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Coherence Properties of Blackbody Radiation. *
III. Cross-Spectral Tensors
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DePartnMnt of Physics and Astrononty, University of Rochester, Rochester, i&7evo York

(Received 15 May 1967)

In a recent paper, cross-spectral tensors of quantized stationary electromagnetic fields were introduced
and some of their properties were discussed. In the present paper, closed expressions for the cross-spectral
tensors of blackbody radiation are derived and their behavior is illustrated by a number of diagrams. It is
found that the correlation distance of a spectral component of wavelength ) is itself of the order of ) and
is therefore independent of the temperature of the radiation.

l. INTRODUCTION

N two earlier papers, the coherence properties of
. . blackbody radiation were studied on the basis of
classical theory, ' as well as on the basis of the theory
of the quantized fieM. ' In particular, closed expressions
were obtained for the second-order coherence tensors in
the space-time domain and their behavior was illus-
trated by a number of contour diagrams.

In the present investigation, coherence properties of
blackbody radiation in the spectral domain are in-
vestigated. The analysis is carried out within the frame-
work of the theory of the quantized field, but as is
evident from the conclusions of Ref. 2, identical results
would be obtained were the analysis carried out on the
basis of classical theory.

2. THE SECOND-ORDER CROSS-SPECTRAL
TENSORS OF A STATIONARY QUANTIZED

ELECTROMAGNETIC FIELD

We begin by summarizing the definitions of second-
order cross-spectral tensors that have been introduced
into the general theory of stationary quantized electro-
magnetic fields in a recent publication. '

Let P(r, t) and H(r, t) be, respectively, the electric
and magnetic field operators at the point r at time t,
and let the superscripts (+) and (—) denote, respec-
tively, their positive- and negative-frequency parts.
We represent these operators as Fourier integrals with
respect to the time variable:

If p is the density operator of the field, assumed to
be stationary, the second-order coherence tensors in
the space-time domain are defined by the expressions

$,,(r~,re, r)=tr{pE & &(rg, t)E, &+&(rm, t+r)), (2.3a)

X,;(r~,r2, r)=tr{pH,' &(rs, t)H, &+'(rs t+T)) (2.3b)

5R,, (rq, rs, r)=tr{pP, & &(r~,t)H, &+&(rs,t+7)), (2.3c)

K,,(r&,r2, r) =tr{p8,' '(rs, t)E,'+'(r2, t+r)), (2.3d)

W,, &"&(r&,rs, v) = lim
4v~0

W;, &"&(r,,r„v) = lim
4v~0

v—4v/2

v+4v/2

v—4v/2

tr {ph;&
—

& (r&,v)

&(h, &+& (rs, v') )dv', (2.4b)

tr{pe,' &(rg, v)

Xht&+&(rs, v') )dv', (2.4c)

W;;&"&(rt,r,,v) = lim tr{ph;& &(rg, v)
4v~0

v—4v/2

)& e, &+& (re, v') )dv'. (2.4d)

where the subscripts i,j denote Cartesian components
(i,j=x,y,s)

The second-order cross-spectral tensors of the field

may be defined by the formulas

v+4v /2

W;, &'(r~, rs, v) = lim tr{pe,&-&(r&,v)
4v~0

v—4v/2

&& e;&+& (rs, v') )dv', (2.4a)
v+4v /2

E&+&(r t)—

E&—
&(r,t) =

e&+&(r v)e
—' '"'dv

P&
—

&(r v)e+2~&vfdv

(2.1)
It was shown in Ref. 3 that each of these cross-

spectral tensors is the Fourier transform of the corre-
sponding second-order coherence tensor defined by
E&ls. (2.3), i.e.,

H&+'(r, t) =

8&—'(r, t) =

h&+(&r, )ve
' '"'dv,

h, & &(r,v)e+'r'"'dv.

(2.2)

W;;&'&(r&,rs, v) =

W;;&"&(rg, rs,v) =

(r&, rs, r)e'r'"'dr, "(2.5a)

K;;(rg, rv, r)e'r'"'dr, (2.5b)
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W&s'"&(rg, re, v) =

W;t& "&(rg,rs, v) =

9R;;(rq, rs, r)e' '"'dr, (2.5c)

K;;(r&,rs, r)e'r'"'dr . (2.5d)
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FIG. 2. Contours of w„«&(R)
in the XF plane.

and rs in units of the reduced wavelength %=X/2z. the spectral correlation it is convenient to normalize
= c/2tr&. From (3.6) we find that the cross-spectral tensor W; '(R). We define

W;, ' (r,v)—=W; ' (R) w,".&'& (R)=W; &'&(R)/LW;;&'& (0)W; &'&(0)j'" (3.12)

where

8m'�' 12—=A=(&,T)-
c' exp(hp/ET) —1

(3.9)

( B B Bs )sinR
, (3.8)

(BE;BR; BEsBRs/ R

0& i w, ;&'&(R)
i
&1. (3.13)

(no summation in the denominator). Because of isotropy
of the blackbody radiation leld, W;;&'&(0)=W;;&'&(0)
and hence tt&@&'& is normalized, so that t&&;;&'&(0)=1. It
also follows from the Schwarz inequality that

~

tt&;;&'&(R)
t

is bounded between the values 0 and 1, i.e., that

is the Planck distribution function. If we carry out the
differentiation indicated in (3.8) we 6nally obtain the
following expression for the electric cross-spectral tensor
of blackbody radiation:

From (3.10) we readily find that

W "&'(0)=W"&'&(0) =-'7rA

and hence from (3.10) and (3.12) it follows that

(3.«)

Wg&'(R) =~A(B; Ljp(R) (1/E) ji(R)j
+(E;E;/E') js(R)), (3.10)

~"'(R)= 2 {B'Ljo(R)—(I/E) jt(E)l
+(R;R;/R') j,(R)) . (3.15)

If we set i = j=x in (3.15) and take R in the direction
of the X axis, we obtain the following expression for
the longitudinal normalized electric cross-spectral cor-
relation function m~, g&'):

where jo, j&, and j2 are the spherical Bessel functions
of order 0, 1, and 2, respectively, i.e.,

jp(R) = sinR/E,

ji(R)=sinR/E' —cosR/E,

js(E)= (3/E' 1/R) sinR —(3/R') c—osR.
(3.11) (3.16)r&&t, s&'& (R)=3ji(R)/E.

On the other hand, if we set i= j=x in (3.15) and
In order to discuss the three-dimensional behavior of take R along a direction perpendicular to the X axis,
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FIG. 3.Contours of w„&'& (R)
in the FZ plane.

we obtain an expression for the lateru/ normalized
electric cross-spectral correlation functi on m ~,&

&'):

w& 5"'(&)= 2Ljs(~) —(1/&) jt(~)3 (3 17)

The behavior of the longitudinal and lateral coherence
functions calculated from Eqs. (3.16) and (3.17),
respectively, are shown in Figs. 1(a) and 1(b).

Let us now consider a dia gonal component of m;; &'&,

say the ss component. We have from (3.15)

w„&'& (R)= -', Lje(R)—(1/R) jt(R)
+(Z'/&') (~)3. (3 ig)

The behavior of the other two diagonal components,
m, &' and m» ('), is, of course, strictly similar.

Next, let us consider an off-diagonal component of
w;;&', say the xy component. According to (3.15),

w &'&(R)= s(XF/E )js(E). (3.19)

In Fig. 4, the variation of w,„t'&(R) along the line
X= F, Z=0 is shown. Figures 5 and 6 show the

06—

Evidently, the contours of m„&') in the XF plane
(Z= 0) are circles' (Fig. 2). The contours of w„i'& (R)
in the Y'Z plane, computed from Eq. (3.18), are shown

in Fig. 3. The surfaces w„i'& (R)= const are the surfaces
of revolution, obtained by rotating these contours about
the Z axis. 20 l5 &0~5

0.4—

-0.2—

fi There is an error in the labeling of one of the contours in the
corresponding diagram of Ref. i . The label —0,$905 in Fig. 4 of
g.ef. 1 should rgad —O,OI91,

X& 0 R = X)0

FIG. 4. The variation of w, „~'&(R) along the line X= Y, Z=0.



j 332 C. MEHTA AND
)k y

WOLF

X F~G on«urs of
in the Xl ~*w "(R)

P&ane.

&EZ

0

15-

0-

Frc. 6. ConF . . ontours of m, '&

&n the plane X=ne = I'.
X=y



1333E NSO R. SEcTRAL Tg ROSS —Sp

)
w(III)((()

[

(3.»)
i5

hange tp the magnet

TEgSORSCROSS-SPE
N

CTRAL/HE M&XE
y RAD&AT 0OF +LACK

.
coherencef 2 the mixedF (3 1&) of« '

23c) and (23 )
According o q

. . Ldefined bX Eq. ' '
s

tensprs ~'~
radiation re iven }

mZ, ,(r, )=- " r, ~

FIG
2~2), R3gr .(m) (ry r2

g in the Planey lane an/ in(.) (R) in the Xtours pf R gg

nts pf
, spectre}5'

g diagpna} o
'}.a

The beh»ip
f purse, strict y '

l prre»tipn
the tens« ~"

F gs. $-6 that app '
extends fpr

t is se
the spect

F (3.~)

pf the elec r'

h g(6. Since a
h correlation

distances fpr
& we see

l n th g pf

whic ~ '

that t ert ~
—

tof whee g

g= 2rrvr/ =
tral cornponen

d is therefore
nce of the p.

theorizer of

dist
'

Qe}gis jtse}f «
f t}e radiatiPn.

e electric e
t ~perature oindependent o hfthe e

['(k r—kcr)]d k, (4.2)exp i r-
gnk ]

hc
6'j.l

4z'

ad.»tip".It was shown
etic cohd the magn

p.e-

where 3-(('
d 2.3b) that the e

iso equal to
E,. (2.&a) a"

. f blackbo@' a"

p.6—

l tensplsectra
each other) '~

) gr, .(e) (R),

ll the resultsence a. .()) R)=—lf ')' " '
rrelationpr p".

. )) r, rs, p) H' . erties«

~R
where lf ~&'

l. hed for the c .
l without

l

estab is ethat we
d

.
the spectr~ l Qpmain app ~

the z axis. +'~
~ . the electr'

ic fjeld also.
ic field»

f
~

~ ( ) (R) I
a

g/Ig I exP(h&/+

c

. Contours of ~s) „(m)(R)
)

YZ planein the

te here by thewhich we denote ertensors, w icd coherencef 2 the mixe6In Re. )
respective y.l .

';, and 'g;, ,denoted by gg;. and X;;, were ensymbols BRg an



1334 C. L. MEHTA AND R. %01.I

where the spatial argmients r~ and r~ enter again only spectral tensors. Ke de6ne
in the combination r=r2 —r& and e,~~ is the completely
antisymmetric unit tensor of Levi-Civita.

Equation (4.1) may be rewritten in the form

W;;(~&(R)

%e now proceed in a similar way as in connection with
Eq. (3.1). We change the variable of integration to
spherical polar coordinates and integrate over the
angular variables. We then obtain

" e '~" sinkr

eak
k dk. (4.4)

Next we substitute from (4.4) into Eqs. (2.5c) and
(2.5d) and obtain the following expressions for the two
mixed cross-spectral tensors of blackbody radiation:

hc ( 8)
K;;(r,r) = —X,;(r, r) =

ar, &

expji(k r- her)j
(4.3)

eak

(no summation). (4.6)

From (4.6), (3.14), and (3.21) it follows that

w;;("&(R)= —w "("&(R)=-', ie;, ((&(/~) j&(&). (4 7)

It is seen from (4.7) that w;;("& and u;;("& are anti-
symmetric tensors. Hence their diagonal components
vanish and consequently there is now no longitudinal or
lateral coherence. A typical oG-diagonal component is,

w,„( '(R) =—w,„("'(R)= ~i(Z/R) j&(R) . (4.8)

lt is seen that m, „& & and m, „&"& identically vanish in
the plane Z=O. In Fig. 7 the variation of ~w,„™(R)

~

along the Z axis is shown. Figure 8 shows the contours
of tm, „("&(R)

~
in the FZ plane.

As in the case studied in Sec. 3, the spectral correla-
tion distance is again seen to be of the order of the
wavelength, and is therefore independent of the
temperature of the radiation.

ACK5'OWLEDGMENTS

gT . .(m)(R) — gl . . (n) (R) i~+ &. , (g /g)~ (g) (4 5) We wish to express our thanks to Miss J. Chang,
G. Bedard, R. Chanda, and D. Dialetis for help with

where, as before, R is defined by Eq. (3.7) and A by computations and to Mrs. G. Walker for assistance
(3.9). Again it is convenient to normalize the cross- with the construction of the figures.


