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Quantization of Multispinor Fields*t
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The multispinor fields which describe massive fields with spin &2 are constructed. These fields are
quantized using Schwinger s action principle. Lorentz invariance and physical positive-definiteness re-
quirements are verified. In particular, those fields with spins 0, 1, and ~ are explored in detail. It is shown
that the spin-2 system described by a third-rank multispinor is not equivalent to the Dirac field in the
presence of electromagnetic interaction. It describes a spin-~ system without intrinsic magnetic moment. The
Lorentz invariance of the interacting system is verified. This result will facilitate the physical explanation of
the famous ~3 ratio of the nucleon magnetic moments.

l. IHTRODUCTION

' 'T is well known that systems with integer spins can
i - be described by tensor operators, and systems with
half-integer spins can be described by tensor-spinors.
These field operators satisfy the Fierz-Pauli equations
and the Rarita-Schwinger equations, respectively. ' It
has been shown for systems with spin &2 that these
field equations can be derived from certain Lagrange
functions. These systems can be quantized consistently
by means of Schwinger s action principle. Lorentz in-

variance and physical-positiveness requirements have
been verified. It is also known that systems with
definite spin and mass can be described alternatively

by multispinors with definite syliimetry properties as
well. ' They satisfy' the Sargmann-Wigner equations
which have the same mathematical structure for sys-
tems with integer and half-integer spins. As free fields,
these equations are equivalent to those of Fierz-Pauli
and of Rarita-Schwinger. The SU(6) theory of strongly
interacting particles suggests that the hadrons should
be represented by multispinors of various ranks. ' The
success of SU(6) theory arouses new interests in this
formulation. In this paper, 4 an attempt is made to
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study whether these systems can be quantized con-
sistently according to the techniques of the quantum
action principle. We first review the field theory of the
second-rank multispinors which is equivalent to those
of Kemmer-Du)En fields. ' Some techniques are learned
from the quantization of these simple systems. Lorentz
invariance and positive-definiteness requirements are
verified in this new formulation. These techniques are
then applied to the field theory of multispinors of third
and fourth ranks. One finds that the multispinor
formulation has its advantages as well as its disad-
vantages in comparison with the usual formulations.
In the last section, the possible applications of our
results to strong-interaction physics are discussed.

2. SECOND-RANK MULTISPINORS

The second rank multispinors p ~ have two distinct
symmetry classes: The antisymmetric multispinor de-
scribes a scalar field, and the symmetric multispinor
describes a vector field. Since both. systems behave
quite analogously in this formulation, we shall discuss
them collectively. As free fields, both systems can be
described by the Lagrange function

I.= —-', y(—ira+m)y,

where m is the field mass, and

The (A); is a matrix which operates on ith indices
only. The field equation follows from the principle of
stationary action:

(—ira+m)y=o, (2)

which can be reduced to the Bargmann-Wigner
equation,

(—inc)+m),y=O, i= I, 2

regardless of the symmetry of p.

=&Lv»v, j, vs=& &'p P. All 6eld operators are symmetrically
(or antisymmetrically} multiplied.

~ N. Kemmer, Proc. Roy. Soc. (London) A173, 91 (1939); R.
J. Duff, Phys. Rev. 54, 1114 (1938).
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QUANTIZATION OF MULTISPINOR FIELDS

In order to facilitate the quantization procedure, we
decompose the field variables into components associ-
ated with the positive- and the negative-parity sub-
spaces. This can be done by decomposing the identity
operator 5 p into the measurement symbols for diferent
eigenstates of y' through'

i&.p=A(+) p+A&-) p,

A(+) t (1~+0)

(4)

Each of the subspaces can be decomposed further ac-
cording to their particular eigenvalues of spin along a
fixed direction, for example, 0.'3,.

2

A(+)
p
—g M(+)+ M(+)

p
a=1

2

A( )
p
—QM( )+ M( )

p
a=1

where a= 1, 2 are the spin indices. The M(+) are the
measurement symbols which transform a spinor of
Dirac index &r into a positive (or negative) eigenstate
of y', with cr'3 ——a, i.e.,

M (+)0 g2
——0-'3M (~) .

They satisfy the orthonormality conditions:

~(+) ~(+)~

~(+) ~(+)~ —0

Making use of proper phase conventions, we have

(M &+&)*=(w)o„M(+),

3f(+)y = aM(+).

Now, we can decompose our field variable g p into
components associated with various parity subspaces:

4'a p
= t&aa'bpp'4 a'p'

= LM (+)tM &+)+M &
—) tM &

—)) ..
X PM (+)tM '+'+M (—) tM &

—)jp p,y, p,

= (M (+)$)i (M (+)t) @(+) (+)+.(M (+)t) (M (—) t) ~ (+) & &

+ (M&—&t)i(M(+) t)sy(—) (+)

+ (M&—)t)i(M(—)t)s4)(—)(—)

with

associated with various parity subspaces. Note that
g(+"+) s and. p( ) & ),s have the same symmetry prop-
erties as p p(x). Field equation (2) can be transcribed to

(—ic&e+m)P(+"+)+-,' (&r V)ip(—) &+)

P1(&r.V) y(+)(—) —()

(iso+ m)P( )(—)+—'(e-V),P +()( )+—'(e-V),P( )&—+& = P

~(+)(—)+.t (&r. V) t&t, (+)(+)+i (&r. V) y(—)(—) —()

m(t, (—)(+)+t (&r. V) &t,
(+)(+)+.t(&r. V),y(—)(—) =P

It is easy to see that p(+& &+& and p& & & ' are independent
dynamical variables, while g(+)( ) and. P( &&+) are de-
pendent variables. There is only one pair of independent
variables for an antisymrnetric p(x), but there are
three pairs of them if p(x) is symmetric. These justify
the fact that the antisymznetric multispinor represents
a scalar field, and the symlnetric multispinor repre-
sents a vector field. The generator,

G= -',i yr'by d'g

',i t-y( && )(~„),(~„),by(+)(+)

y (+) (+) (o ) i(0 )spy(
—) (—)jdsg

follows also from the action principle, and leads to the
following equal-time commutator relations:

Ly s (+) (+) (g) y, s, (—) (—) (g') j
= L(~.)t(~.)s3(.s,"s &~(x-x'), (g)

L4(&
(+) (+) {x)y(+) (+) (x')j

=L4' " '(*)A' " '(*')j=o (9)

The commutators involving the dependent fields can
be obtained easily through the constraint equations. All
these commutator relations can be put into a covariant
form

L4 p(g) 4 p (x )j
= (1/2im)L(m+iyB)t(m+iyB)sj( p, p }h(x—x'),

(1o)

where the indices n, P and n', P' in the curly brackets
are properly symmetrized according to the symmetry
of 4»(x). These covariant expressions can be generalized
easily to multispinors of arbitrary ranks. This is one of
the advantages of using the multispinor formulation.

We now use the action principle to find the stress
tensor. ~ Making use of

y(+) (+)—(M(+)) (M(+)) y
P'+' )= (M(+')i(M' ))sQ etc

with
brl&= bx"8)p si (8 exp B—pbx )Z p&I&—, —

&-p= sI (~-p)i+(~-p)s3,

where P(+) &+&, etc. , are the corresponding field variables we have

' J. Schwinger, Proc. Natl. Acad. Sci. U. S. 45, 1542 (1959);
46, 257 (1960);46, 570 (1960).

ger 24P (a~v)4+ 2 ~ LIP (a+r) i) )

' J. Schwinger, Phys. Rev. 82, 914 (1951);91, 713 (1953).

(12)
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which can be reduced to

2 mgo44'+ 4P (oP&)4' 2 W (7 (g) i (V~))s4' (13)

This leads to, in particular,

results are essentially a transcription of his derivations
into our own language.

A. Free Spin=~ Field

Too tNptf) 0

T '=~l «r»(t

The Lagrange function for a free spin--,' field, de-
(14) scribed by a third-rank multispinor, is of the form

(Appendix A)
Another important consequence is that the Schwinger
relation, '

Too(x), Too(x') j=—i[To o(x)+T'o(x') jBob(x—x'),

can be verified easily in this formulation. It can be
shown that I'J, and JI,~, which are constructed from
Too(x), behave correctly as the generators of the 3-
dimensional translation and rotation group. This prop-
erty, combined with the Schwinger relation, asserts the
invariance of the theory under proper, orthochronous
Lorentz transformation. The Lorentz invariance is not
affected even in the presence of the electromagnetic
interaction. One can verify this property by means of
Schwinger's techniques of extended operators. '

The Green's function can be introduced with the aid
of external sources as"

G-p-p (*,*,') =59-p(x))/5n "(*')I, o=(15)
It is easy to show that the Green's function satisfies

(c)'—m') [G p p (x,x') —(1/2m)1( p, p )(5(x—x'))
= —(1/2m)[(m+iyB)i(m+iy())s j(~p,~ p )b(x x'), —

(16)
with

(1a &pa' 'p=)s (dna'happ'+5ap'5a'p) ~

Note that aside from a contact term, both the covariant
commutator and the Green's function have the same
differential structure. This serves as another test of
our quantization procedures.

3. THIRD-RANK MULTISPINORS

Third-rank multispinors are of special interests be-
cause they are the natural descriptions of physical
baryons in the SU(6) theory of strongly interacting
particles. Third-rank multispinors describe systems
with either spin ~ or spin ~ according to their symmetry
properties. As free fields, they should satisfy Sargmann-
Wigner equations, and their Lagrange function have
been constructed by Guralnik and Kibble. " In this
paper, simpler Lagrange functions are presented. They
are equivalent to those obtained by Guralnik and
Kibble. The quantizations of third-rank multispinors
have originally been studied by Chan. " Some of our

I-= P( —iI'8—+m)f+ ,'mQQ-,

where f is a non-Hermitian 6eld, and

it'-ps= —6 v

Q-ps= 's 8'-pe+Ax-+fr-p)
it=4'(V') i(V') s(V') s.

The field equation is given by

(—il'8+m)P —smQ= 0.

It is straightforward to verify that this equation is
equivalent to (see Appendix 3)

0=0,
( iyB—+m), /=0, i=1, 2, 3

which are the correct equations to be satisfied. %e
introduce, in analogy to second-rank multispinors, the
field variables in the two-dimensional representation:

1t, (+) (+) (+)—(Iirl(+)) (~(+))s(~(+)) lt, —+(+)

it, (—) (—) (—) —(~(—))i(~(—))s(~(—))sit, —@(—)

y(+) (+) (-)—(~(+))i(~(+))s(~(—))sit,

It will soon be clear that%'&+& and %'& ) are independent
field variables, and that f(+)(+)( ', , are dependent
field variables. Making use of the field equations, such as

mP(+)(—)(+)+i ((r. V)gP(—)(—)(+)+ ((r. V') @(+)—()

mP(—)(—)(+)+i (~.V),P(+)(—) (+)+.r ((r.V) @(—) —0

we can express these dependent variables in terms of
the independent variables, as

p(+) (-) (+)

=Dr[((r V)i(e V)s@( & —2m(e V)s@(+)g, etc. , (20)

with
(4m' —V') Di (x—x') =8(x—x') . (21)

These results are first derived by Chan, and they do
not depend on the symmetry properties of the multi-
spinors. The generator can be expressed as

G=i $1'ogdsx

' J. Schwinger, Phys. Rev. 127, 324 (1962).
o J. Schwinger, Nnovo Cimento SO, 278 (1963); Phys. Rev,

132, 1317 (1963)."J.Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951).
"G. S. Guralnik and T. W. B. Kibble, Phys. Rev. 139, 8712

(1965)."L.H. Chan, Ph.D. thesis, Harvard University (unpublished).

[@(+)t5@(+) )J,(+) (+) (—) tilt, (+) (+) (—)

+.@(—)t~(—) p(—) (—) (+)t51(,(—) (—) (+)) dsx

=i 4m'[@(+»DiN (+)+@(—) tDrh@(-)g d'x. (22)



QUANTIZATION OF NIULTISPI NOR FIELDS

This leads to the equal-time anticommutation relations which can be reduced to

$+(+) b, (x) @(+),b, , (x')t]~
= (1—V'/4m')1(. b. ,..b...}8(x—x') &0,

(m —i~a)@=o,
%Is= 8~%',

(33)

P% (—),b, (x),%'(—),.b...(x')t]~
= (1 V /4m )1}gbg,ll big'}5(x x ) )

L@(+)(x) @(+)(x')]+——
t
@(+)(x)' @(+)(x')']+

= f@(+)(x)P(+) (x')']+——0. (23)

Following Chan, the covariant anticoinmutator can be
written as

and

These are the correct equations to be satisfied by a
Dirac Geld. The generator can also be reduced to

1
O'N+ Cb@' d'x

2m 2'

L4-P. (*)A P;(*')]+
= (1/4im')g ((m+iya)];(p~, p~, }h(x x')—, (24)

where proper symmetrizations over n, 8, p, and over
n', P', y', in the curly brackets according to their
symmetries are understood.

The physical spin--', particles, such as nucleons, are
described phenomenologically by Dirac spinors. In
order to facilitate phvsical applications, it is more con-
venient to introduce some new field variables which
have these physical interpretations. Let us introduce

&«ps= (1/2V'2) DVbV')-p+. + (i/m) (V.Vbe')-p(+") v

+ (V')-P(7bX)v] (25)

where O', X, and 4'& are spinors and vector-spinor,
respectively. They can be expressed in terms of the
multispinors f P~ through

which leads to the usual canonical anticommutation
relations between + and 0't. The stress tensor can be
worked out analogously as

r„„=l.g„„—iver(„a„)p+-', a pr(„p ~„»y], (35)

and it can be expressed in terms of 4 as

Tpp %gal(p%&v) k—
Zg kp(~Bv)+ y (36)

which is identical to that of a Dirac fieM. These ob-
servations establish the fact that, as a free Geld, our
formulation is identical to that of a Dirac Geld. Lorentz
invariance and physical positive-definiteness require-
ments are consequently veri6ed.

The Green's function can be obtained through the
use of the external source

and

+.=2~(V'Vb)-A-P. ,

(+").= (im/v2) h'vbv")-P4-Pv,

X.=2~b')-Phb)vv &-P~"

I"- =P pvr} p~+H c.
=%q+4~q„+Xf+Hc.

(2g)

(26) ~-p7=2~r(vbv')-ply im(vpv»'—)-p(n")~+(7')-p(vd)7]

(27)

In terms of these new variables, the Lagrange function
can be reduced to

I.= (1/2m)%~a„e+—(1/2m)ea„e~+ (1/2m)%~@„

,'m~+ ,'m/4+ (i/m)-C q-$/@ —(i/m)y @]
—Pm'+-', (4+ (i/m)e y)]r X+-', (@—(i/m)y +)]

(29)

The Green's function takes a very simple form if g p~
is chosen to have the mixed symmetry (2,1). Then
we have (Appendix 3)

G~py, ~&p&y& (xyx )

Since 4, 0„, and X are related directly to the phe-
nomenological fields, this alternative expression is more
useful in physical applications.

The Geld equation (18) can be expressed in terms of
%, %„,and X as

3
a(x—x') (37)

4m I Ov.

X+q[%'—(i/m)y 0]=0,

a„%+xim—y,g% (i/m)y %—]=0,
a„~»— em+-; )me —(i/m)~ e]=0,

(30) This result agrees with those obtained by Guralnik
and Kibble from a different approach. The Green's

(31) function expressed in terms of 4', @„,and X may be
obtained either through the transcription of Eq. (37),

(32) or directly from the alternative expression Eq. (29)



1320 SHAU —JIM CHANG

of the Lagrange function. Then the Green's function with
can be described through the effective interaction be-
tween the external sources as

As=As'+&s&,

F„,'=F„„+(e/2m)4~„.+, (45)
and

Then, the canonical equal-time commutation (anti-
commutation) relations follow from the generator as

(46)
with

n(x) = I/(4~! xI),

L'eff 'I/IaP yGaPy, a'P' y''IIa'P'y'
p~pv —'~p — p= (zz B—„rI&)(m z—y8 z—s) '(-rt i—t rl") B„F~"=y ~=e@yI'%.

+(.--~,—)(|/ -'»)
+(t/m+irI y)(m —ipse)(g/m —iy g)

+ (f/m+irI y) (zt —B„rj") 2m—rI"rl„ [+(*)P'(*')] =1&&~( —.'))o,
(f/ I y)(f/ 7 U)+ Ã' ( ) [A ( ) Fs

This expression is very useful in perturbative calcu- g„,g(x zI) g g,~~(x zI)
lations.

B. Syin-~~ Field with Electromagnetic interaction

It is well known that no consistent theory describing
the interaction of a charged spin-~3 Geld with the
electromagnetic Geld can be constructed by means of
the usual Geld-theory techniques. "It is also speculated
that such inconsistency may also exist in the theory of
spin--, held described by a third-rank multispinor with
the mixed symmetry. "However, we will show in this
section that a consistent theory can indeed be con-
structed. As a charged held, our theory is no longer
equivalent to that of a Dirac 6eld. The Lorentz in-
variance of the interacting system has been verihed.

The total Lagrange function of our interacting sys-
tem is

I.= y( —zrDy—m)yy ;mQn-

,'Fs"(a„A„—B„A„)+—',F"F„„, (39)-
with

D„=8„—ieA„.

and all other commutators (anticommutators) among
these dynamical variables vanish. We would like to
emphasize here that it is P'~ and j", rather than
P'~~ and jo, which appeared in the generator. There-
fore, the generator of the gauge transformation on the
charged field is given by j"(x). The physical meaning
of J"„„andF'„„is simple. The Ii „„is related to E and 8
6elds, and the F'„„is related to D and H Gelds defined
in classical electrodynamics. ' The stress tensor can be
obtained easily from the Lagrange function as

Tpv 2ZD(p, kPv}% 22% P (pav}%
'F"'F), g

—+-P'( )P )". (47)

In order to verify the Lorentz invariance, it would be
simpler to deal with the Hermitian fields

0i——-', v2 (++Of),
O, = i-', W2(% —+$) .

The field equations which are analogous to Eqs. (18)
and (33) are The stress tensor can then be expressed as""

(—zTD+m)P —-s'mn=o, (4o) T„„= ', i+rr(„D„)%' ,'P'—Fi-.g„.+F'(„ip—„—&", (48)
—( iyD+m)O-

+ (i/2m) [D„D~+(qD) (qD) 5@=0. (41)

The field equations derived from the variations of the
Maxwell fields are

with

where
D„=8„—ieqA „,

p0 —i~

F„„—B„A„B„A„, (42)

it F&"=j"=(z/2m) (%&ze% 4'ze%'&) . (43)—
One verifies easily that the 0' held describes a charged
spin-& system without any intrinsic magnetic moment.
The generator can be expressed, in the radiation gauge
of the electromagnetic 6eld, as

is an antisymmetric matrix in the charge space. The
momentum density operator is

Tis = s4 DA'+ rJ i[z+ so's 8']+Fk —P

G= [ (1/2m) gore+ (1/—2m)ere' F"W.]&'*—

[z+zg+ F"" 8As +j"Q.g d—'x
(44)

= s%'—Bs++&i[s+so'&~8']

yp/snag A g [F~smA ] (49)

"K. Johnson and E. C. G. Sndarshan, Ann. Phys. (N. V.l 13,
126 (1961).

"See, e.g., J. D. Jackson, Classical L'lecirodynamics (fohn Wiley
R Sons, Inc. , New York, 1962).The author wishes to thank S. S.
Shei for helpful discussions on this point.

~~ The expression P . qAQ, vvhich is the product of three opera-
tors, actually stands for (P . qf) .A.
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We observe that the charged field and the Maxwell
fields are completely decoupled in T'&. This property
ensures the correct transformation behavior for PI, and
JI,&, and thereby the validity of the commutation rela-
tions for the infinitesimal generators of the 3-dimen-
sional translation-rotation group. In short, it guarantees
automatically the 3-dimensional translational and rota-
tional invariance of the theory. This theory will then
be invariant under the group of proper, orthochronous
Lorentz transformation, if the energy density To(x)
obeys the equal-time commutator relation

—i[T (x),T~(x')j= —(T', (x)+T'p(x'))()])b(x —x') .

The energy density operator in our theory is

1
T~(x) = 2%()(' D&%+-', m%y%-

+4F(,(F),&+ (e/8m) (+p'o), )q+)F),(+-,'F""F' . (50)

The canonical quantization of the spin-~~ system
follows exactly from those of the spin--,' system. Equa-
tions (20)-(24) can be derived analogously, and we
will not reproduce their derivations here. We only
copy down here the covariant anticommutator relations

=(1/4 ')L II(m+ 7~)'7-. , -,. A(*—*') (56)

which is identical to Eq. (24). However, a total sym-
metrization over (r, p, y, (and over n', p', p') according
to the total symmetry of )]t is understood.

We will show that as a free field our theory is equiva-
lent to the Rarita-Schwinger formulation. Let us
introduce

(+"),=—
kv2 (v'v")-p4-p-,

(+"").= 'm~~(V'~"")--p4-p'

( iqB—+m)4~= 0,

(60)
C. Syin-~ Field

(61)+pv= ~p+v —v'Ifp
A spin-2 system can be represented by a multispinor

f,p~ with the symmetry property The equal-time anticommutation relations between
4),'s can be transcribed easily from Eq. (56), and are

(51)4'( p)&=4'v(».

The Schwinger relation can be verified either by means The field equations can be expressed in terms of these

of the technique of extended operators or simply by field variables through

direct computation. This completes the verification of
the Lorentz invariance of our interacting system.

The Lagrange function can be written as

with
(t (-p).—=-'(4-p, +6- ),
4-p]v=r(4'-pv 6-7)~—

~ap) = 3 (4'(ap]7+4'(py]a+4(ya] p) ~

4'( p)v( iF(l+m)4'( 'p')7'

+ ',]t( p], (—il'c)+-3m)P( p], —4mQD,

[+).(x)P((x')'j~
= [4)+3m) v(+ (I/3im) (v(~)+v) (](')

+ (2/3m')(]~(](']()(x —x') . (62)

(52) Equations (59), (60), and (62) establish the fact that,
as a free field, our system is equivalent to the Rarita-
Schwinger formulation. The Green's function can be
introduced similarly with the aid of the external source

n-p, =5~&[(V"V')-p(n.), 2m(~"Y)-—p(n, .),5
The Green's function G( p» ( p ~ )(x,x'), which is
chosen to be totally symmetric both in n, p, y, and in
().', p', p', is simple and useful. It is given by (Appendix
B)&( p]7=0

( iyB+m)y—P p~ 0, i=1——, 2, 3. (54) G(app), (a'p')") (x,x )

=~(4(-p, )(x))/~n(- p )(x') In=0
By combining Eq. (51) with Eq (53), we have

It is straightforward, although tedious, to verify that
the field equations derived from this Lagrange function
can be reduced to (see Appendix B)

Pap 7= 3[4(ap) 7+4'(p7)a+4'(va) pj y

which is then totally symmetric. This confirms that
our system indeed describes a free, spin--', field. We
would like to emphasize here that the total symmetry
of P is derived directly from the action principle rather
than added arbitrarily as a further restriction,

= (1/4m)[ II(m+ipa), j(.p,)(..p., )a, (x—x')

+ ( (1/12m') [(iy(]))+(iy ),+(](iyB),$

+3/4m)(. p)(. p. ;)b(x x,
'). (63)—

The effective interaction between the external sources
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can be described by the vacuum probability amplitude
as

with
L= ,'y( ir B+—m-)y+—~I'y, (65)

«.I0-)

=expi P(g„+B"g„„)( i—pB+m i—.)- (g +B,g ")

+ (1/m') (B&&)( i—yB+m i—e) '(-Bg)

+ (1/6m') &&&( 2—iyB+9m)»„

+ (1/3m) (B&q~&q„+q„B&q~&)

+—,', &&""(—4i7B—154&4)»„.]d4x. (64)

4. MULTISPINORS OF FOURTH RANK—
SPIN-2 FIELD

The construction of the Lagrange functions for higher-
rank multispinors is very tedious. The spin-2 Lagrange
function constructed in this section is much more
complicated than the Lagrange functions constructed
from the tensor operators. Simplicity in the Lagrange
function is definitely not one of the advantages enjoyed
by this multispinor formulation. One of the advantages
for using the multispinor formulation is that the
dynamical variables can be identified explicitly as

y (+) (+) . , (+) and (t, (
—) (—), , (—)

7

and the canonical quantization can be carried out
easily in terms of these variables.

The spin-2 field is described by a fourth-rank multi-
spinor P (&,~4 with the following symmetry properties;

(i) P t&,» is symmetric between n, P, as well as
between y, B;

( ) ( ' "")- ( ' "). (4-,.-4. ,- )=0.
It is an afterthought to assume that P (&,74 has these
symmetry properties. In the actual construction of the
Lagrange function, we proceed in the reverse order.
Our final goal is to reproduce the correct field equa-
tions. In order to accomplish this, we find that these
symmetry properties are indispensable. The Lagrange
function can be expressed in terms of these variables
through

verify that the field equations derived from this
Lagrange function can be reduced to

P»~4 ——totally symmetric in n, P, y, B,

( i—yB+4&4);y=0, i=1, 2, 3, 4, (67)

which are the correct Bargmann-tA'igner equations to
be satisfied by a spin-2 field. The independent variables
are

@(+)—@(+)H-) (+) (+)

and,
g(—) —a(—)(—)(—)(—)

)

and all other field variables are dependent variables.
The dependent variables can be expressed in terms of
these ind. ependent components through

P(+&(+&(+&( &= —L1/4m+~~mDq]((r V)4C(+&

—(1/4m)Dg(e v)g(~ w)4((r w)4c(—&, (68)

y(+)(+)(—)(—) —XD2L((r. V)~((r. V)2C(—)

+(e W)4((r V)4C'+'], etc., (69)
with

(2m' —V')D2(x —x') =B(x—x') . (70)

The canonical quantization can be carried out analo-
gously. The canonical conilnutator relations are

x'=x": $C(+&.(„g(x),C(-&. (, .g (x')]
= (1 V'/2—m') L(~„)~(~„) (~2„) (~4„)4](. g&)(; (a, )

XB(x—x'),
LC(+&(x) C(+&(x')]=tC( '(x) C' '(x')]=0 (71)

from which the covariant commutator relations can be
computed as

(1
L II(»&+i»)~](.»&».(.», 4 &~(x—*'). (72)

&24&4

These results do not depend, on the total symmetry of

p t)~4, and can be generalized directly to all other
fourth-rank multispinors.

The field, variables of a spin-2 field expressed in
terms of multispinors are related to those expressed in
terms of tensor variables through

where

~=~(v') (v').(v').(v'), ~'=~
I'= kL(v) i+ (v) 2]

4-(&&4= 8~"',f (v.v')-s(v»'). »""
+ (1/2~) I:(~"7')-s(vA') v~+ (vn')-p(~p. v') V4]"&""

+(1/4 ')( "7') ( 7') &"""'} (73)

~aPyb, a'P'y'8'

=—'.(l (~.v')- (v"v') (v'v. )- (v'v"). ~

+:r(..;).s(--,"),-(-,").~(...~), ]
X f(y'~&");p (7'~"')„4 (y'~"'); p (y'~"");4—g)

(66)

is a numerical matrix chosen so as to guarantee the
vanishing of all auxiliary lower spin fields. One can

where h„„and &,H„„are the 6eld variables introduced,
in a previous paper, ' and,

IIpv, Xp ~X p+pv ~p Xapv ~ (74)

Making use of Eq. (73), one can compare the 6eld
equations and the commutator relations between dif-
ferent formulations, and show that, as free fields, these
two formulations are actually identical.

S. J. Chang, Phys. Rev. 148, 1259 (1966).
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In principle, this generalized Lagrange .formulation
can be applied to multispinor of an arbitrary rank.
However, the construction of a Lagrange function in
terms of multispinors is so tedious that it becomes less
attractive than the usual formulation expressed in
terms of tensor variables.

S. DISCUSSION

The main purpose of this paper is to verify the
internal consistency of multispinor formulations. How-
ever, we would like to point out that some of our
results are of direct physical applications if the baryons
are indeed described by these third-rank multispinors.
An important consequence in this theory is that the
nucleons should have zero intrinsic magnetic moment.
This resolves the paradox previously raised by Beg,
Lee, and Pais. ' Loosely speaking, the paradox is the
following: According to SU(6), the ratio of the mag-
netic moments between those of neutron and of proton
is

p(N)II (P)= s, —
which agrees remarkably with the experimental ratio
between the total magnetic moments of nucleons
=—0.684. This ratio is a pure number, independent of
the strong-interaction coupling constants. If the nu-
cleons are described by Dirac particles and in the
limit where the strong interactions are "turned oA,"
we should have p(N) =0, p(p) =p~, where yN

——e/2m~
is the nucleon magneton. This leads to a ratio diferent
from ——'„and is consequently in contradiction to the
previous result. However, there is no such drawback
in our theory. The magnetic moments obtained in
SU(6) theory are interpreted as the anomalous mag-
netic moments, and therefore they should be switched
off simultaneously with the strong interactions. It is
simply because the nucleon has no intrinsic magnetic
moment that leads to the famous ——, ratio. The
situation is quite diferent for the spin-~ baryon reso-
nance. The intrinsic magnetic moment of a baryon
resonance, which is described by a third-rank multi-
spinor given in Sec. 3C, no longer vanishes. It is
straightforward to show that the intrinsic magnetic
moment of the baryon resonance is q/2m&&, where q
and ns& are the charge and mass of the baryon reso-
nance, respectively. Moreover, the magnetic moment
of the baryon resonance computed from the SU(6)
covariant interactions is'

(q/2~~) (1+2~ /m), (75)

where ns is the mass of the p meson. According to the
usual SU(6) theory, this magnetic moment is inter-
preted as the total magnetic moment of the baryon

' M. A. B.Bbg, B.%.Lee, and A. Pais, Phys. Rev. Letters 13,
514 (1964).

"For the techniques of computing the magnetic moments in
the relativistic SU(6) theory, see, e.g., A. Salam et cl., Proc. Roy.
Soc. (London) A284, 146 (1965);B.Sakita and K. C. Wali, Phys.
Rev. 139, 31355 (1965).

APPENDIX A: CONSTRUCTION OF LAGRANGE
FU5'CTIO5'S FOR THE THIRD-RANK

MULTISPI5'OR FIELDS

In the quantization of any system according to the
quantum action principle, the Lagrange function must
be constructed first. Then, quantizations and Green's
functions are carried out on the one hand, Lorentz
invariance and other consistency requirements are veri-
fied on the other hand. In this paper, however, the con-
structions of Lagrange functions and Green's functions
are omitted from the text in order that the reader
follow the development of this paper without going
into detailed calculations.

The Lagrange fu'nction given in this paper can be
constructed analogously as in Ref. 19. The Geld equa-
tions which we want to reproduce are the Bargmann-
Wigner equations

L( )+may/i=0, i=1, 2, 3, (A1)

where ( ), stands for ( iy8), —An imp. ortant algebraic
constraint equation satisled by f is

1 2 3 ~ (A2)

In order to reproduce (A2) automatically, we introduce
the following nonlocal projection operator:

with
A(~) =x(~ )-'S(~), (A3)

S(a)= La y ( ),( ),+ ( ),( ),+ ( ),( ),j. (A4)

This projection operator A(8) has the following
properties:

(i) A(r)) is totally symmetric under the interchange
of any two indices.

(") ( ) A(~)=( ) A(~)=( )&(~) (A5)

(iii) h. (8)A(8) =A(8).
+ S. J. Chang, preceding paper, Phys. Rev. 161, 1308 (1967).

resonance. In our theory, however, this is interpreted
as the anomalous magnetic moment produced by the
strong interactions. Therefore, the total magnetic mo-
ment of the baryon resonance is

(q/mr ) (11m~/m) . p6)

For singly charged baryon resonances, such as 0, the
magnetic moments computed from these two theories
lead to 3.1@~ and 3.7pN,

respectively. This can serve as an experimental test of
our theory.
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Property (i) implies that f and A(8)f have the same
symmetry properties under the permutation of their
indices. A nonlocal field equation satisfied by 4 with
an arbitrary symmetry is

[m+ (—iyB),A(8))/=0, any i
Making use of properties (i)—(iii), one verifies easily
that

[m+(—iy8)) /=0, i=1, 2, 3.
For a spin--,'system, 4=&' s, has the symmetry
properties

After introducing a new field variable through

we are finally led to the Lagrange function given in
Eq. (17). The Lagrange function for a spin-~~ system
in the multispinor formulation can be constructed
analogously, but the construction is more complicated.

APPEN'DIX 3:CON STRUCTIOÃ OF THE GREEN'S
FU5'CTIONS FOR THIRD-RA5'K

MULTISPIN'OR FIELDS

4' («Pv]

0= —l(~') 'L() +() +() )
&«[-'F~-( ) )4'+l~3[( ) -( ) )4}

4 s~= K~(4—'iiv 4'v s—)

I.= 4( —iF8—+m)4+ 32m 00+4g+g4,
where the external source g p~ is assumed. to have the
mixed symmetry property (2,1). The Geld equation is

where [ ) i2 ii stands for the (2,1) part of the expression.
Although it is local in appearance, Eq. (A6) is, in fact,
nonlocal. In order to transform this equation into a
local equation, we have to interprete 0 as a new
auxiliary Geld variable, rather than the nonlocal ex-
pression given above. Then, our problem is reduced to
constructing the field equation satisfied by 0 such that

(81)( iF8—+m)4 ', mQ—=-g.

Multiplying the totally antisymmetric part of Kq.
(81) by ( iFB)—, we have

( iFB)—f (iFB)4+,'mQ-
+-'[—iF~+( )3)(4—30)}=o. (82)

The expression

2( iFa)[—iFa+—( ),)
= [a'+( ),( ),+ ( ),( ),+( ),( ),)=s(a),

0 and —[iFay ( ),)4'+-,'43[( ),—( ),)4
should vanish identically. Multiplying Eq. (A7) by—iT'8, and projecting out the totally antisymmetric
part, we have

1 2 3 ~ 2 1 2 R 3

+lv3L( )i—( )2)4»+-:[( )i+( )2+( )3)'0=0
(mod[~'+( )i( )2+( )i( )3+( )~( )3)0).

which is related to A(8), satisfies properties (i) and
(ii) given in Eq. (AS). Substituting Eq. (81) into Eq.
(82), we have

( iFB) (m—4 g) = ——-',S(8)(4 —30),
and with the help of the properties of S(8),Therefore, if the equation satisfied. by 0 is chosen as

Ll() +l() —() )4'+l~3[() -() )4
+{2[()+()+())—3 }0=0, (A7)

( ) (—iF~)(m4' —n)= ( ) (—iF~)(m4' —0)
= ( )3(—iF~) (m4 —n) (83)

4' sr= —4''~«v In this Appendix, we work out the Green's function
for third-rank multispinors explicitly. By setting the
external sources to zero in these derivations, we show

The nonlocal equation can be written as at the same time that the free-Geld variables satisfy

+,[( ) +( ) 2( ) )0 0 (A6)
the required Bargmann-Wigner equations as well as
the symmetry restrictions.

with For a spin--,'system, the Lagrange function in the
presence of an external source is

we have

0=0 (mod[8'+( )i( )2+( )i( )3+( ) ( )3)0),
Eliminating ( iFB)4 —from Eqs. (82) and (83), we
obtain

which implies

( )iQ= ( )20= ( )30.
(—iFB)([—iFB+( )~)0—mQ

+-,'[—iFB—( )g)g/m}=0,

Since a totally antisymmetric 0 can not be a simul-
taneous eigenstate of all three ( );, we have

0=0=[i( ) +l( ) —( ).)4'+l~3[( ) -( ) )4.
Equations (A6) and (A7) are therefore the required
fieM equations, which can be derived from the Lagrange
function

I= —(4'+ 0) ( iF8+m) (P—'+ 0)+qm00.

and. consequently,

[cP gm( ),)—0'=0, i=1.2.3,
where

0 = 0—(1/6m') L( ) + ( ) —2( ) )n
—(1/2 'v3)[( ) —( ).)n"

is also totally antisymmetric, and

~'*i.sr= V~(~sv- ~v-i—)

(84)
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Since a totally antisymTnetric third-rank multispinor
can not be a simultaneous eigenstate of all three
operators (—iy(]);,"it follows

II'= II—(1/6 ')L( ) +( ) —2( ) ]~
—(1/2m'VS) [( ))—( )2]v](') =0. (86)

Multiplying Eq. (81) by 1&(1/2m)[( )&—( )2] on
the left, we have

L( )~+m]4=(1+(1/2m)[( )~—( )~]}(n+kmfI)

L( )2+m]4={1+(I/2m)L( )2—( )~]}(n+2mfI) (87)

which, with the help of Eq. (86), can be reduced to

L( )i+m](It —if')
= (1/4 ')L —( ) ][ —( ) ]n+[( ) + ]

X(—(1/4m')[( )&+( )p—( )s]+3/4m})] (88)

The Green's function then follows trivially. In the
absence of the external source, we have

g=Q=O,
and consequently

[( iy(]—)+m];/=0, i=1, 2, 3

which is exactly Eq. (19).
The computation of the Green's function for a totally

symmetric multispinor is somewhat more involved. We
assume that the external source p p~ is totally sym-
metric. The Lagrange function, in the presence of an
external source, is

L = —0( p) (—il'(]+m)4'( p)

+()()['[ap]v( iI(]+3m)4'[ap]v
3m0fI+Qapvv]apv+v]apA'apv ~ (89)

where the multispinor P p, has the required symmetry
property

The 6eld equation derived from the variation of]][[ p]„ is

{k[( ) +( )-]+m}4(.-)P—(l[( ).+( )P]+mN( P)-

+ ( —il'&+3m)P[ p]„—4mB 0, (812)

where ( ) = (—iy8) operates on the index ()(, etc.
Equation (812) can be decomposed according to its
symmetries as

(l[( ) + ( ) + ( ) ]—m}II+—'[( ) + ( ) —2( ) ]4'
+—:.~&[( ).-( ).]~=0, (»3)

and

2m''+6L( )~+( )2—2( )3](4'+II)
—l~[( ) —( ) ](4—~3+)=o, (814)

respectively. Similarly, under an independent variation
of It ( p) „we have the field equation

—(—il'(]+m)P( p) +3{2[() +( ) ]+3m+( )p

+3(2[( ).+( )p]+3m}Av p]-+~-pv=o

which can be decomposed into

{l[( ) +( )~+ ( ) ]+mH
+(v3/36)[( )~+( )2—2( )3]y

—A[( )~—( )2]4'—v=0, (815)

2m& —-', [( )(+ ( )2—2( ),](v3++y)
——,'V3[( )&

—( )2](p'—0)=0. (816)

Equations (813)—(816) form a set of basic equations.
Subtracting twice Eq. (813) from Eq. (814), we have

2m(y'+0) =[—ii'8+ ( ),]Q
+L( )~—( )2][34~—H'] (817)

which, when multiplied by [( )&+ ( )&] on the left, can
be reduced to

4'(a p) v
= fV (ap) ~ (810) 2mL( ),+( ),]((t+a)=S(a)g.

It is known that an arbitrary third-rank multisPinor Multipl ing E (814) b [( ) +( )
fapv can be expanded as use of Eq. (818), we have

where
Papv =+aPv+ 3V3fapv+$ aPv+ ~apv ) (811) (819)

0 p~ is totally symmetric,

p pv
——Pp „has the mixed syrnrnetry (2,1),

P' pv= —P'p „has also the mixed symmetry (2,1),

and 0 p~ is totally antisyxnmetric;
Eq. (810) implies

(t-p = 3~(A.- &'—.-p)—
which indicates that @ and p' are related to each other.
Under an arbitrary variation on f[ p] v,

~A-p]v= &(II+4')-pv

the variation of f( p) v is not zero, and is given by

W (.P),= '. (W [P,]-—~s[,-]P)

Equation (818) then reduces to

[a —m(),]11=0, i=1, 2, 3

and consequently,
0=0. (820)

With the help of these results, Eq. (813) can be
simplified to

[( )~—( )~]&—'v3( )3&'=0 ~

The identical technique can be applied to Eqs. (815)
and (816). Multiplying [Eq. (815)+~~VS Eq. (816)]
by [( ),+( )2], we have

[( )&+( )&][mO+-', mv3(t —)]]=——,'S(())+. (822)

Multiplying Eq. (816) by [( )&+( )2], and making use
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of Eq. (822), we have

2m L( ).+( ).r~
=YZ()+() —2() jL()+( Mn, (323)

which, after eliminating @ from Eq. (822), can be
reduced to

t ( )r+( )sj{m+—n+(1/3m)L( )t+( )s+( )s]n)
= ——,'S(8) (+—rt/m),

and consequently,

( )r{m+—n+(1/3m)L( )r+( )s+( )eh~)
= ( ) {m+—n+ (1/3m) L( ) + ( ) + ( ) jn)
= ( ) { +—+(1/3 )L( ) +( ) +( ) j ) (324)

Equation (317), when combined with Eq. (324), leads
to

L( )s—3m/{y'+(1/4ms)t ( )r—( )sjrt}=0. (825)

Making use of Eq. (319),one can show that Eq. (325)
actually implies

~'=-(1/4 ')E( ) -( ).3~, (826)

and consequently

4 = (1l4 '~~)l:( ) +( ) —2( ) jn (327)

Substituting Eqs. (324), (826), and (327) into Eq.
(815), we are Gnaliy led to

L()+ 3~
= {(1/4m')L( ) —m)L( ) m—))r/

+L( )s+mj{—(1/12m')L( )r+( )z+( )s3
+3/4m} rt, (828)

as well as analogous equations for L( )r+mj+ and

L( )s+mj%. Equation (328) leads directly to the spin-ss.

Green's function.
In the absence of an external source, we have

0 kl~el r ~

and consequently

iver)+—m),4=0, i=1, 2, 3,
which are the correct equations to be veri6ed. .
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I"or both the Dirac and the spin-zero Kemmer equations, conditions on the wave function for the existence
of real solutions for the Geld potentials are obtained. Also the Geld variables are expressed in terms of the
wave function for the Kemmer equations.

1. INTRODUCTION
' 'T has been noted by Kliezer' that if a wave function
~ ~ f satisGes the Dirac equations of an electron moving
in an electromagnetic Geld, then it also satishes a cer-
tain consistency condition. He used a particular set of
Dirac matrices y„, but we shoe here that the condition
can be obtained for an arbitrary set, and it then takes
the form of Eq. (2) below. Moreover, this condition is
independent of the particular electromagnetic Geld in
the Dirac equations. Eliezer's results mere later reformu-
lated by Rastogi and Vachaspati. ' Such work is of in-
terest because it raises the question of the existence of
a possible simple relationship between the wave function

P and the Geld variables f„„.It is hoped that second
quantization of such a relationship mill lead to formu-
lations of quantum electrodynamics alternative to the

' C. J. Eliezer, Proc. Cambridge Phil. Soc. 54, 247 (1958).'¹C. Rastogi and Vachaspati, Proc. Indian Acad. Science
SOA, 202 (1959).

usual wave equations, which relate f to the potentials

In this paper me extend Kliezer's results' for the Dirac
equa, tions. Then we obtain relationship (10) between
1l and f„„for Kemmer equations for spin-zero particles,
and we derive the equations's consistency condition.

2. THE DIRAC EQUATIONS

The Dirac equations' for an electron in an electro-
magnetic Geld are

it„y„f eP = i(e/hc) A—„y„P, (1)

where the wave function f is a column matrix (Pr,Ps,
Ps,$4) and the y„are 4X4 Dirac matrices satisfying the
usual anticommutation rules

3 P. A. M. Dirac, Qgentum MecIIcnics (Oxford University Press,
London, 1958), p. 168.


