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In a recent paper, cross-spectral tensors of quantized stationary electromagnetic fields were introduced
and some of their properties were discussed. In the present paper, closed expressions for the cross-spectral
tensors of blackbody radiation are derived and their behavior is illustrated by a number of diagrams. It is
found that the correlation distance of a spectral component of wavelength X is itself of the order of X and
is therefore independent of the temperature of the radiation.

1. INTRODUCTION

N two earlier papers, the coherence properties of
blackbody radiation were studied on the basis of
classical theory,! as well as on the basis of the theory
of the quantized field.? In particular, closed expressions
were obtained for the second-order coherence tensors in
the space-time domain and their behavior was illus-
trated by a number of contour diagrams.

In the present investigation, coherence properties of
blackbody radiation in the spectral domain are in-
vestigated. The analysis is carried out within the frame-
work of the theory of the quantized field, but as is
evident from the conclusions of Ref. 2, identical results
would be obtained were the analysis carried out on the
basis of classical theory.

2. THE SECOND-ORDER CROSS-SPECTRAL
TENSORS OF A STATIONARY QUANTIZED
ELECTROMAGNETIC FIELD

We begin by summarizing the definitions of second-
order cross-spectral tensors that have been introduced
into the general theory of stationary quantized electro-
magnetic fields in a recent publication.?

Let E(r,) and H(r) be, respectively, the electric
and magnetic field operators at the point r at time ¢
and let the superscripts (+) and (—) denote, respec-
tively, their positive- and negative-frequency parts.
We represent these operators as Fourier integrals with
respect to the time variable:

E®D ()= / e (xp)e oty |

0.,0 (2.1)
EO(r, )= / e (rp)et2tdy

0

A®(r,f)= / hD (xp)e2mivtdy |

‘; (2.2)
HO(r,t)= / RO (xp)ett otdy .

0
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If 4 is the density operator of the field, assumed to
be stationary, the second-order coherence tensors in
the space-time domain are defined by the expressions

8.i(t1,re,m) = tr{pE; O (t1,) B; P (12,0+ 7)),  (2.3a)
304 (ry,te,7) = tr{pH O (r1,) H; P (rt4-7)} ,  (2.3b)
Mii(rn,x0,7) = tr{p B (1, ) H, P (r2)t+7)},  (2.3¢)
i (x1,r,7) = tr{pH O (21,0 B (ryt4+7)},  (2.3d)

where the subscripts 4,7 denote Cartesian components

(i)j= x’y7z)’
The second-order cross-spectral tensors of the field
may be defined by the formulas

v4-Av /2
W ;9 (1, re) = lim tr{pé: 7 (11,)
Ay
v—Av/2
X &P (r00)}dv', (2.4a)
v+Av/2
W ;™ (x1,1t9,) = lim tr{ph; 7 (r1,p)
Ay
v—Ay/2
Xh; P (rap)}d,  (2.4b)
v+Av/2
Wij(m)(l’l,l'g,v) = lim / tr{ﬁé,-(‘>(r1,u)
Ap—>0
v—Ay /2
th(+) (rz,V,) }dl/’ , (24(3)
v+Ar/2
W 3™ (r1,re,0) = lim tr{ph; 7 (ry,v)
Ar->0
v—Av/2

X& P (rp)}dy' . (2.4d)

It was shown in Ref. 3 that each of these cross-
spectral tensors is the Fourier transform of the corre-
sponding second-order coherence tensor defined by
Egs. (2.3), i.e,

0

W i (11, xe,0) = 8ii(ry,re,m)e* ™ 7dr,  (2.5a)

W ;0 (x1,x00) = i 3C;;(r,t2,7)e2™7dr ,  (2.5b)
—o

W™ (21,k00) = i NC;;(r1,x,7)e2™>7dr,  (2.5¢)

Wi (xy,¥a0) = i Wij(ts,re, 7)™ 7dr.  (2.5d)

—00
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F16. 1. (a) Longitudinal normalized electric cross-spectral correlation. Variation of wiong® (R) =4, (R) with R, when R is along the
X axis. wi;@(R)=3W;©@y,r0,0)/(27A); R=ra—r1, A=8rhv3/{c*[exp(hv/KT)—1)]}. (b) Lateral normailzed electric cross-spectral
correlation. Variation of 1. (R) =w,,® (R) with R, when R is perpendicular to the X axis.

We will now examine the cross-spectral tensors of
blackbody radiation.

3. THE ELECTRIC AND THE MAGNETIC
CROSS-SPECTRAL TENSORS OF
BLACKBODY RADIATION

According to Eq. (3.10) of Ref. 2, the electric coher-
ence tensor of blackbody radiation may be expressed
in the form

hc lezéij—kikj
8ij(ra,re,7) = 845(x,7) =— / —

42 ) R(ex*—1)
Xexp[i(k-r—ker)Jd%, (3.1)
where*
r=ry—r1;, a=*#/KT, 3.2)

# being Planck’s constant divided by 2, ¢ the vacuum
velocity of light, K the Boltzmann constant, and 7T the
absolute temperature of the radiation.

Equation (3.1) may be rewritten in the form

hc/d 0 92 » ™
84i(x,7) =_’(—‘ —— 04 ) / k? dk / sinfd6
472 ar; 67’j 0707 0 0

27 exp[i(kr cosd—kcr)]
X
/:) k(e**—1)

d$, (3.3)

where we use spherical polar coordinates in the k
domain, with the polar axis along the direction of r.

4 The variables r and = appearing in Eq. (3.1) and elsewhere in
this paper are the negatives of those appearing in Eq. (3.16) of
Ref. 2.

In (3.3) and elsewhere in this paper a summation is
implied over repeated dummy indices unless otherwise
stated. On carrying out the integration in (3.3) over the
angular variables, we find that

hc/d 9 92
8¢j(r,1)=—~<—-— ——0; >

™ 371; afj “61’19(97’]6

© g~tket sinky
X / ik
0

e*—1 7

(3.4)

Next we substitute from (3.4) into (2.5a) and obtain
the following expression for the electric cross-spectral
tensor:

hcy @ 9 92
Wij(e)(h,rg,V)E Wij“)(r,v) —_—--—('—'— ——0; )

™ afi 6r,~ ]arkark

©  sinkr ®
X/ dk/ ei@m—kordr - (3.5)
o r(e**—1) J_o»

The integration over 7 gives (2r/c)8(k—2mv/c), where
4 is the Dirac delta function. After integrating over %,
the following expression for W ;{9 (x,») is obtained:

a2 \ sin(2mwvr/c)

5 . (3.6
]Orkark/r(e’“’/KT—— 1)

hfd 0
Wi (1) = ~<_-
w\O7; (97’_7'

It is now convenient to introduce a dimensionless

vector R (XYZ), defined by the equation
R=(2wv/c)r. 3.7

Evidently, R represents the separation of the points r;
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Fic. 2. Contours of ., (R)

and r, in units of the reduced wavelength A=\/2r
=¢/2mv. From (3.6) we find that

WO (tp)=W:;O(R)

d 9 02 \sinR
=1rA( 5 ., (3.8
OR;0R; ORw.R./ R
where
8whvd 1
A=4=(T) (3.9)

¢ exp(w/KT)—1

is the Planck distribution function. If we carry out the
differentiation indicated in (3.8) we finally obtain the
following expression for the electric cross-spectral tensor
of blackbody radiation:
W@ R)=md{8;[ jo(R)— (1/R) j1(R)]
+(R:R;/R?) j2(R)},
where 7o, 71, and j, are the spherical Bessel functions
of order 0, 1, and 2, respectively, i.e.,
jo(R)=sinR/R,
71(R)=sinR/R?*—cosR/R,
72(R)=(3/R3*—1/R) sinR— (3/R?) cosR.

In order to discuss the three-dimensional behavior of

(3.10)

(3.11)

)
=

in the XY plane.

the spectral correlation it is convenient to normalize
the cross-spectral tensor W ;2 (R). We define

wi; O (R) =W @ R)/[W 5@ (0)W ;54 (0) ]2,

(no summation in the denominator). Because of isotropy
of the blackbody radiation field, W (0)=W;'*(0)
and hence w;;(® is normalized, so that w;;®(0)=1. It
also follows from the Schwarz inequality that |w;;(® (R)|
is bounded between the values 0 and 1, i.e., that

(3.12)

0< |w; 9 (R)[ <1. (3.13)
From (3.10) we readily find that
Wi @(0)=W;;@(0) =474 3.14)
and hence from (3.10) and (3.12) it follows that
w;; @ (R) = 3{8:[ jo(R)— (1/R) 1(R)]
+(RiR;/R?)j2(R)}. (3.15)

If we set i= j=xin (3.15) and take R in the direction
of the X axis, we obtain the following expression for
the longitudinal normalized electric cross-spectral cor-
relation function Wieng(®:

'wlong(e) (R) = 3]1(R)/-R .

On the other hand, if we set ¢=j=x in (3.15) and
take R along a direction perpendicular to the X axis,

(3.16)
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Fic. 3. Contours of .. (R)
in the ¥YZ plane.

we obtain an expression for the laferal normalized
electric cross-spectral correlation function wy,(®:

Wit (R)=3[0(R)— (1/R)jx(R)].  (3.17)

The behavior of the longitudinal and lateral coherence
functions calculated from Egs. (3.16) and (3.17),
respectively, are shown in Figs. 1(a) and 1(b).

Let us now consider a diagonal component of w;;(®,
say the 2z component. We have from (3.15)

w22 (R)=3[/o(R)— (1/R) j1(R)
+(Z*/RY)j(R)]. (3.18)

Evidently, the contours of w,,(® in the XYV plane
(Z=0) are circles® (Fig. 2). The contours of ., (R)
in the YZ plane, computed from Eq. (3.18), are shown
in Fig. 3. The surfaces w,,(® (R) = const are the surfaces
of revolution, obtained by rotating these contours about
the Z axis.

5 There is an error in the labeling of one of the contours in the
corresponding diagram of Ref. 1. The label —0,1905 in Fig. 4 of
Ref. 1 should read —0,0191,
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The behavior of the other two diagonal components,
wz? and w,, (9, is, of course, strictly similar.

Next, let us consider an off-diagonal component of
(9, say the xy component. According to (3.15),

w2y O (R)=3(XV/R?) jo(R). (3.19)

In Fig. 4, the variation of w.,(R) along the line
X=Y, Z=0 is shown. Figures 5 and 6 show the
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F1e. 4. The variation of ., (R) along the line X=Y, Z=0.
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Fic. 7. The variation of |z, (R)| along the Z axis. w;™ (R)=
3Wi;™ (ry,12.0)/(2wA); R=r2—11,4 =8whv3/{c*[exp(hw/KT)—1]}.

contours of w,,(®(R) in the XV plane and in the plane
X =Y, respectively.

The behavior of the other off-diagonal components of
the tensor w;;'® is, of course, strictly similar.

It is seen from Figs. 1-6 that appreciable correlation
of the electric field in the spectral domain extends for
distances for which R<6. Since according to Eq. (3.7)
R=2mvr/c=2x|ra—ri|/\, we see that the correlation
distance of the spectral component of wavelength X\ of
the electric field is itself of the order of A and is therefore
independent of the temperature of the radiation.

F1c. 8. Contours of |, (R)|
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It was shown in Ref. 2 that for blackbody radiation.
the electric and the magnetic coherence tensors are
equal to each other, i.e., that

3, 7) = 845(x,7) , (3.20)

where 3C;;(t,7)=03C;j(r1,rs,7). Hence it follows from
Egs. (2.52) and (2.5b) that the electric and magnetic
cross-spectral tensors of blackbody are also equal to
each other, i.e., that

W{j(h) (R) = W,,;j(e) (R) 5 (321)
where W;®(R)=W ;'™ (x1,r2,»). Hence all the results
that we have established for the correlation properties of

the electric field in the spectral domain apply without
change to the magnetic field also.

4. THE MIXED CROSS-SPECTRAL TENSORS
OF BLACKBODY RADIATION

According to Eq. (3.15) of Ref. 2 the mixed coherence
tensors 9M;; and 91,5, [ defined by Eq. (2.3¢) and (2.3d)
above] of blackbody radiation are given by?®

My(r,7) = — Iy5(x,7)

fic / k1
=—€;j1
42 e*kh—1

4.1)

expli(k-r—ker)]d%k,

(4.2)

in the YZ plane.

6In Ref. 2, the mixed coherence tensors, which we denote here by the symbols 9M;; and 9Ui;, were denoted by ‘G and ‘G,

respectively.
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where the spatial arguments r; and r, enter again only
in the combination r=ry;—r; and ;i is the completely
antisymmetric unit tensor of Levi-Civita.

Equation (4.1) may be rewritten in the form

/7 a
NMs(x,7) = —Mij(x,7) = Z—zém(— t—‘*)

78 an
exp[i(k-r- kcr)
x [ fﬂk_l_zjd%, @3
ea -

We now proceed in a similar way as in connection with
Eq. (3.1). We change the variable of integration to
spherical polar coordinates and integrate over the
angular variables. We then obtain

fic d
Mij(r,7) = —Nij(x,7) = "“fijt(“' 1*-)

™ é)r;
® gtkeT ginky
X / kdk. (4.4)
0 e"‘"——l r

Next we substitute from (4.4) into Egs. (2.5¢) and
(2.5d) and obtain the following expressions for the two
mixed cross-spectral tensors of blackbody radiation:

W,‘j(m) (R) = — Wij (n) (R) =1rA e,-jl(Rl/R)jl(R) , (45)

where, as before, R is defined by Eq. (3.7) and 4 by
(3.9). Again it is convenient to normalize the cross-
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spectral tensors. We define

Wi (R)
wi; ™ (R) = —w,;(R)=

[Wal2(0)W;;»(0) ]/

(no summation). (4.6)

From (4.6), (3.14), and (3.21) it follows that
wi; ™ (R) = —w;; ™ (R)=Fiein(Ri/R) ju(R).  (4.7)

It is seen from (4.7) that w;;™ and w;;™ are anti-
symmetric tensors. Hence their diagonal components
vanish and consequently there is now no longitudinal or
lateral coherence. A typical off-diagonal component is,

Way ™ (R) = —w,, ™ (R)=2i(Z/R) j1(R). (4.8)

It is seen that w.,™ and w,,™ identically vanish in
the plane Z=0. In Fig. 7 the variation of |, ™ (R)|
along the Z axis is shown. Figure 8 shows the contours
of |,y (R)| in the ¥Z plane.

As in the case studied in Sec. 3, the spectral correla-
tion distance is again seen to be of the order of the
wavelength, and is therefore independent of the
temperature of the radiation.
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