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Recently, Arecchi, Berné, and Sona reported results of theoretical and experimental investigations on the
twofold joint photocount distributions of a stationary Gaussian-Markovian radiation field. In this paper,
we generalize their results by deriving the N-fold joint photocount distribution of a Gaussian (thermal)
radiation field of arbitrary spectral profile, when the counting-time intervals are short compared to the
coherence time of the light. The present analysis provides simple recurrence relations for the N-fold joint
photocount distributions and for their generalized factorial moments. These relations are derived with the
help of an N XN generating matrix which is introduced here. The present analysis also indicates to what
extent the V-fold joint photocount distributions contain useful information about the higher-order coherence

properties of the radiation field.

A GREAT deal of interest has been manifested
recently towards the investigations of the sta-
tistical behavior of fluctuating light beams by the
photon counting techniques.!—® Such techniques consist
of measuring the statistical distribution of photo-
electrons registered, in a fixed time interval, by a single
photodetector upon which the light is incident. It is
well known that the photocount distribution is related
to the probability density for the time-integrated light
intensity by a linear transform.®~*2 On the other hand,
the possibility of determining the probability density
of the light intensity of an optical beam from experi-
mentally obtained photocount distributions has also
been investigated.13:1

Recently, the twofold joint photocount distribution
of a Gaussian-Markovian radiation field has been
investigated, theoretically and experimentally, by
Arecchi ef al? In the present paper, we generalize their
results by deriving the N-fold joint photocount dis-
tributions of a Gaussian (thermal) radiation field of

* Research supported by the U. S. Army Research Office
(Durham).
1F. A. Johnson, T. P. McLean, and E. R. Pike, in Physics of
Quantum Electronics, edited by P. L. Kelley, B. Lax, and P. E.
Tannenwald (McGraw-Hill Book Company, Inc., New York,
1966), p. 706.
2 F, T. Arecchi, Phys. Rev. Letters 15, 912 (1965).
3 C. Freed and H. A. Haus, Phys. Rev. Letters 15, 943 (1965).
¢tA. W. Smith and J. A. Armstrong, Phys. Letters 19, 650
1966).
( 5 A.) W. Smith and J. A. Armstrong, Phys. Rev. Letters 16, 1169
1966).
( GF.) T. Arecchi, A. Berné, and P. Bulamacchi, Phys. Rev.
Letters 16, 32 (1966).
- 7W. Martienssen and E. Spiller, Phys. Rev. 145, 285 (1966).
8 W. Martienssen and E. Spiller, Phys. Rev. Letters 16, 531
1966).
( 9 F.)T. Arecchi, A. Berné, and A, Sona, Phys. Rev. Letters 17,
260 (1966).
10T, Mandel, Proc. Phys. Soc. (London) 72, 1037 (1958); see
also in Progress in Optics, edited by E. Wolf (North-Holland
Publishing Company, Amsterdam, 1963), Vol. II, p. 181.
111,. Mandel, E. C. G. Sudarshan, and E. Wolf, Proc. Phys.
Soc. (London) 84, 435 (1964).
2P L. Kelley and W. H. Kleiner, Phys. Rev. 136, A316 (1964).
1B E. Wolf and C. L. Mehta, Phys. Rev. Letters 13, 705 (1964).
# G, Bédard, J. Opt. Soc. Am. (to be published, 1967).

161

arbitrary spectral profile: namely, the joint probability
Pp(n,T1;m5,Ts; - -+ ;ny,Tx) that #; photoelectrons will
be registered in a time interval 7; by a photodetector
located at the space-time point x; (more generally
®i=14,1;), ne photoelectrons will be registered in a time
interval T'; by a second detector located at 3, - - -, and
ny photoelectrons will be registered in a time interval
Tn by the Nth detector located at xy.

As will be shown, these joint photocount distributions
carry information about the higher-order intensity
correlations of the radiation field, and also about the
spectral profile of the light. We assume that the optical
field is stationary and quasimonochromatic. The
counting time intervals 7; (§=1,2,---, N) are as-
sumed to be much shorter than the coherence time of
the light.

The basic formulal®—12

] Wn
p(n,T) =f -—n—’e—WP W)Haw (1)

relates the statistical distribution p(%,T) of photo-
electrons, registered with a single detector in- the
counting time interval T, to the probability density
P (W) for the quantity

t+T
W=a / |V (r,t)| 2%t . (2)

Here « is a measure of the quantum efficiency of the
detector, r is any point on the sensitive surface of the
photodetector, and

1
V(r’t)=ﬁkz,ivk’e exp[i(k-r—kect)], 3)

where v , is the eigenvalue of the photon annihilation
operator ayx,. for the mode k and polarization state s.
The probability density P(W) is related to the phase-
space functional ®({vy,}) of the diagonal represen-
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tation'®16 by an expression of the form!
P(WI)=/‘p({”k,s})a(W,—W)dZ{”k.s} ; 4)

where the quantity W is obtained from Egs. (2) and
(3). Alternatively, one can write Eq. (1) in the more

compact form
pn,T)=((W"/nl)e "), ©)

with the understanding that the angular brackets
denote the appropriate average with respect to the
phase-space functional.

The foregoing results can readily be extended to the
multidetector arrangement, in which one measures the
N-fold joint photocount distributions p(#1,T1; #2,Ts;

-;nx,Tx). By an analysis quite similar to the one
used in deriving Eq. (1), one can show that an expres-
sion analogous to Eq. (5) holds for the N-fold joint
photocount distribution, namely

N Wz.m'
P('ﬂl,Tl; n27T2; e ;nNaTN)= H e—Wi> ) (6)

=1 p,;!

where the angular brackets again denote the appro-
priate average with respect to the phase-space func-
tional ®({w.}). Here the quantities W; are obtained
from Egs. (2) and (3) by replacing W, o, 1, ¢, and T by
W, i, ti, £, and Ty, respectively. When the counting
time intervals are much shorter than the coherence
time of the light, the integrand in Eq. (2) is effectively
constant, so that the quantities I¥; are given by

Wi=a;| V (t:,t:) |27 (M)
=a;| V;|2T. (®)

In order to simplify the notation, we have set
Vi=V(rit).

It follows from Eq. (8) that the appropriate average
appearing in Eq. (7) must be taken with respect to the
“joint probability density” pn(V1,Vs,-:-,Vy), defined
by the relation'®

pn(Vy,Va,- - -,VN)=/<1>({vks}) ﬁ a(Vi

——'—1—‘ Z Vks exp[’i(k-ri—ckti)])dz{vks} . (9)
372 s

Hence, the joint photocount distribution can be ex-
pressed in the form

p(n1,T1;n9,T2; -+ 5, T'y)

=/"'/PN(V1,V2,'",VN)@(Vl,Vz,"',VN)

Xd2Vy---dVy,

(10)
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where we have set
N (a,,l V‘il21‘i)m—
(P(Vl, Vz,' - ',VN)=H
i=1 n;!
Xexp(—as| Vi|2T3), (11)

and @*V;=d (Re V«,)d (ImVI) :

The foregoing analysis applies to any optical radiation
field. Let us now consider the case of Gaussian (thermal)
light. In this case, the phase-space functional ®({v.})
has the form!®

®({os)) =11

ks TWks

exp(— | vks|2/10ks) (12)

and wy,, is the average photon occupation number in
the mode k, s of the radiation field. Upon substitution
of Eq. (12) into Eq. (9), one obtains the following
expression :

pv(V,Va, V)= (1;)1\’ exp(—3V1i4V), (13)
with the column matrix
Vi
v="], (14)
Va
and its Hermitian conjugate
Vi= ViV - Va*). (15)

Here, | 4| stands for the determinant of the Hermitian
positive definite matrix A4, defined in terms of the
mutual coherence function'®

Ly=(V*V3y), (16)

through the relation

2(47Y);;=T};. a7

Hence, the matrix 4, through its relation to the mutual
coherence function, carries information about the
spectral profile of the light. The probability density
pn(V1,Vs,- -+, V) is therefore a multivariate Gaussian
distribution in the N complex variables V;, with zero
mean.!8

Let us now introduce the multidimensional gen-
erating functions G(sy,se,---,sn), defined by the
relation

0

G(Slys%' . ')SN)= Z

n1==0

o 5T (-s)]

aN=0 ¢=1

Xpny,Tv;---;n8,Ty), (18)

18 See, for example, C. L. Mehta, in Lectures in Theoretical
Physics, edited by W. E. Britten (University of Colorado Press,
Boulder, Colorado, 1965), Vol. VIIIC, p. 398.
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where the expansion coefficients

N (—1)7i 9ns
p(n,Ty; -+ 0w, Ty)= {H =D }

=1

n;l 98

(19)

constitute the joint photocount distribution. The
generalized factorial moments, defined as

XG(‘“)S% e 7SN) { s1=1,e+¢,8N=1

» ® N 74!
(nyl. .oy viy=3%" ... 3 I:I;II (n __l.)I:I

n1=0 an=0
(20)

can be obtained from the generating function
G (51,52, - +,5n) according to the following rule:

N gni
(nlllll. . .nN[lN]>= {H (_ 1)7“_____}
=1 asi"i
(21)

Alternatively, one can write the generating function
as

XG(JI;SZ) v '7SN) I 51=0,00+,sN=0-

N
G(SIJS2; e 7SN) = <H e—siWi> )

2=l

(22)

or in terms of the joint probability density pnx(Vy,
V- V) as

G(Sl,sz,"'SN)=/"'/PN(V1,V27'",VN)

X[IZII exp(—a;| Vi|*Tss)d®V:].  (23)

Upon substitution of Eq. (13) into Eq. (23), one obtains

A
G(SlaS%' . .SN)=(|2,”.)[N/~ : ./ CXP(—%VTBV)

XV -dVy, (24)

where B is the NX N matrix whose elements B;; are

defined as
BijzAij+ Za,-T,-s,-B,-,-. (25)

The evaluation of Eq. (24) is quite straightforward
and yields the following expression for the generating
function:

G(Sl,SZ,' : ')SN)=[|A_IB[]—1 ’ (26)

where | A~1B| stands for the determinant of the product
matrix A~1B. It follows from Egs. (17), (25), and (26)
that

G(Sl,82,' : '75N)= IANI—I: (27)

where |Ay| is the determinant of the NXXN matrix
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Ay whose elements are given by
(AN)ij=08ij+(masiy*us (28)
with
<ni> T 1/2
m,~=[ —’] : (29)
(n) T:

Here v,;is the second-order complex degree of coherence
for the radiation field at the 7th detector located at the
space time point r;, # at the jth detector located at
1;, ¢;. The average number of photocounts at the /th
detector is given by (n;)=a{I;)T;. We shall refer to
Ay as the generating matrix of the N-fold photocount
distribution for the thermal radiation field.
Rewriting Eq. (27) in the form
G(Sl,SZ,"'SN)|ANl=1, (30)

and performing partial differentiation with respect to
the variables s;, we obtain

i on

i=1 9§;™

}6(51,82,"'SN)|AN[=0. (31)

This result holds as long as the sum of the #; is nonzero.
Applying Leibnitz’s differentiation rule to the product
G|Ax|, Eqg. (31) can be expressed in the following form :

ny nN N /1 oni—ri
£ L{nC)eml)
r1=0 v=0 {Li=1 \7;/ Q5,77

<11

i=19s§;"¢

}ml:o. (32)

It follows from Eq. (28) that the only nonvanishing
partial derivatives of the determinant |Ay| are those
for which 7; is either O or 1.

At this point, if one evaluates Eq. (32) first at s;=1
(7=1,2,---N) and then at s;=0 (j=1,2,---N),
one obtains, respectively, the following recurrence
relations for the joint photocount distribution :

1 1
e Z (_1)r1+rz+---+rNAﬂrzmrN

>
7r1=0 rN=0

Xp(mi—ry, T1; - -+ sny—ry, Ty)=0; (33)
and for its generalized factorial moments:

1 1
2 e 2 (" 1)”+72+”.+TN37172---7N
r1=0 rN=0
Xmy b=l o .pyUn—mvly=0, (34)

Here we have set

N g7
Amz...m=[{H } |AN|] . G35)
i=1 9s;7% s1=1,000,8N=1




161

and

c—rl — s ] (36)
717200 TN — N .
e i=1 (l,;—ri)! 957 510,00+, 8N =0

To illustrate the previous results, let us consider the
first few joint photocount distributions of the thermal
radiation field, when the counting time interval is much
shorter than the coherence time of the light.

Example 1. The single-detector case (N=1): In
such a case, the determinant of the generating matrix
A; reduces to one term, namely

|Ar] =[1+(n)s],

as is easily seen from Eq. (28), and the corresponding
generating function is

G(s)=[1+m)sT.

It readily follows from the recurrence relation (33) that

1

2 (=1)dp(n—r,T)=0,

r=0

@37)
with
do= 1+<’ﬂ> , A= <">7

and that the photocount distribution is given by the
relation

(n)
(n)

+1
If one now uses the initial value

¢(0,1)=G)=[1+m)1",

one finds that the function G(s) generates the well-
known Bose-Einstein distribution

o
Cm+17"

tor the single-detector photocount distribution p(n).
Example 2. The two-detector arrangement (N=2):
The determinant of the 2)X2 generating matrix

A _I: (n1)si+1 <n1>31712*#12]
. (no)sayromar  (mo)sat-1

p(@,T) (39)

is of the form
| Az| = ((ra)s1+1) ({ma)sat1)— (m1)(ma)s1sa| 12| 2.

The corresponding generating functing G(s1,s2) can be
expressed as

G(51,52) = [1+ <n1>81+ <‘n2>5‘2
+n)ma)sisa(1— |12,

and the recurrence relation (33) now reads

1 1
> X (=0)mnd o p(ma—ry, Tr;ne—ry, To)=0. (40)

r1=0 rg=0
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For convenience, the coefficients A, are expressed
here in a matrix form:

A 00 A 10
4= [A n A 11:|
_ [H‘ )+ {na)+(n)n)B  (n)(1+ (%z»ﬁ:l 1)
(n2) (1+(n1))B (ma)(na)8 |’

with
B=1—|v1|?.

Hence, Egs. (40) and (41), along with the boundary
values

p(k,T1;0,T5)=A 1" Ao,

2(O0,T1; k,To)=An 4o,

completely characterize the twofold joint photocount
distribution p(#1,T1; n2,Ts) of a thermal light beam of
arbitrary spectral profile, when the counting time
intervals 7'y and T'; are short compared to the coherence
time of the light. Information about the spectra profile
of the light is contained in the coefficients 4, through
the parameter 3.

Example 3. The three-detector arrangement (NV=3):
The generating matrix A; is of the form

(mysit1 (muweyis®s:s  (mwizyis*s
Az= (ﬂz)ﬁn’y 1252 <n2>S 21 (%2>l-t23’Yza*S 2
(143)#31')’1383 <n3>ﬂ23’)’2353 <ﬂ3>83+1

The corresponding generating function

G(81,82,S3) = l A3 ] -1
takes the form
G (51,52,53) = [ 14 (n1)s1+ (me)sat(ns)ss
+ | g1z (1) (ma)s1sa+| gus| (ma) (ms)siss
+ lg%l <”2><”3>3233+ lgusl (nl)(m)(na)slsgssj‘l ,

where |g;;| is the determinant of the submatrix

___[1 %‘f:l
§u vi* 11’

and |gss| is the determinant of the matrix

1 Yiz2 Y13
8123= 712* 1 Y23]|
Yis*  ye* 1
namely

lgml =1— |712|2— l‘Ylslz'" 1723124‘2 Re’le‘Yza'ha*-

Clearly the generating function will contain information
about the phases of the v, in view of the presence of
the term #izyssy1s*. Hence, information about the
spectral profile of the light can be obtained from the
threefold joint photocount distribution.

The present analysis provides simple recurrence

-relations for the NV-fold joint photocount distributions,

and their generalized factorial moments, for a thermal
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radiation field of arbitrary spectral profile, when the
counting time intervals are much shorter than the
coherence time of the light. As mentioned previously,
these generalized factorial moments are closely related
to the high-order intensity correlation functions of the
radiation field, and therefore contain information about
the phase of the second-order complex degree of co-
herence v;; for the light field at two space-time points.
As is well known, the knowledge of the phase of the

GABRIEL BEDARD
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degree of coherence is essential in determining the
spectral profile of the light beam. Clearly, the N-fold
joint photocount distributions provide useful and
interesting information about the higher-order co-
herence properties of the radiation field.

The author wishes to thank Professor Emil Wolf for
stimulating discussions and critical comments in con-
nection with the present work.
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Prescriptions for constructing the generalized Lagrange function for a system with an arbitrary spin .S
are presented. By the use of the spin projection operators introduced by Fronsdal, nonlocal field equations
are constructed to describe these higher-spin systems. Then, auxiliary fields are introduced systematically
to remove the nonlocalities appearing in these field equations. Lagrange functions describing systems with
S<4 are constructed explicitly according to this new prescription. For S=0, 3, 1, they agree with the
well-known local Lagrange functions. For S=% and 2, they are equivalent to the results previously ob-
tained by Rarita and Schwinger, and by Fierz and Pauli. With the help of the quantum action principle,
canonical quantizations are carried out and Green’s functions are constructed. Some physical positiveness

requirements are also verified.

I. INTRODUCTION

HE problem of quantization for systems with

higher spins has been studied extensively ever
since the earlier development of quantum field theory.!
The recent discovery of many higher-spin resonances
arouses new interest in this problem. Roughly speaking,
there are two different approaches to describe the field
theory of higher spins. The first approach emphasizes
the transformation properties of field variables under
the homogeneous Lorentz group.? The physical inter-
acting field operators are considered as the asymptotic
field operators—the field operators before and after the
interactions are taken place. This approach has the
advantage that these asymptotic field variables satisfy
very simple field equations, and that no complicated
Lagrange function is required to describe them. These
asymptotic field variables can be quantized easily by

* Publication assisted by the U. S. Air Force Office of Scientific
Research.
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expanding them in terms of creation and annihilation
operators, and their corresponding propagation func-
tions can then be determined. This approach is very
successful in perturbative applications as well as in the
S-matrix theory. The simplicity in this approach origi-
nates from the fact that we have bypassed the detailed
structures of the interactions. This advantage turns out
to be its disadvantage when we try to describe the
interaction. Neither the canonical commutator rela-
tions nor the stress tensor can be obtained without
solving the full dynamics. The canonical quantization
conditions as well as further consistency requirements in
the presence of interactions are consequently ignored.
The second approach follows that of Pauli and Fierz,!
and demands that all field equations and subsidiary
conditions should be derived from a generalized action
principle. This classical approach has the advantages
that the interaction can be introduced explicitly, and
that the Green’s function can be computed. The
canonical quantization relations and the stress tensor
of a system can be obtained directly from the action
principle, even in the presence of interaction. The
validity of all these consequences is not limited by
perturbations. However, this approach has at least one
defect. For a system with spin >2, even the construc-
tion of a free Lagrange function is very tedious and, in
some sense, rather ambiguous. The introduction of
auxiliary field variables is by itself quite arbitrary. In



