Distribution of Mass and Charge in the Fission of ²⁴⁵Cm⁺

H. R. VON GUNTEN,* K. F. FLYNN, AND L. E. GLENDENIN Chemistry Division, Argonne National Laboratory, Argonne, Illinois (Received 24 April 1967)

The distribution of mass and charge in thermal-neutron-induced fission of ²⁴⁵Cm has been investigated by radiochemical determination of the fission yields for 34 mass chains and 2 shielded nuclides (independent yields). ²⁴⁵Cm is the heaviest nuclide fissionable by thermal neutrons to be investigated in this manner. The mass distribution is asymmetric; the heavy-mass group is centered at about the same position as in all previously investigated cases of low-energy fission, while the light-mass group is shifted to a higher mass number. The fission-yield data for ²⁴⁵Cm indicate a value of 4 ± 1 for $\bar{\nu}$, the average number of neutrons emitted per fission. The division of nuclear charge, as indicated by the independent yields of the shielded nuclides, adheres to a pattern characteristic of low-energy fission. A comparison of mass distributions in thermal-neutron-induced fission, reactor-neutron-induced fission, and spontaneous fission for several fissioning nuclei is given.

I. INTRODUCTION

HE published data on mass and charge distributions in thermal-neutron-induced fission cover a range of 12 mass units and 4 charge units in the fissioning nucleus (i.e., ²²⁹Th to ²⁴¹Pu). The mass distributions are predominantly asymmetric. Variation in mass of the fissioning nucleus is manifested by a shift in the light peak of the mass-yield curve, whereas the average mass of the heavy fragments is relatively independent of the mass of the fissioning nucleus. The division of nuclear charge in low-energy fission is characterized by a deviation of about 0.5 charge unit in the most probable charge Z_p of the fission fragment from the original charge-to-mass ratio (charge density) of the fissioning nucleus.

With the recent availability of ²⁴⁵Cm in quantities sufficient for radiochemical studies it was possible to extend the range of information to 16 mass units and 6 charge units for further correlations of fission characteristics with mass and charge of the fissioning nucleus. The large cross section of 1950 b (measured values: 1880 ± 150 b¹ and 2010 ± 150 b²) for thermal-neutroninduced fission of 245Cm was advantageous in this investigation since only very small quantities of ²⁴⁵Cm were available for fission-yield determinations.

II. EXPERIMENTAL

The fission yields of 37 nuclides (in 34 mass chains) and of 2 shielded nuclides in 245Cm fission were determined radiometrically relative to the known yields for ²³⁵U fission. Small aliquots of a curium solution with an isotopic composition³ of 96.50% ²⁴⁴Cm, 1.60% ²⁴⁵Cm,

1.87% ²⁴⁶Cm, 0.0220% ²⁴⁷Cm, and $\leq 0.0044\%$ ²⁴⁸Cm were used in all the experiments except for two of the rare-earth determinations in which a fragment-recoil source of mass-separated ²⁴⁵Cm (enriched to ~84%) was irradiated. The concentration of the ²⁴⁵Cm in this solution was shown to be constant over the course of these experiments by absolute α -counting of small aliquots (assuming that essentially all α activity was due to ²⁴⁴Cm with a half-life of 18.1 years⁴). The amount of ²⁴⁵Cm in the recoil source was measured by α pulseheight analysis. Aliquots of an enriched ²³⁵U solution (93.18%) were used as reference standards for all the experiments. The concentration of uranium in this solution was determined gravimetrically by weighing U₃O₈ ignited at 850°C.

Known amounts of 245 Cm (0.1 to 0.3 µg) and 235 U (1 to 10 μ g) were irradiated simultaneously in the Argonne CP-5 heavy water reactor at a thermal neutron flux of approximately 1013 sec-1 cm-2. One irradiation was performed at the Savannah River Reactor at a thermal neutron flux of $\sim 4 \times 10^{15}$. With the exception of the rare earths the specific fission products of interest were isolated from both samples using standard radiochemical procedures, i.e., carriers were added, the samples were radiochemically purified, and thick samples ($\sim 10 \text{ mg/cm}^2$) were mounted for counting. In order to avoid working with highly α -active samples the curium was removed by several co-precipitations with LaF_3 or $La_2(C_2O_4)_3$ after the addition of the carriers.

A carrier-free procedure was used to determine the yields of the rare earths. A Dowex 1-X4 (100–200 mesh) column with an elutriant of 10% 6N HNO₃-90% methanol was used to separate the rare earths from aluminum (resulting from dissolution of the samples) and from other fission products. The rare earths were then chromatographically separated by di-(2-ethylhexvl) orthophosphoric acid (HDEHP) on a chlorodimethylsilane-treated diatomaceous silica column⁵ with HCl elutriant in stepwise increasing concentra-

[†] Based on work performed under the auspices of the U.S. Atomic Energy Commission.

Resident Research Associate from Eidg. Institut für Reaktor-

^{*} Resident Research Associate from Edg. Institut für Reaktor-forschung, Würenlingen, Switzerland.
¹ E. K. Hulet, R. W. Hoff, H. R. Bowman, and M. C. Michel, Phys. Rev. 107, 1294 (1957).
* P. R. Fields, M. H. Studier, H. Diamond, J. F. Mech, M. G. Inghram, G. L. Pyle, C. M. Stevens, S. Fried, W. M. Manning, A. Ghiorso, S. G. Thompson, G. H. Higgins, and G. T. Seaborg, Phys. Rev. 102, 180 (1956).
* R. E. Cote, R. F. Barnes, and H. Diamond, Phys. Rev. 134, B1281 (1964).

B1281 (1964).

⁴ Chart of Nuclides, 8th ed. (Knolls Atomic Power Laboratory, 1965).

⁵ J. W. Winchester, J. Chromatog. 10, 502 (1963).

tions. The radioactivity of the effluent was followed with a sensitive plastic scintillator to permit collection of each rare earth in a separate fraction. The rare earths were normalized relative to ¹⁴¹Ce and ¹⁴³Ce which were determined with carrier using the hexone extraction procedure.6

In a chromatographic column separation of the rare earths there is always a possibility of fractionation which would lead to systematic errors in the heavy wing of the mass-yield curve. A tracer experiment with ^{141/144}Ce and ¹⁵²Eu showed no evidence of fractionation during the column separations and also proved that the rare earths were recovered with yields of better than 99%.

The purified samples were counted with an endwindow β proportional counter and/or γ -ray spectrometer using a 3 in. \times 3 in. NaI(Tl) crystal. The rare-earth fractions were measured in solution by γ -ray spectrometry. Here, and in all other cases where γ -ray spectrometry was applicable, the decay of one or more characteristic γ photopeaks was followed. Composite decay curves were resolved graphically.

If the targets of ²⁴⁵Cm and ²³⁵U are irradiated simultaneously, and if the counting of a ²⁴⁵Cm fission product is done relative to the same fission product in ²³⁵U fission, the fission yield for ²⁴⁵Cm is given by

$$Y_{x}^{(245}\text{Cm}) = \frac{A_{x}^{(245}\text{Cm})N^{(235}\text{U})\sigma^{(235}\text{U})Y_{x}^{(235}\text{U})}{A_{x}^{(235}\text{U})N^{(245}\text{Cm})\sigma^{(245}\text{Cm})}$$

where V_x ⁽²⁴⁵Cm) is the yield of fission product $x \text{ in } {}^{245}\text{Cm}$ fission, $Y_x(^{235}\text{U})$ is the yield of fission product x in ^{235}U fission, A_x ⁽²⁴⁵Cm) is the activity of fission product x in the ²⁴⁵Cm sample, A_x ⁽²³⁵U) is the activity of fission product x in the ²³⁵U sample, $N(^{245}Cm)$ is the number of

FIG. 1. Mass-yield curve for thermal-neutron-induced fission of ²⁴⁵Cm. O measured points, \times reflected points.

⁶L. E. Glendenin, K. F. Flynn, R. F. Buchanan, and E. P. Steinberg, Anal. Chem. 27, 59 (1955).

²⁴⁵Cm atoms in the irradiated sample, $N(^{235}U)$ is the number of ²³⁵U atoms in the irradiated sample, σ (²⁴⁵Cm) is the cross section for fission of ²⁴⁵Cm by thermal neutrons, $\sigma(^{235}\text{U})$ is the cross section for fission of ^{235}U by thermal neutrons.

The activity of each sample was corrected only for chemical yield and relative amount of fissionable nuclide used in each irradiation since all other corrections essentially cancel in this comparison method.

III. RESULTS AND DISCUSSION

The fission yields for the 34 mass chains determined in this work are presented in Table I. Independent yields of the shielded nuclides 86Rb and 136Cs are considered separately (Table III). With a few exceptions the ²³⁵U fission yields compiled by Katcoff⁷ were used in calcula-

TABLE I. Fission yields for thermal-neutron-induced fission of ²⁴⁵Cm.

]	Number			
	Method	deter-	Fission	Fission	
Fission	of	mina-	vield for	vield for	
product	counting	tions	²³⁵ U (%) ^a	²⁴⁵ Cm (%)	
77 A c		3	0.0083	0.005 ± 0.0012	
83Br	р, ү В	3	0.51	0.000 ± 0.0012 0.23 ± 0.05	
89Sr	B	3	4 79	0.85 ± 0.10	
90Sr	ß	ž	5.77	1.08 ± 0.15	
91 V	ß	1	6.11 ^b	1.27 ± 0.30	
⁹⁵ Zr	$\vec{\beta} \cdot \gamma$	3	6.2	2.40 ± 0.30	
97Zr	6	$\tilde{2}$	5.9	3.10 ± 0.35	
⁹⁹ Mo	6.v	3	6.06	4.18 ± 0.40	
¹⁰³ Ru	γ	- 9	3.0	6.27 ± 0.90	
¹⁰⁵ Ru	$\beta_{\cdot\gamma}$	5	0.9	5.78 ± 1.20	
106Ru	ß	6	0.38	5.75 ± 1.40	
^{109}Pd	в	3	0.030	5.23 ± 0.60	
111Ag	$\dot{\beta}, \gamma$	6	0.019	3.63 ± 0.70	
^{112}Pd	β,γ	3	0.010	1.60 ± 0.40	
113Ag	β	3	0.010°	2.02 ± 0.50	
115 <i>g</i> Čd	β, γ	4	0.0097^{d}	$0.41 \pm 0.07^{\circ}$	
¹²¹ gSn	β	5	0.015^{d}	$0.047 \pm 0.012^{\circ}$	
$^{123m}\mathrm{Sn}$	β	1	0.0013 ^d	$0.054 \pm 0.012^{\circ}$	
^{125g}Sn	β	9	0.013 ^d	$0.060 \pm 0.015^{\circ}$	
^{125}Sb	β,γ	4	0.021	0.071 ± 0.015	
¹²⁷ Sb	β,γ	3	0.13	0.57 ± 0.09	
^{129}Sb	β,γ	3	0.8	1.42 ± 0.30	
^{129m} Te	β,γ	4	0.35^{d}	$1.48 \pm 0.20^{\circ}$	
^{131}I	β,γ	3	3.1	3.18 ± 0.40	
¹³² Te	β,γ	4	4.7	4.41 ± 0.80	
¹³³ I	β,γ	3	6.9	6.01 ± 0.70	
137Cs	β,γ	7	6.15	7.89 ± 1.60	
140Ba	$_{eta,\gamma}$	6	6.35	5.70 ± 0.70	
¹⁴¹ Ce	γ	6	6.4	5.20 ± 0.70	
¹⁴³ Ce	γ	5	5.880	3.85 ± 0.00	
¹⁴⁴ Ce	γ	1	6.0	3.30 ± 0.70	
147Nd	Ŷ	3	2.210	2.00 ± 0.50	
¹⁴ /Pm	β	1	2.210	2.03 ± 0.30	
149Pm	γ	2	1.040	1.97 ± 0.40	
151Pm	γ	4	0.44 0.150b	1.33 ± 0.33 1.20 ± 0.30	
156E.	γ	3	0.1395 0.0137b	1.20 ± 0.30 0.25 ± 0.06	
10°Eu	γ	3	0.01375	0.25 ± 0.00	

^a Vields are taken from the compilation in Ref. 7 unless another reference is given. ^b From Ref. 8

rrom Ket. 5.
Interpolated from smooth mass-yield curve (Ref. 7).
Isomer yield.
Total yield calculated by assuming the isomer ratio is the same in ²⁴⁵Cm fissions as in ²⁸⁴⁰ fission.

⁷ S. Katcoff, Nucleonics 18, 201 (1960).

Average mass number of fission product at half- maximum height					Peak-to-	
Fissioning nucleus	Light group	Heavy group	FWHM ^a FW1	FWT M ^b	valley ratio	Reference
Thermal-	neutron fi	ssion				
^{229}Th	86.5	141.5	12.5	19	500	с
233U	93.5	138	14	22.5	390	d
235 U	95	138.5	14.5	22	650	d
^{239}Pu	99	138	14	24	150	d
²⁴¹ Pu	~ 101	138	14	25	~30	e-g
²⁴⁵ Cm	104	138	14.5	27	130	this paper
Reactor-1	neutron fis	sion				
^{232}Th	91	139	14	21	140	d
238U	98	139	15	24	180	d
241Am	102	139	14	24	150	h. i
Spontane	ous fission					
238U	~96	~ 140	13	20	• • •	j
²⁴⁰ Pu	101	137	13	21	>270	k
242Cm	102	137	13	22.5	>700	1
252Cf	106	142	15	27	750	m, n

TABLE II. Comparison of mass distributions in low-energy fission.

Full width at half-maximum.
 Full width at 1/10 maximum.
 N. Ravindran, K. F. Flynn, and L. E. Glendenin, J. Inorg. Nucl. Chem.

28, 921 (1966), ^a Reference 7, ^e I. F. Croall and H. H. Willis (Atomic Energy Research Establishment, ^a I. F. Croall and H. H. Willis (Atomic Energy Research Establishment,

⁶ I. F. Croali and H. H. Wills (Atomic Energy Research Establishment, Harwell, private communication.
^f H. Farrar, et al., Can. J. Phys. 42, 2063 (1964).
^g L. J. Kirby, Hanford Radiological Sciences Annual Report No. HW-77609, 1963 (unpublished).
^h R. R. Rickard, C. F. Goeking, and E. I. Wyatt, Nucl. Sci. Eng. 23, 115 (1965).

^b R. R. Rickard, C. F. GUEKING, and L. L. 1997.
(1965).
ⁱ J. G. Cuninghame, J. Inorg. Nucl. Chem. 4, 1 (1957).
ⁱ M. N. Rao and P. K. Kuroda, Phys. Rev. 147, 884 (1966).
^k J. B. Laidler and F. Brown, J. Inorg. Nucl. Chem. 24, 1485 (1962).
ⁱ E. P. Steinberg and L. E. Glendenin, Phys. Rev. 95, 431 (1954).
^m W. E. Nervik, Phys. Rev. 119, 1685 (1960).
^a L. E. Glendenin and E. P. Steinberg, J. Inorg. Nucl. Chem. 1, 45 (1955).

tion of the yields for 245Cm. The yields for most of the rare earths were based on ²³⁵U yields given by Bunney and Scadden.⁸ Fission cross sections of 1950 and 577 b ⁹ for ²⁴⁵Cm and ²³⁵U, respectively, were used in the computations. Errors in the measured fission yields are estimated to be in the range of 10 to 25% and include experimental errors as well as uncertainties in the values

FIG. 2. Widths of mass distributions (FWTM=full width at one-tenth of maximum height) for various nuclides and different types of fission.

⁸L. R. Bunney and E. M. Scadden, J. Inorg. Nucl. Chem. 27, 273 (1965).

FIG. 3. Positions of light and heavy groups in the fission of various nuclides. The average mass number at half-maximum of the peaks is plotted.

of the fission yields for ²³⁵U. Calculations showed that interference by neutron-induced fission products from other curium isotopes was negligible. Fission product separations from the unirradiated curium proved that the contribution from spontaneous fission was also negligible.

The observed fission yields from Table I are plotted as a function of fission product mass in Fig. 1. Within the estimated errors the observed data are consistent with the smooth mass-yield curve drawn through the experimental points. The data were put on an absolute basis by normalization of the curve to 200% total fission yield (2 fragments per fission). Summation of the massyield curve before normalization gave a value of 204%which is well within the experimental errors in the reported values of the fission cross sections. The measured points can be reflected through mass 121 ± 0.5 (symmetric fission) indicating a value of 4 ± 1 for $\bar{\nu}$, the average number of neutrons emitted per fission. To our knowledge no measurement of $\bar{\nu}$ for ²⁴⁵Cm has been reported; however, its value can be estimated from fission energy systematics to be about 3.5.

The observed mass distribution is asymmetric with the light- and heavy-mass groups centered at mass 104 and 138, respectively. The relative probability of asymmetric to symmetric fission (peak-to-valley ratio) is about 130. The full width at one-tenth maximum (FWTM) of either mass group is approximately 27 mass units.

The observed characteristics of the ²⁴⁵Cm mass distribution are compared with those for thermal-neutroninduced fission of 229Th, 233U, 235U, 239Pu, and 241Pu in Table II. Also included are the same characteristics for reactor- (~ 2 MeV) neutron-induced fission of ²³²Th, 238U, and 241Am and for spontaneous fission of 238U, ²⁴⁰Pu, ²⁴²Cm, and ²⁵²Cf. Two significant trends are ob-

⁹ J. R. Stehn, M. D. Goldberg, R. Wiener-Chasman, S. F. Mughabghab, B. A. Magurno, and V. A. May, *Brookhaven National Laboratory Report No. 325* (U. S. Government Printing and Publishing Office, Washington, D. C., 1965), 2nd ed., Suppl. 2.

TABLE III. Independent fission yields and empirical Z_p values.

⁸⁶ Rb	¹³⁶ Cs
2.9×10 ⁻⁵	6.8×10 ⁻³
(6.2±1.5)×10 ⁻⁵	$0.16 {\pm} 0.03$
0.45	7.0
$\begin{array}{c} (1.4 \pm 0.35) \times 10^{-4} \\ 34.22 \pm 0.2 \\ 86.8 \pm 0.2 \\ 0.35 \pm 0.25 \end{array}$	$\begin{array}{c} (2.3 \pm 0.4) \times 10^{-3} \\ 53.25 \pm 0.15 \\ 137.4 \pm 0.1 \\ -0.37 \pm 0.2 \end{array}$
	$\frac{{}^{86}\text{Rb}}{2.9\times10^{-5}}$ (6.2±1.5)×10 ⁻⁵ 0.45 (1.4±0.35)×10 ⁻⁴ 34.22±0.2 86.8±0.2 0.35±0.25

^a Yields from compilation in Ref. 7. ^b Neutron emission from primary fragments assumed to be the same as in spontaneous fission of ²⁵²Cf [H. R. Bowman, *et al.*, Phys. Rev. **129**, 2133 (1963)].

served in all three types of low-energy fission: (1) The width of the mass distribution increases with increasing mass of the fissioning nucleus; (2) The change in mass is accompanied by a shift in the position of the light group, with the position of the heavy group remaining relatively fixed. In Fig. 2, it is seen that the full width at one-tenth maximum (FWTM) is a linear function of the mass of the fissioning nucleus A_F and is 3 mass units wider for thermal- and reactor-neutron-induced fission than for spontaneous fission.¹⁰ This effect can probably be attributed to the higher excitation energies in neutron-induced fission, as higher excitation energies generally tend to broaden the mass distribution.

From Fig. 3 it is apparent that the position of the heavy-mass peak remains fixed at mass 138.5 ± 2 over a range in A_F of about 15 mass units, whereas the position of the light-mass peak is linear with A_F (slope of 1) over the same range. It is to be noted, however, that the heaviest nuclide ²⁵²Cf, and possibly also the lightest nuclide 229Th, depart from this pattern.

It will therefore be interesting to investigate the mass distributions for thermal-neutron-induced fission of ²²⁷Th, ²⁴⁹Cf, ²⁵¹Cf, and ²⁵⁴Es as these nuclides become available in sufficient quantities.

The observed independent fission yields for the shielded nuclides ⁸⁶Rb and ¹³⁶Cs are given in Table III. The chain yields are taken from the smooth mass-yield curve of Fig. 1. Empirical values for the most probable charge Z_p were calculated from the fractional yields under the assumption¹¹ of a Gaussian charge dispersion with $\sigma = 0.62 \pm 0.06$. A convenient quantity in the consideration of charge division is the deviation of Z_p from the value for the unchanged charge distribution (UCD) which is given by $Z_{\text{UCD}} = A'(Z_F/A_F)$, where A' is the primary mass of the fission fragment (before neutron emission) and Z_F/A_F is the charge-to-mass ratio (charge density) of the fissioning nucleus. The deviation is then $Z_p - A'(Z_F/A_F)$, or $Z_p - Z_{UCD}$, and has a value of about 0.5 charge unit (positive for light fragments and negative for heavy fragments) in all cases of spontaneous or low-energy neutron-induced fission $(E_n < 14)$ MeV).¹² The $Z_p - Z_{\text{UCD}}$ values for ⁸⁶Rb and ¹³⁶Cs (Table III) are 0.35 ± 0.25 and -0.37 ± 0.2 , respectively, indicating a pattern of charge division consistent with other cases of low-energy fission.

ACKNOWLEDGMENTS

The authors wish to thank the Argonne heavy elements group for making available the curium sources, J. L. Lerner for the isotopes separation of ²⁴⁵Cm, and M. A. Wahlgren and F. R. Lawless for their help with the rare-earth separations. One of us (H.R.v.G) expresses his thanks to the Argonne National Laboratory for making his stay at the laboratory possible.

¹⁰ It should be noted that this effect is hardly discernible if the comparison is made on the basis of the full width at half-maximum (FŴHM) (Table III, column 4).

¹¹ A. C. Wahl, R. L. Ferguson, D. R. Nethaway, D. E. Troutner, and K. Wolfsberg, Phys. Rev. **126**, 1112 (1962). ¹² K. Wolfsberg, Phys. Rev. **137**, B929 (1965).