessel functions:

8+=82+,

fe=Aijolar), gi=B.ji(or),

hi=Cyjolar), r<r
+ :t.72(0‘) 0 (3.10)
fe=a3hV(Br), gi=b:®(Br),
hy=cihs®(Br), r>1.
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B is still given by Eq. (2.9), but in solving for « we find
two solutions:

1 [E(E+2V)— M2J[E(E+2V)—m?]

O[lz:Z o s (3.11)
and
1 [E(E+2V)— ML (B+4V) (B—27)—m?]
Ty Er—41? '
(3.12)

Corresponding to these two solutions there are two
different sets of coefficients, related to each other by

M
A, W=—g o 4 W =—q_ 0, (3.13)
E E
B, =0, b V=0, (3.14)
3 a1
BW=—ee—— 4
2 E+2V—m?/E
B
b W=—-—q M (3.15)
2 E—m*/E
CiV=—24,0 WO=—1g,O (3.16)
for solution 1, and
A @)= A+(2) , a_‘2)=—a+(2> ’ (3'17)
E+4-2V E
as
B, ®=-3 A4,
E+AV—m2/(E—2V)
B
by ®=—3———,® (3.18)
* E—m}E
B_®=0, b_2=0, (3.19)
CoD=214,®, L @P=1q, (3.20)

for solution 2.

We see that solution 1 is pure triplet in its off-diagonal
components and solution 2 is pure singlet. From the
point of view of the spin eigenvalues of its components,
solution 2 is identical to the 3P state, while solution 1
has no analog for J=0. Furthermore, because we are
dealing with a constant potential, @ depends only on
the spin of the components of the wave function. Thus,
ag? is the same as the o we had for the 3P, state, and
has the same singularities. «;?, which corresponds to a
wave function with no singlet part, has no singularities.

The actual eigenstates will be linear combinations of
these two solutions, the amount of mixing being
determined by the boundary conditions. We see from
Egs. (3.2)-(3.5) that gy, g, f+—4hy, and f_+2h_ are
continuous across the boundary. This gives rise to four
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homogeneous equations in the 24 coefficients 4, @2,
a 3D, BLAD p AN CLAD 0 ¢, 0D which, together
with the 20 equations (3.13)-(3.20), enable us to de-
termine them all to within an over-all normalization.
After some algebra, we eliminate all the coefficients
except a_® and a,®, which then are found to satisfy

a_W[Fi— E(D—d) 420, ®M(D—d)=0, (3.21)
0 O[F2—2(D(E+2V)— Ed)]
+a_OM(D—d)=0, (3.22)
where
E(E+2V)—m? 1
F;=%7’02[
K 1 — ;%o COtOliro
E2—m?* 1
— ] i=1,2 (3.23)
E  1414Br

with D=[E(E+2V)—M*], d= (E*— M?»)™.
In the weak-binding limit, V<M, M—FE=BKM,
we have

at=al=a?=2u(V—B), (3.24)

B=—2uB, (3.25)
where u is the usual reduced mass: u= (M2*—m?)/4M.
The boundary conditions become

¢ WF=—_
2BV—B

(a-V—2a,®),  (3.26)

—a,OF=— (a-W—=2a,®),  (3.27)

2BV—B

where F=F,=F,. The solutions are

F=0, a_M=2¢,®  (pure 3S;state) (3.28)
F sV 1 1) @ ( 3D ) (3.29)
=—— , a_V=—a ®, (pure state .
2BV—B v e

as we expect.

If m>#0, then «s® has a singularity at E=2V. The
energy will therefore be bounded below by $VZM, just
as in the 3P, case, unless we can satisfy the boundary
conditions with a state consisting of pure solution 1.
Setting ¢, ® =0 in (3.22), we arrive at a contradiction.
The 3S; state, therefore, behaves like the 3Py; in partic-
ular, its energy is never less than 3V2M, if ms=0.
If m=0, the solutions are well behaved.

B. The 3P1+1P1 State

The positive-parity J=1 state, which is a mixture of
3P; and 1P, satisfies the same equations and boundary
conditions as the negative-parity state, with M and m
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interchanged. a;? and B? remain unchanged, as? becomes

LBV (E=2V)~ MP]LE(EA-2V) —m*]

Er—4V?
(3.30)

and the boundary conditions are

a_W[F1— E(D—d)]+2a, ®m(D—d)=0, (3.31)

4. O[Fy—2(D(E+2V)— Ed)]
+a_Om(D—d)=0, (3.32)
where
E(E+2V)— M2 1
F.'—‘-_— %1’02[
E l—airu cota;ro
E—-M2 1

] , 1=1,2 (3.33)
E 1+lﬁ7’o
with D=[E(E+2V)—m*], and d= (F2—m?)~L

In the nonrelativistic limit, with e?=a?=a.?, F=F,
=F,, these become

a_O[F+4+2V]=0, (3.34)
a, . W[F+4V]=0. (3.35)

The two solutions are
F==-2V, a;,®=0, (pure3P;state) (3.36)
F=—4V, a_-®=0, (pure'P;state). (3.37)

a2? now corresponds to the 1S, solution, for which we
had E>%V2M, even when m=0. Setting ¢,®=0 in
(3.33), we arrive at a contradiction only if ms<0. If
m=0, a state which is pure solution 1 must satisfy

F1=E(D_d)7

which it is certainly possible to do. So the energy of the
positive-parity state is well behaved for m=0, not
because of the cancellation of singularities in that
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limit, but because the boundary conditions permit the
existence of a solution which contains no singlet part,
and is inherently well behaved.

The generalization of these results to angular
momenta other than 0 and 1 is straightforward. Those
states with parity (—1)7 (for gq systems) will resemble
the 3S; solution, aside from minor changes in the
numerical coefficients. The states with parity (—1)7#!
will resemble the mixture of P states we have just
looked at. In either case, the solutions are well behaved
only for the case of equal masses.

IV. OTHER POTENTIALS
A. Other Couplings

A change in the coupling results in a change in the
parameter o2 In Table I we have listed the form of this
parameter for all five couplings for the 1S, state. The
8P, state is dealt with, as before, simply by interchang-
ing M and m, except that for scalar, tensor, and
pseudoscalar couplings we must also change the sign
of V. We shall not discuss the states of higher J. The
following observations are easily verified:

(1) All the couplings lead to singularities in a2 with
the exception of 7. For this case, the approximation
a?=0 leads to

E=—3V+4(M24-9V?2)12 4.1)
E=—V+(M2+V2)l2 for the 3Py state. (4.2)

The 1S, state lies below the 3P, for all values of V. Both
states are well behaved, regardless of whether the masses
of the two particles are equal.

(2) For T and A4 potentials, either the 1Sy or the 3P,
state is bound, but not both. An attractive potential for
one state is repulsive for the state of opposite parity.

(3) For S coupling, the energy of both states is
bounded below by the singularity at E=V, if m=0.
If m=0, both solutions are well behaved.

for the 1S, state,

TaBLE I. Form of o? for the five types of potential. The form given is for the 1S, state.

Type Coupling o?

s 0] 1 LE+ V=L (E=Vy—m]
4 (E+V)(E-V)
1[(E+4V)(E—2V)— MY E(E+2V)—m*]

14 [IWOI® —qW.¢®] _
4 (E42V)(E-2V)
1 [E24+6EV —M2JLE2+2EV —m?*]

T [(6‘7) ). (ﬁo) (2)+(ﬁa) @. (ﬁa) (2)] -
4 E?
1[[(E4+4V)(E42V)— M2 E(E—-2V)—m?

p o004 (3 ()] L LE+4V) (B+20) = MILE(E=2V) —n]
4 (E+2V)(E-2V)
1[B— 12— M2 [E2— V2—m?]

P L) v @] - z

4 E2—V?
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(4) For A coupling, the energy of the 1S, state is
bounded by the singularity at E=2V, for m#0. The
3P, energy, however, is bounded by the curve E=3V
+ (m24-V?)'2, whether or not m=0.

(5) The P coupling admits no bound states, for either
sign of the potential. Since this is the only coupling
with no nonrelativistic limit, this result is not as
surprising as it might appear.

In Tables IT and ITI, the results for the J=0 states
are summarized.

B. Other Potentials

So far we have dealt only with square-well potentials,
and it might fairly be surmised that the unexpected
difficulties we have encountered in attempting to create
tightly bound states are consequences of this special
choice. Unfortunately, even the simplest continuously
varying potentials give rise to differential equations
which we have been unable to solve, because of the
presence in them of an extra singularity, which does
not appear, for example, in the single-particle Dirac
equation. However, we are able to give qualitative
arguments which indicate that the disturbing features
of the square-well solutions are present for any con-
tinuous, nonsingular potential.

We shall confine our attention to the 1S, state with
m=0. The extension to other states and m>40 does not
involve fundamental complications. We take V(r)
=M\f(r), where f(r) is a positive, continuous, bounded
function, and lim,,,f(r)=0. For simplicity we take
f(r) monotonic decreasing. (Our convention is still
that a positive potential is attractive.) N is a positive
number which we vary from zero to ‘“‘turn on” the
interaction. Defining F(r)=7f(r), we use Egs. (2.3)-
(2.6) to derive the equation for F:

a’r

—+a2(r)F=0, 4.3)
dr?

where

a2=iE[E+4V(r)-— (4.4)

2
E—2 V(r):l ’
In order to satisfy the boundary conditions at r=0
and r= o, we must have o*>0 for some finite range in
7. (There must be a finite region in which F and its
curvature have the opposite sign. When this condition
holds, we shall say that F is “closed”; when F and its

TasrE II. Characteristics of the 15 state for various couplings.
(All energies normalized to M =1; Vois V for maximum binding;
V max is maximum V for which a bound state exists.)
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curvature have the same sign, we shall say that F is
“open.”) This puts one of two conditions on V':

(a) S[E— (OB —8MH)*]<V<3[E+ (OE*—8M?)!*]

or
(b) 3ELYV.

We shall call the spatial regions in which V satisfies
conditions (a) and (b) the regions 1 and 2, respectively.
(The regions are necessarily disjoint, and the mono-
tonicity of ¥ requires that they be simply connected.)
The position and extent of these regions depend,
naturally, on E; in particular, region 1 exists only for
E<3VIM.

We vary \ slowly, starting from A=0. The physical-
solution ground state, with ES M, will appear at some
N, say No. We assume M\of(0)<3M. (It is possible to
construct very peculiar potentials for which this is not
true. Such potentials do not have physical bound states,
and we ignore them.) This condition ensures that there
is a range in A for which the physical solution exists, and
is closed in one spatial region only—region 1. Note that
the boundedness of the potential is required here. As
we increase \ the region 1 moves away from the origin.
Although the exact behavior of the energy depends on
the detailed shape of the potential, it is certainly
bounded below by 3VZM. As V(0) becomes greater
than 3[ E+ (9E2—8M?)V?], the wave function becomes
open at the origin, contrary to expectations based on
the single-particle Dirac equation. This condition holds
until ¥ (0) reaches $E.

There is also a spectrum of unphysical states with
energies between 0 and 2V(0), which correspond to
bound states of positive-energy solutions with negative-
energy solutions of the single-particle Dirac equation.
They are closed and have most of their support in the
region 2. As long as V(0)<%V2M the two families of
solutions are disjoint: Their energy spectra are sep-
arated, and the regions where the eigenfunctions are
closed do not overlap spatially.

We now increase A until V(0)>%V2M, ie., until
there exists a range of energies for which both region 1
and region 2 exist. At this point the permissible spectra
of energies for the physical and unphysical states
overlap, and the energy levels of the two kinds of states
will in general cross. (The physical and unphysical
states have orthogonal spin parts, and are not connected
by the Hamiltonian, so the Wigner-von Neumann

TaBLE III. Characteristics of the 8P state for various couplings.
(All energies normalized to M =1; Vo is V for maximum binding;
Vmax is maximum V for which a bound state exists.)

Type  Emin Vo V max Remarks Type  Emin Vo Vmax Remarks
S 0.500 0.500 1.000 only if m 0. S 0.500 0.500 1.000 only if m~0
vV 0.940 0.118 0.250 vV 0.707 0.354 0.500 only if m#0
T 0 ® © solution well behaved T 0 0 © solution well behaved
A 0.408 0.204 0.500 only if m#0 A 0.816 0.204 0.250
P [ s oo no bound state exists P oee oo oo no bound state exists
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theorem! does not hold.) It is now possible for the
physical states, ‘“‘taking advantage” of the existence of
region 2, to have very large binding energies, though
the character of these tightly bound solutions will
depend critically on the behavior of the potential
near the origin.

The generalization of this analysis to other states,
other couplings, and m#0 is straightforward. In every
case we find that the singularities in a2, which prevented
the physical solutions from becoming tightly bound
for square-well potentials, do not do so for continuously
varying potentials. However, the physical significance
of the singularities, without which no tightly bound
solutions can exist, is unclear. We are led to the belief
that the use of the two-particle Dirac equation in the
tight-binding limit is unjustified, and turn instead to the
Bethe-Salpeter equation.

V. THE REDUCED BETHE-SALPETER EQUATION

The Bethe-Salpeter equation,!* which describes a
bound state of two spinors interacting through the
exchange of a vector field of mass u, may be written
in the ladder approximation:

[va®prirtm [y @ pr+mo N (p)
- f V(o By 0w (B)d%k,  (5.1)

where V(p—k)= (2w1)"'g?/[(p—k)*—p?] and p is the
4-momentum about the center of mass: p= (ms/M)p:
— (my/M)p.. We define P=p;+ps. Then, in the
center-of-mass frame, multiplying through by vo®v,®,
we obtain

[m(p)—%‘E—po][Hz(p)—’—LfE+pOJW(p>

= / V(p—ETY (B)d*k, (5.2)

in which H1(p) =ql. p+,81m1, Hg(p) =—q®. p+ﬁz1ﬂz,
[=IW]®A—q®.q® and E=P,.

Equation (5.2) has proven mathematically intract-
able, and has been solved in closed form only in certain
special cases,' for which advantage can be taken of its
symmetry properties. We resort here to a nonconvariant
approximation to (5.2), introduced by Salpeter.?

In the nonrelativistic limit, it is a good approximation
to neglect the finite speed of propagation of the interac-
tion. This is equivalent to neglecting (po— ko)? compared

1 7. von Neumann and E. P. Wigner, Z. Physik 30, 467 (1929).

1 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).

15 R. E. Cutkosky, Phys. Rev. 96, 1135 (1954); J. Goldstein,
ibid. 91, 1516 (1953). Recently, some more general cases have
been numerically solved, using a computer. See C. Schwartz and
C. Zemach, Phys. Rev. 141, 1454 (1966).
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to (p—k)? in V(p—k). Defining
sw= [ ¥,

Salpeter shows that, with the approximation mentioned
above, ¥(k) satisfies

[Hi(p)+H.(p)—EW(p)
=[AD ()AL (p)—A_D(p)A_®(p)]

x [Vo-twa, 63
where the
A4 () =CHi() (p2-+m Y L2(p2k )]

are the usual energy projection operators.

We remark that these projection operators, which
distinguish (5.3) from the two-body Dirac equation,
arise from the imposition of the Feynman boundary
conditions on the propagator. These require that
negative-energy states propagate backward in time.
If we had imposed the condition that all states prop-
agate forward in time, which corresponds to the original
Dirac theory without antiparticles, we would have re-
covered Eq. (2.1). The projection operators, moreovetr,
decouple the unphysical states, which are combinations
of positive- and negative-energy states, and the minus
sign between them effectively changes the sign of the
potential when it acts on the terms of order #?/¢* in
the wave function. This eliminates the singularities
which occurred in the Dirac equation.

Below, we use Eq. (5.3) with my=ms=m, to deter-
mine the ground-state energy of the 1S, state (which we
identify with the =), and the 3S1+°D; (which we
identify with the p). The other particles in the pseudo-
scalar and vector multiplets could then be split off
from these lowest-lying ones, for example, by introduc-
ing a mass splitting among the quarks. We shall not do
this here, however.

We work in the momentum representation. Equa-
tion (5.3) then breaks up into four (or eight) coupled
integral equations. The solution of these is quite
difficult; we shall use an .S-wave separable potential, of
the type introduced by VYamaguchi.'* (This is in
contrast to the model of Mitra!” for baryons, in which
he uses P-wave forces for the gg interaction.) We write

V(pk)=v(p)v(k),
where
4

PP

Because we have in mind a picture in which the
interaction is mediated by the exchange of the SU(3)

o(p)=

16'Y, Yamaguchi, Phys. Rev. 95, 1628 (1954).
17 A. N. Mitra, Phys. Rev. 142, 1119 (1966).
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BOUND STATE ENERGY IN BeV

o 2 4 G ) X
COUPLING CONSTANTS (IN BaV)

F1G. 4. E versus gp and gy for a quark mass of 10 BeV.

scalar member of the vector nonet, we choose u to be
the mass of this particle. Using the w-¢ mixing angle
given by static SU(6),'® we find u==862 MeV. It should
be noted that our results are insensitive to the choice
of u, for u<mo (=mi=ms).

In comparing results for the 1S, and 3S; states, we
must recognize that, while the use of a separable
potential probably does not affect them differently in
the nonrelativistic limit, in the relativistic regime, where
the 35— 3D, mixing is appreciable, the effective strength
of the interaction is likely to be quite different for the
two states. We can, of course, make up for this by
allowing for two different coupling constants, but only
at the cost of introducing another input parameter.
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A. The = Meson

The 1S, wave function in momentum space has the
general form

" (p)=<xoo° F(p) Xugi” (P)) ,

(5.4)
X1'g (p)  XodfoF (p)

in which we have reverted back to the noncovariant
notation p=|p|, p*=p-p. Equation (5.3) now gives
the four-coupled equations

2mof P—Ef P= qug')‘fﬂ ) (5.5)
0
v(p)
2mof P—Ef F=2pg,FP— 2mo~;j—f +°5 (5.6)
0

o(p)
Bgr==2pfT+4p——10, ()
0

gP=0, (5.8)
where fiP=fif+ff, g F=gF+gr, as before, F,
= (pP+m?)2, f.'= fov(k)f.F(h)d*%k. The solution to
these purely algebraic equations is

e (14279 250(8)
P 0 5.9
5| e (59)
2 2(14-2V°)—2K?
_Pz_m_e[m“ 270 ]_@f (5.10)
E P+K? E,
2pr me(142V0) — 2K20(p)
&+ =—*—|: d :l———f+°, (5.11)
E PHE? E,

where

K?*=mg*—~1E* and V"E/

Multiplying (5.9) by v»(p) and integrating over p, we
obtain an equation for gp, the pseudoscalar coupling
constant, as a function of m, and E.

B. The ¢ Meson
For the 35 state, ¢ has the form

1//,,"‘(?)=< XoilmfIV(P)‘*‘Xﬂlm}llV(ﬁ) Xul”‘guv(l))+X1ol"‘g21V(P)) ' (5.12)
X11'"g12" (P)+ X10' "gae¥ (») Xoi!™fo¥ (p)+Xor' ™Ry (p)
Equati 5.3 ield
quation (5.3) now yields Egl_V=j)|:v—(—P—)f_°-— (f_"+2h_"):| 5.15)
2mofyV—Ef_V=(8/3)pg:-7, (5.13) Eo
v(p) EgaV=—p(f+"+4h.7), (5.16)
2mof V—Ef V=% V- 2me—if_0, 5.14
mof. J+7=%pg Mg 7 f (5.14) Doy V— V=3 pgs ¥, 5.17)
18 B. Sakita, Phys. Rev. 136, B1756 (1964). 2moh_V—Eh,V=—%pgs.V, (5.18)
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217 =0, (5.19) xooo{
82— V=0 5 (5.20)
where 500
ro= [omr vt g
v —
(2r)?
. . 200
In contrast to the situation encountered for the Dirac
equation, Egs. (5.13)-(5.20) have only one solution.
This corresponds to the fact that the D wave is not 100
coupled, so that in the nonrelativistic limit only the
pure 3S; solution exists. Solving the equations, we obtain
50
mo*  v(p) 3
f+7= —f, (5.21) 2
TpER B :
3p*+me? v(p) = %
3 4
fr=—f, (5.22) &
P*+K? E 3 o
1 pE 2(p)
g-V=- —f, (5.23)
4 p*+K* E, 5|
p ma* v(p)
gV =—— —f2, (5.24)
E p*+K* E |
h V=0, (5.25)
4 V_E p* (p) . (5.26) ! 2 4 3 3 o
- 6 p2+K2 EO - . COUPLING CONSTANTS (IN BeV)

Multiplying (5.22) by v(p) and integrating over p,
we obtain an equation for gy as a function of m, and E.
In Fig. 4 we have graphed the bound-state energy
versus gp and gy, for a quark mass of 10 BeV. In Fig. 5
the two coupling constants, determined by the require-
ments Ep=m,, Ey=m,, are plotted against mo. We see
that gy>gp for all values of #,. This model therefore
gives a m-p mass difference which is much too big. This
is to be expected, since the separable S-wave potential
we have used does not couple the 3D, part of the p wave
function. gy would have to be increased to compensate
for this, and this would act to bring the calculated
energy closer to the observed mass.

VI. APPLICATIONS OF THE MODEL

From the curves of Fig. 4, we see that in the tight-
binding limit a small variation in g results in a large
variation in E, for both states. This is a welcome
feature, in that it predicts that mass splittings which are
large on the scale of the low-lying particle masses may
nevertheless be produced by small perturbations, on the
scale of the quark rest mass. This is in contrast to the
situation encountered with the Dirac equation, where
the well-behaved solutions showed very little variation
of E(V) in the ultrarelativistic limit. We shall not treat
SU (3) breaking effects further in this paper, however.

Fic. 5. Pseudoscalar and vector coupling constants determined by
the conditions Ep=m., Ev=m,.

It is intuitively clear that the pion lifetime is related,
in a quark model, to the overlap of the quark spatial
wave functions, and is thus, in principle, calculable. We
define the pion decay constant fr by

Ol4u|x(P))=1 fx(PY)P,, (6.1)

2P )1’

where 4, is the axial-vector weak current, and P, is
the momentum of the pion. Experimentally,”® f.(#,%)
=0.925. In the quark model, the state w(P) is rep-
resented by the wave function

[72“’ / m@)ﬁp]em,

in which we have inserted the ys® in order to turn ¥
into a particle-antiparticle state. We adopt the

normalization
P
Yot (P)r 1,
/ Q)

1 R, P. Feynman, in Proceedings of the International School of
Physics “Eltore Majorana” (Academic Press Inc., New York,
1964), p. 125. His F, is related to our fr by [G/(4m) 2 m fr= F:

(6.2)
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Fi1G. 6. Pion decay constant as a function of the quark mass.

for a pion at rest, where Yagt=yp.*. This determines the
constant f,°
The axial-vector current is given by

(91 4u19=01dqvuvsta| 0)=(0l¥a"vovuvsta|0). (6.3)
Thus, by crossing symmetry,
0] 4,|=(P))
ap
=l:/ Tr{yovuysyad=(p)} ]e'P'R- (6.4)
(2m)?

For a pion at rest, only 4, is nonvanishing, and we have

Mx

3/2
—i(0] Ao|my=——fr=2 | f_P(p)
V2

&
. (65
y (6.5)

In terms of the Fourier transform f P(r)=_J/f_F(p)
Xeir-i[dp/(2m)*],

fx=(2/me)*f_2(0),

which gives fr as a function of the overlap. This, in
turn, is completely determined by specifying #s,. The
results are graphed in Fig. 6; the observed value is
obtained for a quark mass of 3.1 BeV.

(6.6)
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It is of interest to note that the calculation of the
matrix element (0| P|7(P)), where P is the pseudo-
scalar current, P=yqysp,, would have involved the

integral
[1rer?
T ey

which diverges. This may be due only to our choice of
a separable potential, and in any case could be handled,
in principle, by the introduction of a cutoff, but calcula-
tions of this matrix element are evidently unreliable.

Turning to the %S; wave function, with gy chosen so
as to make Ey=m,, we may calculate the matrix
element

(0] Vﬂlp’“(p))=[ f Tr{vevuys,*(p)}

d3

2 Yo, (07

where the superscript % denotes the spin orientation of
the p. This matrix element appears, for example, in the
calculation of the p-y vertex, which is of interest in the
calculation of nucleon electromagnetic form factors.?
For P=0, Py=m,, the zeroth component vanishes,
and we find

3 a
11;2:,1 (Olelpk)=2/f—V(P) ?

@2r)

(6.8)

This integral also diverges. There exists, however, a
matrix element analogous to (0| 4,|w) which converges
in this case. In calculating matrix elements of the
tensor current, we find

ap
(2m)’

kZ; (0] Tor | p¥)=2 / f+¥ (0) (6.9)

which converges.

VII. CONCLUSION

We have seen that the singularities of the two-
particle Dirac equation result from the imposition of
boundary conditions appropriate to a picture in which
the negative-energy states are unfilled, and propagate
forward in time. With the boundary conditions corre-
sponding to a filled negative-energy sea, which are
those adopted in the second-quantized formalism, the
reduction of the Bethe-Salpeter equation gives rise to
projection operators which eliminate the singularities
and uncouple the unphysical solutions of the two-
particle Dirac equation.

We have then used this reduced Bethe-Salpeter
equation to construct a model which, though not
covariant, incorporates all the kinematical subleties of
a realistic one. The pion mass and lifetime then fix the
quark mass and the strength of the ¢¢ interaction. Our

("’ M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953
1961).
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wave function for the p is intrinsically less reliable than
that for the =, because the interaction has been approx-
imated by an S-wave potential. The calculation of the
p— 2m decay width, which is quite manageable in this
model, ought to shed light on this question. We hope
to report on this in the future.
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APPENDIX

The bispinors used in this paper were obtained by
combining two-component spinors to make an eigen-
state of S (which we write as a 2X2 matrix, in an
obvious notation), and then adding L to make an
eigenstate of J, using the appropriate Clebsch-Gordan
coefficients. This defines the bispinors only up to a
constant factor, depending on J. We have chosen the
set, in coordinate space:

. <O —1) A1)
Xo = ,

““\1 o

0 (nﬁ“ z) (A2)
Xid= ,

11 Y
10 1,0 1
Xo1”=< ) ) X01m=—< ) )
0 0 Vv2\1 0
(A3)

0 0
X011_1=< ),
0 1
0 & 0 —8
wr=( ) (] ), )
— X4+ 0 0
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(382—1) 334,
X21“=( > ,

288, 34,
388 —(38—1)
X21m=\/2( ) y (A6)
—(382—1)  —384,

— ( 322 —3292_>
Xoy' t= .
—38%_ (382—-1)

These are not normalized consistently. Defining

J
Nig/= Y (Xpg/™)Xpg'™,

m=—J

we obtain
C000= C110=I, C011= %17 C101= 2I )
Cu'=4I, Cxn'=121.
Defining the operators m=V-¢? (i=1, 2), we find

1 d

( )Xoo°= FXy"—, (A7)
T dr
™ d 2

( )Xu°= :Fxoo()(—'l‘—) ) (A8)
T dr r

™1 d

( >Xox“”= X' " F X' ] —, (A9)
Vi) df’

T 1 d 2 d 1
( >X111m=“[4X011"‘<d—+">+7(211m(;——):|, (A10)
T 3 r r r 7
1 1 d 2
( >x101m= '[“27(011"‘(—"“)
T 3 dr r
d 1
SN |
dr 7

1 d 3
( >X211’"= [Xuimt 2X101m1<*d—+—> )
r

T2 7,

(A12)

which are useful in the decomposition of (2.1) and
(5.3). For the bispinors constructed in momentum
space, with —4V replaced by p, the same relations hold
with all the operators on the right-hand side replaced

by .



