
PHVSICAf REVIEW VOLUME 16 i, NUM 5ER 5 S E P i E iVr 0 E k

Compositeness Conditions for Particles with
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We discuss 6eld-theoretic mechanisms by which two particles having identical quantum numbers can be
exhibited as composites of other particles. If this can be done, then, contrary to what other authors have
asserted, it can be done by letting the composite wave-function renormalization constants tend to zero.

ECENTLY a good deal of attention has been
given to the problem of describing composite

particles in field theory. It was Jouvet who first sug-
gested' that in order to turn an elementary particle into
a composite, one should let its wave function renormali-
zation constant Z3 tend to zero. An extensive recent
analysis' of the present authors has shown that this
mechanism works, independently of model details and
of special approximations, in an exceedingly large
variety of contexts. However, a number of recent
analyses' ' have suggested that special difBculties may
arise in the case where there are two different particles
with identical quantum numbers. In particular,
Alexanian and Zimmermann' claim that "the vanishing
of the wave function renormalization constant does not
necessarily imply that the particle is composite. "

In the present note we show in detail how the Z3 —+ 0
mechanism works for the case of two particles with
identical quantum numbers, and that the claimed
difhculties arising in Ref. 3 are spurious, i.e., are already
covered by the analysis in Ref. 2. Our analysis also
exposes a serious mistake in Ref. 4, and shows that in
this case also nothing exceptional is going on.

We will consider an elementary particle and its con-
jugate described by fields P, P. We will attempt to
discuss two further fields ztz;(i=1, 2) which are to de-
scribe composites of zfz and P having differertt masses zrti.

It seems necessary that these masses should be different
in order that, in the case of identical quantum numbers,
the notion of two di6erent particles should make sense.
Since we will be considering asymptotic states, we will
assume that the two particles are stable, although most
of our arguments can be carried through if they are
unstable (with different 'complex masses').
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In Ref. 2 we started with elementary particles and
tried to make them both composite by putting Z;=0
(throughout the present note we will deal explicitly
with the wave-function renormalization only and will
drop the suffix 3). In the present situation, it is more
convenient to consider what would happen if the prob-
lem could be solved, and to work backwards. Suppose
then, that there are fields describing the particles p; as
composites. The Haag-Ruelle scattering theory' is
constructed in terms of fields f,(P) satisfying (by reason
of the spectral assumptions)

which then give rise in the usual way to asymptotically
free fields of mass zrt, and to outgoing states

l i) satisfying

(1l2)=O

by virtue of the di6ering masses. By repeating the con-
struction we can retain continuum terms in (1) while
maintaining (2). There may be difficulties associated
with the quantization of nonlocal fields; we will ignore
these for the present. This problem seems to arise in a
similar context in connection with the description of
bootstrapped symmetries by Geld theory. ~

It is here that we run into difhculties associated with
our attempt' to formulate a theory of composite par-
ticles sufficiently general to include both axiomatic
Geld theories' and calculations in speciGc models' ',
for of course there is no known nontrivial example of an
axiomatic field theory.

In an axiomatic Geld theory, we cannot assume that
that the f; are local, since it then seems that the S
matrix will be trivial. In such a framework, then, one
will have to abandon the use of dispersion relations for
the composite scattering, and other methods depending
directly on the use of local Gelds.

In the usual models this situation will not arise;
however, for the very same reason, Haag-Ruelle theory

6 See, for instance, R. Jost, General Theory of QNuntised Fields
(American Mathematical Society, Providence, 1965), and refer-
ences given there.

7 M. M. Broido and J. G. Taylor, Rutgers University Report
(unpublished).

130i



1302 BROIDO &ND y. G. TAyLOR.

will not apply. We note that the purpose of Eq. (1) is
to separate (in momentum space) the supports of the
Gelds giving rise to the asymptotically free Gelds. In
principle this can just as well be done by taking any
suitable functions f; such that the momentum-space
supports of the two functions (1) (given by the Lehmann
representation) are disjoint. This is of course a non-
linear process and is quite different from the linear
separation process which was seen to fail in Ref. j..

Furthermore, according to old arguments of Haag,
Zimmermann, and others, a if two functions of f both
have nonvanishing vacuum-to-one-particle matrix ele-
ments, they describe essentially the same composite.
(The S matrices are the same. ) However, our f,(f)
avoid this pitfall because from (1) and (2) we get

(0If'Q)I j)=0 for i&j. (3)

Thus we deGnitely do have two distinct composites.
Now we will construct a Lagrangian theory with

elementary particles P, which gives in the Z; —+ 0 limit
Geld equations

which are the solutions of our problem. Such a Lagran-
gian is, very generally (Secs. 2—3 of Ref. 2),

(0I &(0'( )4'(y)) I» (6)

may give rise to transitions when Z;&0, they zvi/l rot
do so im the linzit Z;=0, as is shown explicitly by Eqs.
(1) and (2). The Z;=0 propagators will have only one

pole each, at the correct masses.
What we have shown then is that if composite Gelds

exist at all, they can be obtained by our method. Of
course, they may not exist; but this situation cannot be
discussed in general —just as in Ref. 2 where certain
restrictions on masses and coupling constants had to
be obeyed if a composite particle was to arise at all,
one cannot expect to get something for nothing.

Now let us see what happens if one naively tries to do
a Green's-function analysis for two elementary particles
with equal quantum numbers, coupled locally to other
fields. Generalizing references' ', we can write down a
completely model-independent equation for the clothed

R. Haag, Phys. Rev. 112, 669 (1958); W. Zimmermann,
Nuovo Cimento 10, 597 (1958).

leading to elementary field equations for the p;:

Z, (Q '+m;2)rb, +);P,=X;f,(f),

giving (4) in the limit Z;-+0. Of course one has to
justify this by giving a Green s-function analysis, but
this will be precisely identical to the one in', so we will

not waste space by repeating it here. In particular,
although the propagators for the g,

propagator-matrix:

Dr'~'=Dr'~+Dr'I'IIat Dry+Dr's'5triI'Dr~;, (7)

where i, j, k, l=1, 2 refer to the two particles. DJ
represents the bare propagator:

Eij= ~

P' —m;2

Dp;,' is the clothed, propagator, II is the usual self-

energy contribution and, 8m) are the mass shifts.
Equation (7) is the definition of Dr; Lcompare Ref. 2,
Fig. 13, and Ref. 9, Eq. (93)); but model-dependent
field equations have been used in these two7 and is
correct for any Geld theory with local interaction.
Equation (7) can be conveniently rewritten

(Dp');; '= (Dp)g '—ll@+8mP8;, . (9)

' J. G. Taylor, Nuovo Cimento Suppl. 1, 857 (1963).

We wish to diagonalize Dp;, ' so as to decouple the
two particles. We need only consider the range of the
variables below the production threshold for other
particles, since both elementary and (later) composite-
particle poles will be expected to occur below this
threshold, if they are to be stable. In this region, II is
real and symmetric, so the diagonalization can always
be carried out.

We wish the resulting propagators to have just one

pole each at the correct renormalized masses 3f; say.
This can be achieved by suitable choices of the mass
shifts bm .

So far, the discussion has referred to elementary par-
ticles. If now we try to make these composite, we Gnd

that this cannot in general be done, because the assign-
ment of deGnite mass shifts has eliminated the degree
of freedom required to Gx a composite mass according to
the discussion of Sec. 3 of Ref. 2. However, it may
happen that the Z= 0 contours do pass through exactly
those points of the (g,m,') planes which give the com-

posite masses M; Lhere g; denotes the appropriate
coupling constant, m; the renormalized mass (Ref. 2)j.
This is exactly the Greeit, 's-function eguivalelt of the

situatioN described by the fields f;(P) introduced earlier
in this note.

Suppose now that this accident does not occur: the
desired bound-state masses are not those required to
eliminate the redundant propagator poles. Then con-
tributions of the form of Fig. 1 will no longer cancel to
all orders )compare Eq. (6)g and the only way of elimi-

nating them is to make sure that each vanishes identi-
cally, i.e., to decouple one of the composite Gelds from
the elementary fields altogether. Instead of two com-
posites, we obtain one composite and one free field,
precisely as in the special cases considered in Ref. 3.
We wish to underline that this is the general mechanism
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Fro. 1. A diagram which will contribute to the transition be-
tween certain composites unless one is completely decoupled.
The double lines represent the two composites; the single lines
represent other elementary particles to which they are coupled.

involved in such cases. In fact we see that the elaborate
analytic apparatus of Refs. 3 and 4, referring as they
do to specific models, have merely succeeded in obfus-
cating the real issues.

)g Reference 4 discusses an extended Lee model with
two V particles, and purports to show that in order to
obtain ore composite V one must let both wave-function
renormalization constants tend to zero. (The composite
V is then undistinguishable from the elementary one. )
The analysis is incorrect; it ignores a much simpler
solution obtained by putting one Z zero and. decoupling
the other V particle in a suitable manner (Ref. 4,
bottom of p.653:ni ~ 0, gs ~ 0 with g2'/rri finite in the
limit). This is precisely the situation we have just
described.

The only other work of which we are aware in which
two particles with identical quantum numbers are con-
sidered in detail is Ref. 5. These authors do not attempt
to make both particles composite, although there seems
no reason why this should not be possible Lcf. their
Eq. (53)$.

The analysis in Refs. 3—5 depends very much on the
special models used. In particular, the eRects of the
vertex-function renormalization, which changes the
general graph structure so much'7 is not clear. Further-
more, these authors do not specify their composite
masses; the elementary masses have, of course, ' vanished
from the field equations. Thus it is not at all clear
whether we can talk of two diferent particles. All these
diKculties are avoided by the analysis given in the
present paper.

Finally, one may brieRy consider practical applica-
tions; a case in point is g-o& mixing. One will almost
certainly wish to consider also the effect of a symmetry
group. In SU3, the two particles are assigned to diRerent
representations, so that the special situation discussed
in this paper does not arise. It could arise in SU6,
one might attempt to use the method of bootstrapping
sym~rietries discussed in Sec. 7D of Ref. 2. These
methods are applied to a completely SU3-symmetric
situation in Ref. 7. Now the most natural way of in-
cluding syrrunetry breaking which will give increasing
contributions at higher energies is by dynamical terms;

but then the $ and o& are elementary again and the formal
problems discussed in this paper again do not arise.
One feels that the special case of particles of equal
quantum numbers is more interesting from the point
of view of the structure of field theories than in con-
nection with direct practical applications.¹teadded iN proof. Since the present paper was
written (early in 1966) a number of further articles have
appeared, ."We will add certain comments.

"Propagator renormalization constants Z;; are fre-
quently' d,efined. as s ~~ limits rather than by I"=m
residue conditions. This will not give the same results,
unless the I.ehmann spectral functions are well behaved,
at infinity. To assume this is to beg the question, as is
well known in two-particle unitarity models (these are
classified by this asymptotic behavior).

Some authors" make much of the distinction between
the Z;; and, "generalized, wave-function renormalization
constants" A,, Lessentially the objects of Eq. (3), in-
cluding i= jj. In two-particle unitarity it is claimed"
that the Z;; must all vanish together, hence d.o not give
rise to a viable compositeness criterion. This happens
because of the divergence of a spectral integral for
the Z- —'

But in all known exactly soluble models, including
the Lee modeli' and the Lee model with relativistic
kinematics, " the Z—' goes to infinity not because an
integral diverges, but because the composite limit is
achieved by letting a bare coupling constant g tend
to infinity, and, Z g'. Thus the mechanism postulated,
in two-particle unitarity models is actually quite
different from that observed in the Lee model.

These errors are compounded. Not only is Ref. 4
wrong in itself, but the analogy it suggests to the authors
of Refs. 9 and 10 is also only apparent. "
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