On the other hand, the cross sections observed for reactions to the 4⁺ and 6⁺ levels in Ti⁵⁰ together are only about a quarter of the observed cross section for the 3.32-MeV group. On the basis of the cross section and angular distribution, the presence of a third state with spin 3⁻ in this vicinity does not appear improbable. In Ti⁴⁶ which has four neutron holes in the $f_{7/2}$ shell, three closely spaced 3⁻ states are observed with the center of gravity near 3.6 MeV, with perhaps a second group at higher excitation energies. It appears that the lowest 3⁻⁻ strength, which is concentrated in one level in Ti⁵⁰, is fractionated among two or more levels in the other isotopes-perhaps by interaction with the incomplete neutron shell.

ACKNOWLEDGMENTS

We are indebted to H. W. Broek for his collaboration in the early phases of this experiment and to B. Buck for making available his coupled-equations computer code. The technical assistance of John Bicek and the cooperation of the cyclotron group is gratefully acknowledged.

PHYSICAL REVIEW

VOLUME 161, NUMBER 4

20 SEPTEMBER 1967

1147

Study of Analog States by the (p,n) Reaction*

G. P. COUCHELL, D. P. BALAMUTH, R. N. HOROSHKO, † AND G. E. MITCHELL Columbia University, New York, New York (Received 27 March 1967)

Isobaric-analog states were studied by measuring the total neutron yield from the (p,n) reaction on 65Cu, 70Zn, 74Ge, 76Ge, 75As, and 80Se. A large number of resonances were observed, and total widths extracted for approximately 50 of these resonances. Detailed comparison is made with the level schemes of nuclei formed by (d, p) reactions on the same targets. Coulomb displacement energies were extracted for all isotopes studied.

INTRODUCTION

SOBARIC-ANALOG resonances^{1,2} have been observed in a variety of nuclei since the discovery of analog states in the compound nucleus by Fox, Moore, and Robson.³ Methods used include the (p,p), (p,p'), (p,γ) , and (p,n) reactions.⁴ Measurement of the total neutron yield remains the fastest and simplest way to locate analog states, to measure total widths of these states, and to determine Coulomb displacement energies.

Since the neutron decay of analog states is isospinforbidden, the observed resonances cannot have pure isospin. The properties of the (p,n) reaction channel are of considerable importance since they give insight into the nature of the mixing between the Tlower states $(T_{\leq}=T_t-\frac{1}{2};$ where T_t is the isobaric spin of the target ground state) and T-greater states $(T_{>}=T_{t}+\frac{1}{2})$. Measurement of the total neutron yield also serves as a guide to further experiments involving elastic (or inelastic) scattering or detailed neutron studies.

In the present work,⁵ the total neutron yield from six intermediate-mass nuclei was measured as a function of incident proton energy. All excitation curves display a number of sharp resonances. A comparison was made between the observed resonances and available level schemes obtained from (d, p) reactions on the same target. In this way many isobaric-analog states of the compound nucleus were identified. Level widths were determined for practically all resonances which were sufficiently well isolated. Coulomb displacement energies were extracted for all isotopes studied, and compared with predictions of a semiempirical formula.

EXPERIMENTAL PROCEDURE

A proton beam was obtained from the Columbia University Van de Graaff accelerator. The relative energy spread of the beam ($\Delta E/E$) was approximately 0.1%. All targets were prepared by evaporation onto 0.010in. Ta backings. The enrichments of the separated isotopes were: ⁷⁰Zn(78.3%), ⁷⁴Ge(91.7%), ⁷⁶Ge(84.7%), and ⁸⁰Se(97.75%); natural Cu and As targets were used. Target thickness ranged from 75 to 150 μ g/cm², with maximum nonuniformities of 5-10%. The proton beams employed ranged from 0.05 to 0.50 μ A. Neutrons were

^{*} Work partially supported by the U. S. Atomic Energy Commission.

[†] Now at Bartol Research Foundation, Swarthmore, Pennsylvania.

¹ D. Robson, Phys. Rev. **137**, B535 (1965). ² C. Mahaux and H. A. Weidenmüller, Nucl. Phys. **89**, 33

^{(1966).} ⁸ J. D. Fox, C. F. Moore, and D. Robson, Phys. Rev. Letters 12, 198 (1964). ⁴ Isobaric Spin in Nuclear Physics, edited by J. D. Fox and

D. Robson (Academic Press Inc., New York, 1966).

⁵ A preliminary version of this work was presented at a recent American Physical Society meeting: G. P. Couchell, D. P. Balamuth, R. N. Horoshko, and G. E. Mitchell, Bull. Am. Phys. Soc. 12, 129 (1967).

FIG. 1. Neutron excitation curve for the ${}^{65}Cu(p,n){}^{65}Zn$ reaction. Left-hand ordinate scale applies to the low-energy portion of curve; the counts for the higher-energy part are read from the right-hand scale.

detected at 0° with a ³He-filled proportional counter^{6,7} embedded in paraffin.

RESULTS AND DISCUSSION

The excitation curves obtained from the (p,n) reaction on 65 Cu, 70 Zn, 74 Ge, 76 Ge, 75 As, and 80 Se are shown in Figs. 1–6, respectively. In each case, the continuous distinct resonances superimposed on a rapidly increasing neutron background.

The resonances observed are listed in Table I. Parentheses around the energies signify that the resonances were very weak. The absolute energy of each resonance is determined to better than 10 keV; the uncertainty in spacing between resonances is somewhat less. Level widths listed in Table I include a contribution due to finite target thickness. In all cases these target thicknesses ranged from 5–10 keV for the proton energies employed. The error in the observed widths is approximately 5 keV.

FIG. 2. Neutron excitation curve for the ${}^{70}\text{Zn}(p,n){}^{70}\text{Ga}$ reaction.

FIG. 3. Neutron excitation curve for the $^{74}\text{Ge}(p,n)^{74}\text{As}$ reaction. Ordinates read as in Fig. 1.

Table I also contains a comparison of the level spacings observed in this work with results obtained from both (d,p) studies and other (p,n) studies of the same target nuclei. The unambiguous identification of those

FIG. 4. Neutron excitation curve for the ${}^{76}\text{Ge}(p,n){}^{76}\text{As}$ reaction.

resonances which correspond to levels seen in (d,p) work was aided by prediction of the Coulomb displacement energy, calculated from a semiempirical formula.⁸

FIG. 5. Neutron excitation curve for the ${}^{76}As(p,n){}^{76}Se$ reaction. Ordinates read as in Fig. 1.

⁸ D. D. Long, P. Richard, C. F. Moore, and J. D. Fox, Phys. Rev. 149, 906 (1966).

⁶ A. Sayres and M. Coppola, Rev. Sci. Instr. **35**, 431 (1964). ⁷ D. B. Lightbody, A. Sayres, and G. E. Mitchell, Phys. Rev. **153**, 1214 (1967).

TABLE I. Resonances observed in the (p,n) excitation curves and comparison with results from	(d,p)	experiments
and from other (p,n) experiments. Parentheses indicate a weak resonance.		

Tourst	Pre	sent work	T. (h-17)] othe E (MaV)	Levels from er (p,n) studi	es Def	Levels : (d,p) st	from udies
1 arget	E_p (MeV)	LC.M. (MeV)	1 (KeV)	E (Mev)	1 (kev)	Kel.	E (MeV)	Ker.
65Cu	2 506	2450 ± 0.018					0	9
	2.523	2.450 + 0.035						
	2.569ª	2.450 ± 0.080^{a}	30ª					
	2.027	2.450 ± 0.157	15				0.183	9
	2.707ª	$2.450 + 0.216^{a}$	30ª					-
	2.769	2.450 ± 0.277 2.450 ± 0.321	12				0.272	9
	2.874	2.450 ± 0.321 2.450 ± 0.380	18	0.383	20	23	0.383	9
	2.959	2.450 + 0.464	22	0.467	26	23	0.462	9
	3.035	2.450+0.539	25				0.589	9
	(2.240)	(2,450,10,040)					0.724	9
	(3.318) 3 342	(2.450 ± 0.818) 2 450 ± 0.841	10	0.835	21	23	0.810	. 0
	3.418	2.450 + 0.916	14	0.000		20	0.017	,
	3.450	2.450 + 0.948	17	4.024		22		_
	3.528	2.450 + 1.025	14	1.031	10	23	1.015	9
	3.681	2.450 + 1.175		1.000		20	1.152	9
	3.732ª	$2.450 + 1.225^{\circ}$	39a	1.227		23	1.209	9
	3.782 3.810	2.450 ± 1.275 2.450 \pm 1.311	13				1.247	9
	3.846	2.450 + 1.338	15				1.339	9
70 Zn	3.797	3.744	21				0	10
	1 000	2 744 1 0 200	02				0.16	10
	4.092	3.744 ± 0.290 3.744 ± 0.473	23 34				0.28	10 10
	4.470	3.744 + 0.663	24				0.66	10
	4.669	3.744 + 0.859	23				0.85	10
⁷⁴ Ge	3.586	3.538	24				0	13
	3 787	3.538 ± 0.198	40				0.042	13
	3.828	3.538 ± 0.241	22				0.241	13
	1 153	3 538 + 0 560	17	0 550	25	24	0.306	13
	4.183	3.583 ± 0.589	15	0.587	23	24^{-4}	0.375	15
	(4.246)	(3.538 + 0.651)	24	0.652	4.7	24	0.665	13
	4.279	3.538 ± 0.084 3.538 ± 0.894	21 17	0.679	17	24 24	0.865	13
	(4.551)	(3.538 ± 0.952)		0.001			0.000	15
	(4.694)	(3.538 + 1.093)	16	1 1 2 1	20	24		
	4.743	(3.538 ± 1.118) 3.538 ± 1.142	16	1.131	32	24		
	5.012	3.538 + 1.407	23	1.386	38	24		
	5.055	3.538 + 1.450	47	1.432	29	24 24		
	5.130	3.538+1.514	36	1.511		24		
	5.289	3.538+1.689	34	1.669	38	24		
⁷⁶ Ge	4.129	3.916+0.159	20	0.159	30	23	0.159	13
	4 486	3.916 ± 0.512	17	0.506	26	23	0.229	13 13
	4.606	3.916+0.630	24	0.622	27	23	0.621	13
	4.873	3.916 ± 0.894 3.016 \pm 1.000	19 20	0.884	26 42	23	0.869	13
	5.156	3.910 ± 1.009 3.916 ± 1.173	20 77	1.185	80	23	1.219	13
	5.315	3.916 + 1.330	50	1.332	56	23		
⁷⁵ As	3.066	3.026	17	0	11	16		
	3.109	3.026 ± 0.042	$\frac{21}{23}$	0.041	11	16		
	(3.243)	(3.020 ± 0.131) (3.026 ± 0.174)	20					
	3.331	3.026 + 0.261	14					
	5.421 3.482	3.020 ± 0.350 3.026 ± 0.410	20 16					
	4.144	3.026 + 1.063	19			. –		
	4.456* 4.676	3.026+1.371* 3.026+1.588	54ª 24	1.39		17 17		
800	4.070	2 780	4T 16	1.50		1/	0	20
~~5e	3.821 3.934	3.780+0.105	10				0.103	20
	4 200	2 700 1 0 470					0.294	20
	4.302	3.700+0.409					0.409	20

• Resonance may consist of two or more unresolved states.

FIG. 6. Neutron excitation curve for the ${}^{80}\text{Se}(p,n){}^{80}\text{Br}$ reaction. Ordinates read as in Fig. 1.

In the case of As, where no results from (d,p) experiments are available and little is known about the level scheme of ⁷⁶As, the resonances are simply listed without further comment.

65Cu

The excitation curve for ⁶⁵Cu is very complex. The first resonances are weak and do not correspond to levels observed in the (d,p) study⁹ of this isotope. It is thus unlikely they are isobaric analogs of levels in ⁶⁶Cu. These resonances illustrate a common problem in the identification of analog states. Clearly all resonances observed are not analog states, although it is very probable that the strong ones can be explained by this mechanism. The converse is certainly not true. Analog resonances corresponding to higher orbital angular momentum transfer are strongly attenuated by penetrability effects and are indistinguishable from resonances in the compound system. For these weak resonances supporting evidence is clearly desirable before labeling them as analog states. At higher energies, a number of very strong resonances appear. The identification of isobaric analog states was made by matching the strong resonances with levels seen in the (d,p) experiment. Since the agreement between the strong resonances and levels seen in (d, p) work is very good, the extracted Coulomb displacement energy should be quite reliable.

^{70}Zn

The excitation function shows a number of strong resonances. The resonance at 3.797 MeV was assumed to be the analog of the ground state of ⁷¹Zn. [This resonance was expected to be rather prominent, since it is formed by l=1 protons and is well above the (p,n)threshold.] With this assignment, the subsequent level spacings are in excellent agreement with states observed in a ${}^{70}Zn(d,p){}^{71}Zn$ experiment.¹⁰ No state was observed which corresponded to the first excited state of ⁷¹Zn;

this is consistent with the orbital angular momentum transfer of 4, determined in the (d,p) experiment. The Coulomb displacement energy calculated from this level assignment agrees with previous general results for Zn obtained from charge-exchange scattering.¹¹

⁷⁴Ge

The ⁷⁴Ge excitation curve displayed strong resonances in the region above 4 MeV. The resonance that is assumed to be the ground-state analog was observed weakly at 3.586 MeV. The diminished strength of this state can perhaps be attributed to a low neutron penetrability. This state is only about 200 keV above the (p,n) threshold, and decays to the ground state of ⁷⁴As by emitting l=2 neutrons.¹² The agreement between this work and an independent (d,p) experiment¹³ is very good. The doublets at 4.153, 4.183 MeV, and 4.246, 4.279 MeV were not resolved in the (d,p) work.

⁷⁶Ge

The ground-state analog was not observed in the ⁷⁶Ge(p,n) excitation curve. This state was not seen in a $^{76}\text{Ge}(d,p)^{77}\text{Ge}$ experiment¹³ either. The shell model predicts a spin of $\left(\frac{7}{2}\right)$ for this state. Since an l=4 proton is thus required to form this analog state, one would not expect to see the state in this experiment. The first strong resonance observed was assumed to be the analog of the first excited (159-keV) state in ⁷⁷Ge. The strength of this resonance is consistent with the $(\frac{1}{2})$ spin assignment¹⁴ for this state. Using this assumption, there is a close correspondence between the resonances observed and states of ⁷⁷Ge determined from the (d, p)measurements. Preliminary analysis of elastic scattering data¹⁵ on Ge⁷⁶ yields results in good agreement with the present work. The Coulomb displacement energies determined for the two Ge isotopes are consistent with the value quoted by Anderson et al.¹¹

75As

The first doublet observed in the 75As excitation curve presumably corresponds to the ground and first excited states of ⁷⁶As. This same doublet, with a separation of about 40 keV, has been observed by other investigators.^{16,17} The strong resonances seen in this

⁹ R. P. de Figueiredo, M. Mazari, and W. W. Buechner, Phys. Rev. 112, 873 (1958). ¹⁰ D. Von Ehrenstein and J. P. Schiffer (to be published).

¹¹ J. D. Anderson, C. Wong, and J. W. McClure, Phys. Rev. 126, 2170 (1962).

¹² Nuclear Data Sheets, compiled by K. Way et al. (Printing and

 ¹² Nuclear Data Sheets, compiled by K. Way et al. (Printing and Publishing Office, National Academy of Sciences—National Research Council, Washington 25, D. C.), NRC 59-4-66.
¹³ R. J. Silva and E. Eichler, Bull. Am. Phys. Soc. 7, 315 (1962).
¹⁴ Nuclear Data Sheets, compiled by K. Way et al. (Printing and Publishing Office, National Academy of Sciences—National Re-search Council, Washington 25, D. C.), NRC 59-3-39.
¹⁵ G. E. Mitchell, D. P. Balamuth, G. P. Couchell, and R. N. Horoshko, Bull. Am. Phys. Soc. 12, 511 (1967).
¹⁶ R. L. Kernell and C. H. Johnson, Bull. Am. Phys. Soc. 11, 630 (1966)

^{630 (1966).}

¹⁷ C. Fan, B. E. Bonner, R. B. Blake, and E. B. Paul, Bull. Am. Phys. Soc. 11, 629 (1966).

work do not conform to level schemes proposed for ⁷⁶As from the study of γ -ray spectra, obtained in the ⁷⁵As (n,γ) ⁷⁶As reaction.¹⁸ However, the Coulomb displacement energy, derived from our ground-state assignment is in excellent agreement with the value reported by Anderson et al.19

⁸⁰Se

The data for ⁸⁰Se showed well-isolated resonances. The analog of the ⁸¹Se ground state is formed by l=1proton capture. The first strong resonance observed was assumed to correspond to this state. It is somewhat surprising that we see the analog of the first excited (103-keV) state in ⁸¹Se, which is supposedly formed by l=4 proton capture. This is especially interesting since we do not observe the analog of the 294-keV state in ⁸¹Se, which is much more strongly populated by the (d,p) reaction,²⁰ and which is also given an l=4 assignment. Otherwise there is good agreement with the ⁸¹Se level scheme derived from the (d,p) experiment.²⁰ The Coulomb displacement energy falls within the experimental error of the value reported by Anderson et al.19

General Comments

Coulomb displacement energies are listed in Table II. The first column is a summary of the displacement energies determined in the present work, using the

TABLE II. Coulomb displacement energies. ΔE_c (exp) is the displacement energy determined in the present work, while $\Delta \vec{E_c}$ (calc) is the result predicted from Eq. (1). The uniform radius parameter r_0 is calculated from ΔE_c (exp).

	$\Delta E_{c}(\exp)$ (MeV)	$\Delta E_{o}(\text{calc})$ (MeV)	$r_0(\exp)$ (F)
⁶⁶ Zn- ⁶⁶ Cu	9.51 ± 0.02	9.36	1.267 ± 0.003
⁷¹ Ga- ⁷¹ Zn	$9.78 {\pm} 0.05$	9.46	1.222 ± 0.007
⁷⁵ As- ⁷⁵ Ge	$10.02 {\pm} 0.02$	9.95	1.252 ± 0.003
⁷⁶ Se- ⁷⁶ As	$10.35 {\pm} 0.02$	10.25	1.265 ± 0.003
⁷⁷ As- ⁷⁷ Ge	$9.95 {\pm} 0.05$	9.86	1.250 ± 0.007
⁸¹ Br- ⁸¹ Se	$10.49{\pm}0.02$	10.35	$1.240{\pm}0.002$

¹⁸ Nuclear Data Sheets, compiled by K. Way et. al. (Printing and Publishing Office, National Academy of Sciences—National Research Council, Washington 25, D. C.), NRC 59-5-35.
¹⁹ J. D. Anderson, C. Wong, and J. W. McClure, Phys. Rev. 128 (1105)

nuclear-mass data of Mattauch et al.21 The indicated errors include both our experimental errors and uncertainties in the nuclear-mass differences.

The second column lists the energies calculated from the semiempirical formula⁸

$$\Delta E_c(\text{calc}) = -1.032 + 1.448(Z/A^{1/3}), \quad (1)$$

which is a least-squares fit of most previous data to a form linear in $Z/A^{1/3}$. The last column shows the values of the uniform radius parameter r_0 obtained by using the values in column 1 in the expression²²

$$\Delta E_{c}(Z+1, Z) = \{0.60(2Z+1) - 0.613Z^{1/3} - (-1)^{2}0.30\}e^{2}/r_{0}A^{1/3}.$$
 (2)

It is interesting to note that our experimental displacement energies are all somewhat higher than the calculated values.

We also studied neutron excitation curves of ⁶⁹Ga, ⁷⁹Br, and ⁸¹Br. A number of distinct resonances (some of which are certainly analog states) were observed in each of these isotopes. Unfortunately, there is little information available about the excited states of ⁷⁰Ga, ⁸⁰Br, and ⁸²Br; it was thus not possible to identify any of these resonances as a particular analog state. As a consequence, Coulomb displacement energies could not be extracted. More independent experimental evidence [e.g., (d, p) studies] is necessary before these data can be interpreted.

After the completion of the present experimental work, studies of the ${}^{65}Cu$, ${}^{74}Ge$, and ${}^{76}Ge(p,n)$ reaction were published.^{23,24} Our agreement with this work is generally very good. A few weak states not reported in Refs. 23 and 24 were seen in the present experiment; most noteworthy are the analogs of the ground state, the 195-keV state, and the 241-keV state of 75Ge. The coulomb energies determined in each case are in excellent agreement.

ACKNOWLEDGMENTS

The authors would like to thank Professor A. Sayres for assistance in the early phases of this experiment, and A. Bridgewater and S. Friedlander for help in collecting the experimental data.

²¹ J. H. E. Mattauch, W. Thiele, and A. H. Wapstra, Nucl. Phys. 67, 1 (1965).
²² S. Sengupta, Nucl. Phys. 21, 542 (1960).
²³ M. Harchol, S. Cochavi, A. A. Jaffe, and C. Drory, Nucl. Phys. 79, 165 (1966).
²⁴ M. Harchol, A. A. Jaffe, J. Zioni, and C. Drory, Nucl. Phys. 00 473 (1967)

90, 473 (1967)

^{138, 615 (1965).}

²⁰ E. K. Lin, Phys. Rev. 139, B340 (1965).