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Recently, Arecchi, Berne, and Sona reported results of theoretical and experimental investigations on the
twofold joint photocount distributions of a stationary Gaussian-Markovian radiation field. In this paper,
we generalize their results by deriving the X-fold joint photocount distribution of a Gaussian (thermal}
radiation field of arbitrary spectral profile, when the counting-time intervals are short compared to the
coherence time of the light. The present analysis provides simple recurrence relations for the N-fold joint
photocount distributions and for their generalized factorial moments. These relations are derived with the
help of an N)(N generating matrix which is introduced here. The present analysis also indicates to what
extent the N-fold joint photocount distributions contain useful information about the higher-order coherence
properties of the radiation field.

A GREAT deal of interest has been Inanifested
recently towards the investigations of the sta-

tistical behavior of fluctuating light beams by the
photon counting techniques. ' ' Such techniques consist
of measuring the statistical distribution of photo-
electrons registered, in a 6xed time interval, by a single
photodetector upon which the light is incident. It is
well known that the photocount distribution is related
to the probability density for the time-integrated light
intensity by a linear transform. '~" On the other hand,
the possibility of determining the probability density
of the light intensity of an optical beam from experi-
mentally obtained photocount distributions has also
been investigated. ""

Recently, the twofold joint photocount distribution
of a Gaussian-Markovian radiation 6eld has been
investigated, theoretically and experimentally, by
Arecchi et at.' In the present paper, we generalize their
results by deriving the S-fold joint photocount dis-
tributions of a Gaussian (thermal) radiation fteld of
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arbitrary spectral profile: namely, the joint probability
p(rtr, Tt, ns, Ts, , r'ttv, TN) that rtt photoelectrons will
be registered in a time interval Tj by a photodetector
located at the space-time point xt (more generally
oct rt, tt), ns——photoelectrons will be registered in a time
interval T2 by a second detector located at x2, - ~, and
e~ photoelectrons will be registered in a time interval
T& by the Xth detector located at x&.

As will be shown, these joint photocount distributions
carry information about the higher-order intensity
correlations of the radiation field, and also about the
spectral pro61e of the light. We assume that the optical
field, is stationary and quasimonochromatic. The
counting time intervals T; (j=1, 2, . . ., cV) are as-
sumed to be Inuch shorter than the coherence time of
the light.

The basic formula" —"

co g7n

p(rt, T)= e ~I'(W)dW
p nf

relates the statistical distribution p(n, T) of photo
electrons, registered with a single detector in the
counting time interval T, to the probability density
I'(W) for the quantity

~
V(r, t') ~'dt'. (2)

V(r, t) = g vt. ..exp)i(k r—Act)g,
I3/2 l s

where el, , is the eigenvalue of the photon annihilation
operator at. .. for the mode k and polarization state s.
The probability density E(W) is related to the phase-
space functional C((vt„}) of the diagonal represen-

1304

Here n is a measure of the quantum eSciency of the
detector, r is any point on the sensitive surface of the
photodetector, and
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tation" ' by an expression of the form'

P(W') = C ({vs,,))5(W' —W)d'{es, ,),

where we have set

(4)
& ( 'I U'I'T')"'

(P(vi, U&, -, Utv) =g
where the quantity W is obtained from Eqs. (2) and
(3). Alternatively, one can write Eq. (1) in the more
compact form

p(n T) =((W"/n!)e ~), (5)

with the understanding that the angular brackets
denote the appropriate average with respect to the
phase-space functional.

The foregoing results can readily be extend, ed to the
multidetector arrangement, in which one measures the
N-fold joint photocount distributions P(ni, Ti, ns, Ts,

; npv, T&). By an analysis quite similar to the one
used in deriving Eq. (1), one can show that an expres-
sion analogous to Eq. (5) holds for the N-fold joint
photocount distribution, namely

~ S',"'
p(n, ,r, ;e, r, ;;m, ~,r~)= n e '), (6)

where the angular brackets again denote the appro-
priate average with respect to the phase-space func-
tional C({w)„)).Here the quantities W; are obtained
from Eqs. (2) and (3) by replacing W, n, r, t, and T by
W;, n;, r;, t;, and T;, respectively. When the counting
time intervals are much shorter than the coherence
time of the light, the integrand in Eq. (2) is effectively
constant, so that the quantities W, are given by

W;=~,
I
V(r„f,) I», (7)

= .I
v'I'T'. (8)

In order to simplify the notation, we have set
v, = v(r;, ~;).

It follows from Eq. (8) that the appropriate average
appearing in Eq. (7) must be taken with respect to the
"joint probability density" p)v(vi, Vs, ,vtv), defined

by the relation"

1
P vs, expLi(k r,—chal, )j Ids{i)s,) . (9)

L3/2 j ~

Hence, the joint photocount d,istribution can be ex-
pressed, in the form

p(ni, Ti, ns, T,;;n)v, T„)

~" p (v„v„".,v )lp(v„v„.",v )

Xd'Vi . d'VN (10)
I~ E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963)." R. ]. Glauber, Phys. Rev. 131,2766 (1963l; see also in
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exp( I» I'/ice ) (12)

and m~, , is the average photon occupation number in
the mode k, s of the radiation field. Upon substitution
of Eq. (12) into Eq. (9), one obtains the following
expression:

p)v(vi, Vs, , vtv) = exp( ——',V&A V), (13)
(2s.)"

with the column matrix

Vg

V2

and its Hermitian conjugate

Vt= (Vie vs* Vtv*). (15)

Here, IA I
stands for the determinant of the Hermitian

positive d.e6nite matrix A, d,caned in terms of the
mutual coherence function"

I;,=(v;*v;),

through the relation

2(A-');;= r;;. (17)

Hence, the matrix A, through its relation to the mutual
coherence function, carries information about the
spectral profile of the light. The probability d,ensity
p)v(v, ,vs, , vtv) is therefore a multivariate Gaussian
distribution in the S complex variables V;, with zero
mean"

I.et us now introduce the multidimensional gen-
erating functions G(si, ss, . ,s)v), defined by the
relation

G(si, ss, ,sN) = p p Lg (1—s;)"']
n1 0 n~=0 i=1

XP(ni, Ti, ~, nor, T~), (18)

"See, for example, C. L. Mehta, in Iectures irl, Theoretical
Physics, edited by W. E. Britten (University of Colorado Press,
Boulder, Colorado, 1965), Vol. VIIIC, p. 398.

xe~(—,Iv, IsT,), (»)
and d'V, =d(Rev, )d(Imv;).

The foregoing analysis applies to any optical radiation
field. Let us now consider the case of Gaussian (thermal)
light. In this case, the phase-space functional C ({vs,))
has the form"
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where the expansion coeKcients AN whose elements are given by

( 1)ng gn, ;
p(nr, Tr, , ng, Tg) =

n;1 Bs,"i with

(~ )'=&'+( ') 'v' (28)

XG(slp$2p ' ' ' ps') I ay=1,"~, slav i (19)

constitute the joint photocount distribution. The
generalized factorial moments, deGned as

00 oo N g
(n ["' n ['"')=Z " Z II

n&=0 nylon i=1 (n, t,—)!
Xp(n„Tx, , n~, T~), (2o)

can be obtained from the generating function
G(sq, s2, ,$~) according to the following rule:

N 8"s

(n f&il. . .n [4rl) —II ( 1) '
i=1 BS 'ni

(n)T
(n;) T;

(29)

G(sx, s2, $~) I a~I =1, (3P)

and performing partial differentiation with respect to
the variables s;, we obtain

Here y,; is the second, -order complex degree of coherence
for the radiation Geld. at the ith d.etector located at the
space time point r;, t; at the jth detector located at
r, , t;. The average number of photocounts at the lth
detector is given by (n~)=a~(I~)Tq. We shall refer to
hN as the generating matrix of the E-fold photocount
distribution for the thermal radiation Geld.

Rewriting Eq. (27) in the form

XG($182& pN) I 81 0, ",8~ 0 (21)

Alternatively, one can write the generating function
as

(jns

G($1 $2, ' ' 'slav)
I
~x I

S .ni
(31)

N

G(s„s~, ",$~)=(II e-" '), This result holds as long as the sum of the n, is nonzero.
Applying Leibnitz's differentiation rule to the product
G

I
d,~ I, Eq. (31) can be expressed. in the following form:

or in terms of the joint probability density pz(V&,
V)r) as

G($~~$2~' ' '$~) = ' ' ' p~(Vr~V2~' ' '~V~)

n1 nN

rN=O

(n) gn; —r;—
III
'=i Er;i as,-'- '

x II l~ I=o. (32)
i=1 gS."s

XLII exp( n,. l V, I2T;$,)d2V, $ (23). .

G(sr, s2) ~ ~ sx) =
(2~)~ exp( —-,'VtB V)

Xd'Vi d'Vx, (24)

Upon substitution of Eq. (13) into Eq. (23), one obtains

It follows from Eq. (28) that the only nonvanishing
partial derivatives of the determinant Id~I are those
for which r; is either 0 or 1.

At this point, if one evaluates Eq. (32) first at s;=1
(j =1, 2, E) and then at s,=p (j =1, 2, N),
one obtains, respectively, the following recurrence
relations for the joint photocount distribution:

1 1

where B is the 1VXA matrix whose elements B;; are P g (—1)"'+"'+'"+""&.~.," ~~

deGned as
B;,=2,,+2n~T;$, 8;; . (25) Xp(ni —~1 Tl ''' nN ~N T~)=p; (33)

and. for its generalized factorial moments:

1 1

(26) Z ' ' ' E ( 1)"+"'+"+" Be~2 ~sr'
r1=0 rN 0

G(sr, s2, ,$~)=l IA
—'Bl j-')

The evaluation of Eq. (24) is quite straightforward
and yields the following expression for the generating
function:

where IA 'Bl stands for the determinant of the product
matrix A 'B. It follows from Eqs. (17), (25), and (26)

Here we have set

X(nrem~
—nt. . .nN[4-~~1)=P (34)

G (sq, s2, ~ ~ ',s~) (27)

where
I
A~

I
is the determinant of the 1VXN matrix

N gri
~.i.a-'~= II

~=1 Bs "' —8]=l, ~,8N~1
(35)
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and

~a&a ~ ~ f'N n
8"'

'-1 (/; r) t—8$ "' - sy~O, ~ ~,sN=O

For convenience, the coefficients Ap are expressed
here in a matrix form:

(36)
Aoo A1o

AP1 A 11

1+(-.&+("&+(-.&(-.&/ (")(1+(.,&)~-

(-.)(1+("))// ("&(-.)// , (41)

Hence, Eqs. (40) and. (41), along with the boundary
valuesl 6] l

=
l 1+(n)sj,

To illustrate the previous results, let us consider the
irst few joint photocount distributions of the thermal
radiation 6eld. , when the counting time interval is much
shorter than the coherence time of the light.

Exurnp/e 1. The single-detector case (X=1): In with
such a case, the determinant of the generating matrix
61 reduces to one term, namely

with

p (—1)"A„p(n—r, T)=0,
r-0

A p
——1+(n.), A 1

——(n),

(37)

and that the photocount distribution is given by the
relation

(n)
p(n, T) = p(n —1, T).

(n)+1
(38)

If one now uses the initial value

as is easily seen from Eq. (28), and the corresponding
generating function is

G()=l:1+(-&j-
It readily follows from the recurrence relation (33) that

p(k, T1, 0,T2)=AlppApp '—'

p(O, T1, k, T2) =Apl"App "—'

completely characterize the twofold joint photocount
distribution P(nl, T1, n2, T2) of a thermal light beam of
arbitrary spectral profile, when the counting time
intervals T1 and T2 are short compared to the coherence
time of the light. Information about the spectra proile
of the light is contained. in the coefficients Ak through
the parameter P.

Exarnp/e 3. The three-detector arrangement (X=3):
The generating matrix h3 is of the form

(nl)$1+1 (nl&P12'Y12 Sl (nl&pl+'» $1
68— (n2)p21Y12$2 (n2)$2+ 1 (n2)@23+23 $2.(n3&P31 Y18$8 (n3&P23723$8 (n3&$8+1-

The corresponding generating function

p(O, T)=G(1)= L1+(n&j '
takes the form

G (»P2P3) =
I ~31

(n) a

n, T)=
l (n)+1j""

(39)

tor the single-detector photocount distribution p(n).
Exarnp/e Z. The two-detector arrangement (E=2):

The determinant of the 2X2 generating matrix

one 6nds that the function G(s) generates the well-

known Bose-Einstein distribution G($1)$2)$3) t.i+(nl)$1+(n2)$2+(rl3)$8
+ I g12I (nl)(n2)»»+ I g» I (nl)(np)»»
+ l g23l (n2)(n3&$2$3/ l g123l (nl)(n2&(n8)s]$2$3j-',

where
l g;;l is the determinant of the submatrix

1
g'i =

VQ*

is of the form

(nl)$1+ 1 (nl)$1Y12 @12

(n2)$2Y12+21 ('n2)$2+ 1
g123 +12

~$13

+12 +13
1 723

723* 1-

and
l g128l is the determinant of the matrix

l ~2 I ((nl)$1+ 1)((n2)$2+ 1) (nl)(n2)$1$2 l Y12 l
'

~

The corresponding generating functing G(sl, s2) can be
expressed, as

G ($1,S2)=Li+ (nl&$1+ (n2&$2

+(nl)(n2)»»(1 —
I Ylpl')3 ')

and, the recurrence relation (33) now reads

1 1

( 1) A 2p(nl rl Tl n2 r2 T2) 0 ~ (40)
my=0 rg=o

namely

l g»3I =1—
I V» l' —

l V» l' —
l V23 l'+2 «Y12Y28Y13*.

Clearly the generating function will contain information
about the phases of the y,, in view of the presence of
the term y1~23y13*. Hence, information about the
spectral proile of the light can be obtained from the
threefold. joint photocount distribution.

The present analysis provides simple recurrence
relations for the Ã-fold joint photocount distributions,
and their generalized, factorial moments, for a thermal
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radiation field of arbitrary spectral profile, when the
counting time intervals are much shorter than the
coherence time of the light. As mentioned previously,
these generalized factorial moments are closely related
to the high-order intensity correlation functions of the
radiation field, and therefore contain information about
the phase of the second-order complex d, egree of co-
herence y;; for the light field at two space-time points.
As is well known, the knowledge of the phase of the

degree of coherence is essential in determining the

spectral profile of the light beam. Clearly, the X-fold

joint photocount distributions provide useful and

interesting information about the higher-order co-

herence properties of the radiation Geld.
The author wishes to thank Professor Emil Wolf for

stimulating discussions and critical comments in con-
nection with the present work.
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Prescriptions for constructing the generalized Lagrange function for a system with an arbitrary spin S
are presented. By the use of the spin projection operators introduced by Fronsdal, nonlocal field equations
are constructed to describe these higher-spin systems. Then, auxiliary fields are introduced systematically
to remove the nonlocalities appearing in these field equations. Lagrange functions describing systems with
S&4 are constructed explicitly according to this new prescription. For S=O, ~~, 1, they agree with the
well-known local Lagrange functions. For S=$ and 2, they are equivalent to the results previously ob-
tained by Rarita and Schwinger, and by Fierz and Pauli. %ith the help of the quantum action principle,
canonical quantizations are carried out and Green's functions are constructed. Some physical positiveness
requirements are also verified.

I. I5TRODUCTION

HE problem of quantization for systems with
higher spins has been stud, ied, extensively ever

since the earlier d,evelopment of quantum field, theory. '
The recent discovery of many higher-spin resonances
arouses new interest in this problem. Roughly speaking,
there are two diferent approaches to describe the field,

theory of higher spins. The first approach emphasizes
the transformation properties of field variables und, er
the homogeneous Lorentz group. ' The physical inter-
acting field operators are considered as the asymptotic
field operators —the field operators before and, after the
interactions are taken place. This approach has the
advantage that these asymptotic field variables satisfy
very simple field, equations, and that no complicated,
Lagrange function is required, to d,escribe them. These
asymptotic field, variables can be quantized, easily by
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expanding them in terms of creation and, annihilation
operators, and their corresponding propagation func-
tions can then be determined. This approach is very
successful in perturbative applications as well as in the
S-matrix theory. The simplicity in this approach origi-
nates from the fact that we have bypassed, the d,etailed,
structures of the interactions. This advantage turns out
to be its d.isad. vantage when we try to describe the
interaction. Neither the canonical cormriutator rela-
tions nor the stress tensor can be obtained without
solving the full d,ynamics. The canonical quantization
conditions as well as further consistency requirements in
the presence of interactions are consequently ignored, .
The second approach follows that of Pauli and Fierz, '
and d,emands that all field equations and subsid, iary
cond, itions should be derived, from a generalized, action
principle. This classical approach has the advantages
that the interaction can be introd, uced, explicitly, and,
that the Green's function can be computed. The
canonical quantization relations and, the stress tensor
of a system can be obtained, directly from the action
principle, even in the presence of interaction. The
validity of all these consequences is not limited. by
perturbations. However, this approach has at least one
d.efect. For a system with spin &2, even the construc-
tion of a free Lagrange function is very tedious and, in.

some sense, rather ambiguous. The introduction of
auxiliary 6eld variables is by itself quite arbitrary. In


