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radiation field of arbitrary spectral profile, when the
counting time intervals are much shorter than the
coherence time of the light. As mentioned previously,
these generalized factorial moments are closely related
to the high-order intensity correlation functions of the
radiation field, and therefore contain information about
the phase of the second-order complex d, egree of co-
herence y;; for the light field at two space-time points.
As is well known, the knowledge of the phase of the

degree of coherence is essential in determining the

spectral profile of the light beam. Clearly, the X-fold

joint photocount distributions provide useful and

interesting information about the higher-order co-

herence properties of the radiation Geld.
The author wishes to thank Professor Emil Wolf for

stimulating discussions and critical comments in con-
nection with the present work.
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Prescriptions for constructing the generalized Lagrange function for a system with an arbitrary spin S
are presented. By the use of the spin projection operators introduced by Fronsdal, nonlocal field equations
are constructed to describe these higher-spin systems. Then, auxiliary fields are introduced systematically
to remove the nonlocalities appearing in these field equations. Lagrange functions describing systems with
S&4 are constructed explicitly according to this new prescription. For S=O, ~~, 1, they agree with the
well-known local Lagrange functions. For S=$ and 2, they are equivalent to the results previously ob-
tained by Rarita and Schwinger, and by Fierz and Pauli. %ith the help of the quantum action principle,
canonical quantizations are carried out and Green's functions are constructed. Some physical positiveness
requirements are also verified.

I. I5TRODUCTION

HE problem of quantization for systems with
higher spins has been stud, ied, extensively ever

since the earlier d,evelopment of quantum field, theory. '
The recent discovery of many higher-spin resonances
arouses new interest in this problem. Roughly speaking,
there are two diferent approaches to describe the field,

theory of higher spins. The first approach emphasizes
the transformation properties of field variables und, er
the homogeneous Lorentz group. ' The physical inter-
acting field operators are considered as the asymptotic
field operators —the field operators before and, after the
interactions are taken place. This approach has the
advantage that these asymptotic field variables satisfy
very simple field, equations, and that no complicated,
Lagrange function is required, to d,escribe them. These
asymptotic field, variables can be quantized, easily by
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expanding them in terms of creation and, annihilation
operators, and their corresponding propagation func-
tions can then be determined. This approach is very
successful in perturbative applications as well as in the
S-matrix theory. The simplicity in this approach origi-
nates from the fact that we have bypassed, the d,etailed,
structures of the interactions. This advantage turns out
to be its d.isad. vantage when we try to describe the
interaction. Neither the canonical cormriutator rela-
tions nor the stress tensor can be obtained without
solving the full d,ynamics. The canonical quantization
conditions as well as further consistency requirements in
the presence of interactions are consequently ignored, .
The second approach follows that of Pauli and Fierz, '
and d,emands that all field equations and subsid, iary
cond, itions should be derived, from a generalized, action
principle. This classical approach has the advantages
that the interaction can be introd, uced, explicitly, and,
that the Green's function can be computed. The
canonical quantization relations and, the stress tensor
of a system can be obtained, directly from the action
principle, even in the presence of interaction. The
validity of all these consequences is not limited. by
perturbations. However, this approach has at least one
d.efect. For a system with spin &2, even the construc-
tion of a free Lagrange function is very tedious and, in.

some sense, rather ambiguous. The introduction of
auxiliary 6eld variables is by itself quite arbitrary. In



16l LAGRANGE FORMULATION FOR SYSTEMS WITH HIGHER SPIN 1309

the usual construction of a Lagrange function, such as
for a system with spin —2, there are more than ten
parameters to be determined'; and the number of
parameters increases rapidly with increasing spin value.
It i.s the purpose of this paper4 to present a new method,
to construct the free Lagrange function for a system
with an arbitrary spin. As we shall see, our method can
be applied easily to systems with both integer and
half-integer spins. The necessity of introducing the
auxiliary 6eld. variables, and the physical meanings of
these variables are also clarihed in this new approach.
For the purpose of simplicity, we concentrate our atten-
tion to a massive spin-5 system described either by a
totally symmetric tensor (S=integer), or by a totally
syrnrnetric tensor-spinor (S=half-integer). In Sec. II,
the spin-projection operators are introduced and their
properties are explored, . In Secs. III and, IV, the
Lagrange functions for systems with integer spins, and.
with half-integer spins are constructed. In the last two
sections, the canonical quantizations for these sys-
tems are carried out and the Green's functions are
constructed, .

which satisfy

8„&,(a)O"„(b)=b.se„„(a), a, b=0, 1

c&„Q~i'"(1)=0.

Then, we have

(.(a) = Lo(a) ~3.=Q"(a) V"

(2)

(3)

(5)

automatically. Irreducible representations correspond-
ing to any other integral-spin value may be formed, by
taking direct products of D with itself and expanding
the products into Clebsch-Gord, an series. This general
consideration actually gives us a practical method, to
construct the higher-spin projection operators. Now, let
us study the properties of spin projection operators in
general. It is well known that a system with an integer
spin 5 can be represented, by a totally symmetric
tensor p„„...z, satisfying

II. SPIN-PROJECTION OPERATORS

The spin-projection operators were initially intro-
duced, by Fronsdal in an attempt to study the general
properties of higher-spin systems. These projection
operators are nonlocal integral-differential operators
through which fields transformed according to definite
spins are projected out from an arbitrary Geld variable.
Let us first consid, er a vector field y„(x). As is well

known, an arbitrary vector Geld provid, ed a basis for a
reducible representation of the Lorentz group. Desig-
nating this representation by D, we have in fact

D=D(1)9D(0),

while a system with a half-integer spin S=N+sr can be
represented by a totally symmetric tensor-spinor f„„...z,
satisfying

Descriptions corresponding to other representation of
the Lorentz group can be obtained from these results
through proper differentiations, and, we shall not discuss
them hereafter. It is convenient, temporarily, to express
the subsidiary conditions (5) and (7) by the symbolic
notations

where D(S) is the irreducible representation corre-
sponding to the spin value S. The decomposition on
the vector 6eld, itself is

(r
—~ (s)+ p (i)

Now, we introduced an orthogonal projection operator, '

QH
—

QH
—

QH
s

with the following properties:
with

&
(0)—g & g &&(40)—O

r&(Qy)
—=0,

vv=0~ s =Qq.
(9)

(10)
where q„(') and q„(') correspond to the spin-0 and
spin-1 parts of the vector 6eld. Based. on this decomposi-
tion, we introduce the following projection operators:

The projection operator Q'„„...&, „. .&, (S), which pro-
jects the spin-5 Geld out of an arbitrary totally sym-
metric 5-rank tensor, is both simple and, useful. It can
be constructed in terms of 0» (1) throughQ (')=( &') 'c8 c&—

O, (r) =g,—(c&s)
—

'c& (&„
(I) 8„...»;, , ... , (S)

= t 8»'8@v' ' ' ' exx') (pv ~ x);(p'v'" v) y (11)
' R. J. Rivers, Nuovo Cimento 84, 386 (1964l.
4 We use the following notations: Greek indices run from 0 to

3 while Latin indices run from 1 to 3; (y„,y„}= —2g„, with g„,= (—1, 1,1,1); ps=antisymmetric and imaginary, ps=symmetric
and imaginary.

s C. Fronsdal, Nuovo Cimento Suppl. 9, 416 (1958). .

where
Q„„=Q„„(1),

and L gr indicates that the traces of the expression in
the square brackets are subtracted. Syrrunetrizations
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over indices p v P and over indices p' v'. X' in the
parentheses are understood. The projection operators
corresponding to a half-integer spin can be derived
analogously. The projection operator which projects
the spin-5 field (S=e+~i, m=integer) out of a totally

symmetric tensor-spinor of rank e was given by
Fronsdal as'

O««. ..i,.«.„...g. ..(S)

2S+1

field variable rather than as the nonlocal expression
defined in (17). Equation (16) will be equivalent to
Eq. (15), if the constraint equations

+= (88')=0

follow directly from the field equations. The special
combination, 8„8„—4'g„„8', guarantees that y„„remains
symmetric and traceless. ' Now, our problem is reduced.
to a related but much simpler one: to construct the
field equation satisfied by%' such that Eq. (18) follows
automatically. Equation (16) implies

(8'+2m') (88(p) = ', 84@-, (19)

m'q „„...g =8'$8 (S)q ]„„...g,

for an integer 5, and

(13)

for a half-integer S. These equations were initially
constructed by Fronsdal, and are the starting point of
our future construction. For 5=0, ~, and 1, these equa-
tions are identical to the usual field equations and are
local. For S&1, however, these equations contain in-

verse D'Alembertian operators, (82) ', and consequently
are no longer local equations. As we shall see, the pur-
pose of introducing the auxiliary fields is simply to re-

move the nonlocality appearing in these field equations.

where q, q' stand for the spinor indices, and all other
Greek letters stand for vector indices. One verihes
easily that

yO(s) =80(S)=0.
In terms of these spin-projection operators, the 6eld
equations for system with an arbitrary spin S can be
reduced to very simple forms, and they are

and consequently,

(88') = —,'(8' —2m')%+6m'(8'+2m') '@. (20)

Then, if the 0 is chosen to satisfy

(88y) = ', (8' -2m—2)%, '

we are led to Eq. (18) automatically. Therefore, Eqs.
(16) and (21) describe a spin-2 system. These equations
can be derived from the following Lagrange function:

&=-'v' .(8'—m') v""+(8v') (8v')"++(88'')
——,'4 (8'—2m2)@.

In terms of a new symmetric tensor

h« = 'p«~+~g«~+ ~

which is no longer traceless, this Lagrange function can
be expressed as

Z=-'h (8'—m')h«"+h(88h)+ (8h) (8h)"—-'h(8' —m')h

«H""8&h +-'( H—&
«H""—H&H") ——',m'(h„„h«"—h'),

with

III. CONSTRUCTION OF LAGRANGE FUNCTIONS
FOR SYSTEMS WITH INTEGER SPI5' «H, i,=8.h«i 8i h«„+g«„(B—ih (8h)),j—

—g„gL8.h —(8h),],
We shall 6rst construct the Lagrange function for a

system with spin-2. A spin-2 6eld is described by the
following nonlocal equation:

with
m'v "=8'LH(2) v j" (15)

Equation (15) can be written explicitly as

m'v «„=8'~«. L8«(8~)—„y8„(8v)« 2g«„(88p—)j
+ (8«8~ ~g«~8 )+ ~

with

(16)

(80')"=8 0'" (88p) =8«8 ~%" ~

', (8') ='(-88 )—
(17)

Although it is local in appearance, Eq. (16) is in fact
nonlocal. In order to transform Eq. (16) into a local

equation, we have to interpret 4' as a new auxiliary

II,=k„") Hy = &Hq), .

The linearized Lagrange function is the Lagrange func-
tion we introduced in a previous publication. v If we
define h„„as p«„+ug«„%, with an arbitrary real number
a&0, we obtain a Lagrange function which contains a
free parameter. ' We would like to point out that the
existence of free parameters in the higher-spin Lagrange
functions is due to the possibility of changing the scales
of various auxiliary field, variables —a fact with no
physical content.

The technique developed above can be generalized
to construct the Lagrange function for system with an

'The requirement that the expression on the right-hand side
should have the same symmetry properties as that on the left-
hand side is absolutely essential in constructing a Lagrange func-
tion. Conversely, the field equation derived from the variation of
a field variable should possess the same symmetry properties as
those of this particular field variable —a requirement which is
sometimes overlooked.

~ S. J. Chang, Phys. Rev. 148, 1259 (1966).



161 LAGRANGE FORMULATION FOR SYSTEMS WITH HIGHER SPIN 1311

arbitrary spin. We shall use spin-3 as a further example.
The nonlocal spin-3 field equation is

m'q „.),——B'[O(3)q]„,)„ (22)

algebra of y matrices make the construction a little
more complicated. Let us now construct the spin--',

Lagrange function explicitly. The nonlocal field equa-
tion for a spin-~ system is

where p„„& is a totally symmetric and traceless tensor
operators, and

o,.),» "), (3)= [o'„o,.8),v
s 8»ve»'s 'Ov, '$(»vx); (»'v'x') ~ (23) with

m~t„= ( pB)[O(-;)p)„,
= (iVB)4» si—V»(B4)+si(VB) 'B»(W)

(29)

This equation can be written as
Equation (29) can be rewritten as

m p» vx = B p» v) {B»(Bv') v) + BR (Bp) v»+ Bv (Bp) x»

3I g—»(BBi )i+g"~(BBV)»+gi»(BB~)~3)

+s[B»B~F)+B~B)F»+B)B»+v
—

s B'(g»8') + g.),+»+ g~»+.)
s(—g„B),+g ),B»+g).»B.) (B+)j,

mP„= (iyB)P„,'i—y„-(BQ) i (—B„+,'y„7-B)C, (30)

(24)
with

C = —-(&B)—'(Bit).

with 4» being a nonlocal function of (BBq)» Not. e that
the right-hand side of Eq. (24) is constructed to be
totally syrruxietric and traceless in accordance with the
symmetry properties of p„„z.' Following the previous
argument, we then interpret %„as an auxiliary field
variable, and try to construct a field equation for 0'„
such that

C= (BP)=0

Making use of Eq. (30), we have

i ( iyB+2m—) (Bp) = 'B'C-
which implies

0»= (BB(p)»=0 (25)
i(BP)= ', (iyB—+-2m)C+6m'( iyBy—2m) 'C-

is satisfied automatically. Equation (24) implies
Then, the equation satisfied by 4 is

We then consider Eq. (30) as a local equation, and
consequently interpret C as an auxiliary field. . The
equation for C must be chosen to imply

(BB(p)), = —,
' (B'——,'m')4'g+r sBg (B+)+-,'mB)X

+ (15/8)m'(B'+-'m') 'e),
with

X=-'m(B'+ 'm') —'(B+-')

Consequently, if Oz is chosen to satisfy

(BBq)),= s (B' ';m')4—)+-sB),(B+)+', mB„X,-(26)
then Eq. (25) will be satisfied automatically. One has
to note that Eq. (26) is not yet a local equation. . This
indicates that we have to interpret X as another auxiliary
field variable. The equation satisfied by X can be com-
puted analogously as

i(BQ) = ss(iyB—+—2m)C . (31)

Equations (30) and (31) are the required equations for
describing a spin-~ system, and can be derived, from

f» ( —iyB+ —m) P» ig»B»—C iC (BP—)
',C (iy—B—+2m)C, (32)

with
It»= P» 'r, etc.

In terms of a new vector spinor

+» 1»+27Pt

(B'—4m')X = s (Be) . (27)
which no longer satisfies the trace condition y„+&=0,
the Lagrange function can be reduced to

Equations (24), (26), and (27) describe a spin-3 system,
and, they can be derived, from the following Lagrange
function:

&= sr».~(B' m') v"""—+s(BV)"(Bv)'"+2+i(BBv )'
—N (B' sm')e»+ '(Be—)'-me„B»x-x(B'—4m')x— —

(»)
The Lagrange functions for systems with spin 2, 3, and
4 are listed. in the Append, ix.

IV. CONSTRUCTION OF LAGRANGE FUNCTIONS
FOR SYSTEMS WITH HALF-INTEGER SPIN

There is no intrinsic difhculty in applying our tech-
nique to systems with half-integer spin, although the

Z = [e„( i—qB+m—)+»+ ',i+„(q»B"-+q"B»)+„

+ a(+V) (iVB+m) (V+)j,
which is the Lagrange function introduced by Rarita
and Schwinger. ' If we define +» as lt»+up»C, with an
arbitrary nonvanishing complex number u, we obtain
a Lagrange function which contains two arbitrary real
parameters. "

The Lagrange function for systems with spin- —', as
well as any other half-integer spins can be constructed,
analogously. "In the following, we just copy down the

' W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).' P. A. Moldauer and K. M. Case, Phys. Rev. 102, 279 (1956).
IoA. Kawakami and S. Kamefuchi, Nuovo Cimento 48, 239

(j.96/). These authors constructed a quadratic Lagrange function
for a Rarita-Schwinger Geld with spin-$.
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field, equations satisfied, by a spin-2 system. The field. with
equations are —%0+pv 0 (Ppv ~

—( i—»+m)4, . S—kir V.(~4).+V.(~4)«j i—
l ~.C'.+~.c',

+l~.(»)c.+ 'v.-(»)C,--'g, .(&c)j=0,
2i(W).+ssL-(i»+ ssm-)~« '—iV«(~C)5

+3)i8«+,'iy-«(»))x=0,
—3i(BC)+( i—»+3m)x+mQ=O,

mx ,'—(i»-+3m)0=0,

In this as well as in the future calculations, the varia-
tions of q„„and m.„„in the generator are assumed to
satisfy the same equations obeyed by 9«„and m«„. This
is equivalent to assuming that only the independent
components of y«„and ~«„can be varied arbitrarily.
The variations of the dependent fields should. be deter-
mined, through the field equations. With the help of
the relations

where

4'«.=4.«, vA'""= v«@'"=0

~0v 0+Ov g + v

q'" = —(m' —V') 'Bkvrk"

1
G= — Lyk ink" 8yk m—k"+m'"8y' —8x'"y'„$d'x

2Z = g«„( —i»+—mg «" 2ifg«—"B„C„+4„(aP)«j
', C„—(i—»+,'m)e-« 3iI —e«8„x+x(aC)j

+x ( i»+ 3—m) X+m (xf)+Qx)

see�

(i»—+3m) Q. {~"53k~+ (m' V')—'&k~i]5~~"
2

The Lagrange functions for systems with spin -'„—'„and
~ are also listed in the Appendix. 8yk„fbk)+—(m' —V') 'BkBQs.("}d'x

and C„, x, 0 are auxiliary 6elds. It is straightforward to the generator can be reduced to
verify that these field equations can be derived from the
following Lagrange function:

For a spin-2 system, this lead, s to

1
G= Pp«y87p«B+««7r«jd x q

2
(33)

"J.Schwinger, Phys. Rev. 82, 914 (1951);91, 713 (1953).

V. CANONICAL QUANTIZATION RELATIONS

Canonical coxrnnutator relations among the field vari-
ables of a higher-spin system can be carried, out easily
in the Lagrange formulation. Quantization follows

simply from the id,entification of the generator G, which
is associated, with boundary variations, with the in-
finitesimal generator of unitary transformations on a
quantum-mechanical system. "This is one of the most
fundamental postulates of Schwinger's action principle.
We shall illustrate how this principle can be applied,
to systems with both integer and half-integer spins.
The quantization for a spin-2 system has already been
studied in a previous publication. In this paper, we
shall d,evelop a method which can be applied universally
to a system with an arbitrary spin. For simplicity as
well as for clarity, we shall use spin-2 and, spin-~ as
explicit examples.

In the Lagrange formulation, the generator of a
quantum-mechanical system follows from the action
principle through

NV= G) —Gg,

with
&I

O'= Cd'.
e2

1

2

with

Ak~=4i+(m' —V') '&A~ (35)

This procedure can be repeated. , and leads to

$+klAkk

Alvin'Irk

v —3gklAkk An'&k'v jd'x (36)
2

Note that not all components of qk~ and ~kq are inde-
pendent. They satisfy the constraint equation

~J iq J i=~J i~I i=0 (37)

(39)

where

(40)

is the inverse of Akq. The last term in Eq. (39) is in-
cluded to guarantee the vanishing of the constraint
equation (37). The covariant connnutator relations can
be obtained, easily as

iI ~„„(x),~„(x')j=-', LA-'„,A-~..+A-~„.A-~.,
—-'h.—' Q 'k )b (X—X' ms) (41)

Now, the equal-time cominutator relations among q»~
and xI, & can be carried out easily as
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which is exactly reduced to

where

II„„„.(2)~" *~(x—x', m'),
G 3 Q, tg)Pk v Pv gP jd3X

a(x—x', i)3') =i e'3'(n *')0(p)8(p'+3)3')
(23r)'

=i pk„tAklg l"d'x.

is an invariant function introduced, by Schwinger. I et Repeating this process, we have
us now generalize our result to a system with an arbi-
trary integer spin S.The generator for such a system is

0'kl AkkkAlV~)pkl Pd'x ~ (50)

G=- [l(3k„vh3rk. .". ""—'Ilyk 3r""' ' "jd x'

2

(43)

This result is general, and can be applied to an arbi-
trary half-integer system. Analogous to systems with
integer spin, one finds that not all components of )Pkl

are ind, ependent. It is straightforward to verify that
)Pkl satisfies the generalized trace condition

with

~elm nAll'Am~ m' ' 'A
n' nl3' r' m]n~d~ x

v

—40
7l gPn ~ ~ P LJ (PgP v ~ ~ Il p

where
I'k)Pk3 =0,

I'k yk
——i (m—iyV—) 'Bk—

(51)

(52)
Ap)q A, )...~=XI )~1 )...~——0 etc.

Then, we have the following equal-time commutator
relations:

[v'kl" (x) &kl" (x')j
=[~kl....(x),~k l ....(x'))=O, (44)

obeys the simple anticonunutation relations

(V'I"k,V01'3) = 2Akl

Relations such as

(53)

i[q kl „(x),3. r. .k l (x')..j.
~?~~

~ ~
~
~ I ~ ~ ~

~~ ~~ ~ ~ ~ I
~~ ~ ~

I
Qglgg «I ' jg ~~&j (Q$ ~ ~ ~ 'Q) (/gl )I ~ ~ ~ /Ql')

X&(»—«'), (45)

G = 3 Q„ I8(p& "d'x (47)

where g „„areobjects which anticommute among them-
selves as well as with )P and )PI in accordance with the
Fermi statistics. Making use of the field equations

( iy8+333)—lp„„=8„&n"=0,
we have both

which leads to the required covariant conuziutator
relation

i[((v "'(x),((' ""(x)j
=8k„...„.,k „...„(S)~ev vA(x —x' 333'). (46)

The anticomlnutator relations for systems with half-
integer spin can be obtained analogously. The generator
for a spin- —,'system is

follow from Eq. (51) through

(V'I'k) (V'«)4 k(= Akl)Pkl,

and shall not be considered as ind, ependent restrictions.
The equal-time anticolrunutator relation can be ob-
tained, easily by inverting the matrix h.» A«under the
restriction (51), and we have

[~. (*),~' (")j,=[~. (*),~' t(*».=O,
[0'kl(x)vfk'l' (x )j+ [A kk'A ll'] (kl);(k'l')~(» «)

= [A 'kk A 'll —0A 'k(A 'k l

—0(y01'& ')k(V I'& ')k & '«j(kl);(k l)II(«—«') (55)

In Eq. (55), [ jr represents an expression whose traces
are subtracted. In other words, this expression is con-
structed to satisfy Eq. (51) identically. We would like
to point out that this inverting process can be carried
out easily in the rest frame where A—. 'I, ~ reduces to bI, &,

and FI, to y~. The covariant colrunutator can be ob-
tained. through the relation

lPnv (~nk gn0'r Yk) (~vl gv0'7 Vl)gkl ~

(m i+p)$0v i+Og0$0v i+Qg„g„v (4g) It is straightforward, although quite tedious to verify
that

and its adjoint equation 8..(*)A k.(x')j+=[4"'(x)A k'(x')1+ =O,
—iQ„„(x),)p, (x')j = —(iy8+333)O„„)„(5/2)) 0,

With the help of these equations, the generator can be X&(x—*', ~&). (56)
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Then, the Green's function can be expressed ex-
plicitly as

G»" ~ v; g)») "~v) ($)$ )
=Q«„»...„.,i „. .„.

l
a~ )+(x—x') (61)

for systems with integer spin, and

~EGi»" v, «'X'»' ~ "v', «'(&)& )
=8». ', « '" ",«-Ie S,(~—*')„",. (62)

for systems with half-integer spin. In this construction,
however, there are always the ambiguities of add, ing
some contact terms which are linear in 8(x—x'). These
extra terms correspond to the replacement of (ms —8')
Xh(x —x) in the covariant commutator, which is in
fact zero, by (ms —8')b,+(x—x') =8(x—x') in the Green's
function. As for free fields, these terms do not propagate.
They have no physical consequence other than to modify
the transition amplitude by a phase factor which can
never be detected. "In the interacting system, however,
these terms do contribute; they lead to some contact
interactions between the external currents.

An alternative d,efinition of Green s function is intro-
duced as the measurement of the response of the system
to the variation of an external source, and, is given by"

G».-.;~.- "(*-~')=~(v»'- (~))/8i"'"'""'(~')
I =o

It is straightforward. to verify that this definition not
only leads to the same nonlocal structures as given by
Eqs. (61) and (62), but also gives definite prediction on
these contact terms. %e would. like to emphasize that
one should not take these predictions too seriously. We
have to remind ourselves that there is always more than
one way to describe a higher-spin system. For example,
a spin--', system can be described either by a vector
spinor, or by a total syminetric third-rank multispinor.
The contact terms computed from these two different
formulations are in fact different. " The ambiguities
associated with the Green's function still persist, and
are now related. to the possibility of introd, ucing various
descriptions. It is our opinion that these contact terms
should be determined from the high-energy behavior of
the Green's function. The extra information which can
be deduced, from experimental results may reveal to us
which of the higher-spin descriptions should. be used to
describe the physical observed particles.
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APPEIIX: EXPLICIT EXPRESSION FOR THE
HIGHER-SPIN LAGRANGE FUNCTIONS

WITH SPIN&4

A. The Lagrange Functions for Systems with
an Integer Syin S

S=2
&= su""(8' m') -v "+(8v)»(8v)"

+e (889 ) ,s—e—(8' 2—ms)+

~= l g"""(8' ') ~—"+l(8~),.(8v )""+2+,(88&)"
——ss%»(8' —-',m')+«+-,s(M )'+mx(8+) —x(8'—4m')x.

&=-'g"""'(8'—m') 9i "+2(8v)» (8~)»"+3+» (88')""
sr+—»„(8s ,'m—')@—«v+'(8@)-q(8+)i+4mX»(8+)

—(15/2) x»(8' —22m'/10)x„+-'(8x)'+3mQ(8x)
—(3/2)Q(8' —20m'/3)Q.

In these expressions, all field variables are chosen to be
totally symxnetric and. traceless, and

(8(p)„=8 "q „„, (88' ) =8"8"q „„etc.
3. The Lagrange Function for Systems with a

Half-Integer Spin S
S=-'

2

P»( —iy8+—m)P« ig«8—«C+C (8)Iv)5
', e(iy—8-+2m)C;

S=—'
2

6v( s78+m)4 2sL4 8Pv+@»(W)
,'e„(iq8+ ;m—)c-» 3i/C«8-„x+x—(8e)5
+x( i~8+—3m)x+m(xQ+ Qx) sQ(iq—8+ 3m)Q;

4», ( i&8+—m)4»—" 3iL4 "»"8i~»—.+~», (80)»"5
——,'c „„(iq8+4m/3)c»"—4il c«"8„x„+x«(8c)„5
+x»( iy8+ 2—m)x„+m(x»Q„+Q«x„)
—(5/2)Q» (iy8+ 2m) Q„3i(Q»8»O'—+0'(8Q) 5
+—Q«( jp8+4m)Q~+—2m(Qwg+ (Q~)

(2/2)$(iv—8+4 )5

In these expressions, all Geld variables are totally sym-
metric in tensor indices and satisfy the trace conditions

vV«. i=o

)Jv=f ty', etc.


